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Abstract. Critical decisions are made by decision-makers throughout
the life-cycle of large-scale projects. These decisions are crucial as they
have a direct impact upon the outcome and the success of projects. To aid
decision-makers in the decision making process we present an evidential
reasoning framework. This approach utilizes the Dezert-Smarandache
theory to fuse heterogeneous evidence sources that suffer from levels
of uncertainty, imprecision and conflicts to provide beliefs for decision
options. To analyze the impact of source reliability and priority upon
the decision making process, a reliability discounting technique and a
priority discounting technique, are applied. A maximal consistent subset
is constructed to aid in defining where discounting should be applied.
Application of the evidential reasoning framework is illustrated using a
case study based in the Aerospace domain.
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1 Introduction

Decision making in large-scale projects are often sophisticated and complex pro-
cesses where selections have an impact on diverse stages of the project life-cycle
and ultimately the outcome of the project. Evidence supporting/opposing the
various design options can be extracted from diverse heterogeneous informa-
tion sources. However, evidence items vary in terms of reliability, completeness,
precision and may contain conflicting information. Aerospace is a highly com-
petitive field with constant demands on aircraft production to improve safety,
performance, speed, reliability and cost effectiveness [10]. Design decisions made
throughout an aircraft life-cycle are critical as they directly effect the factors
above. Decision making in Aerospace involves the evaluation of multiple de-
cision options against criteria such as detailed requirement specifications and
International Aviation Standards. To address these limitations we propose an



evidential reasoning framework to support decision analysis using information
fusion techniques based on Belief Function theory to manage uncertainty and
conflict in evidence sources. The novelty of this paper lies in the application of
these techniques to decision-making in the Aerospace domain.

This research is an element of a larger collaborative project, DEEPFLOW,
which encompasses the areas of natural language processing, high performance
computing, computational semantics, and reasoning with uncertainty. The project
aims to develop a framework to identify, extract and reason with information
contained within large complex interrelated documents which can be applied to
many diverse problem domains. Information extracted from these data are used
as input to the evidential reasoning framework.

Investigations have been performed in the Aerospace domain where various
approaches have been applied to reason with data which are incomplete and un-
certain. Such approaches include Bayesian theory, Dempster-Shafer theory (DS)
and Dezert-Smarandache theory (DSm) which have been used to fuse uncertain
and unreliable information in areas involving sensor information fusion [1] and
target identification [4] where systems are required to deal with imprecise infor-
mation and conflicts which may arise among sensors. A study by Xiaoqing et al.
[5] provides an example of how argumentation and reasoning can be applied to
handle uncertainty and conflicts in decision making.

As summarized above, Bayesian methods and Evidence theories such as DS
[6] have commonly been used to handle uncertainty. As a generalized probability
approach, DS has some distinct features compared with Bayesian theory. DS
can represent ignorance caused by lack of information and can aggregate beliefs
when new evidence is accumulated. DSm can be considered as a generalization
of DS whereby the rule of combination takes into account both uncertain and
paradoxical information [3]. In this paper we apply DSm to fuse pieces of evidence
for decision making purposes.

Evidence sources involved in the fusion process may not always have equal
reliability or priority. Reliability can be viewed as an objective property of an
evidence source whereas priority is viewed as a subjective property expressed
by an expert [7]. Counter-intuitive results could be obtained if unequal sources
are fused and these factors are not taken into consideration. To highlight the
importance of all this in the decision making process we apply two discounting
techniques: reliability discounting using Shafer’s classical discounting approach
and priority discounting based on the importance discounting technique [7]. We
construct a maximal consistent subset to aid in defining where discounting should
be applied. To evaluate the proposed framework we present a scenario detailing a
decision making process in which a design engineer selects a material to construct
a wing spar of an aircraft. A spar is an integral structural member of the wing
which carries the flight loads and the weight of the wings.

The paper is organized as follows: in section 2 the basics of Evidence theory
and combination rules are introduced. In section 3 the reliability discounting and
priority discounting techniques are detailed. A case study in section 4 presents
an applied scenario based in the Aerospace domain comparing DS and DSm ap-



proaches and the impact of discounting factors on decision analysis. Conclusions
are provided in section 5.

2 Theory of Belief Functions

DS Theory DS (evidential theory) is a generalization of traditional probability.
This theory provides a mathematical formalism to model our belief and uncer-
tainty on possible decision options for a given decision making process. In DS
the frame of discernment denoted by Θ = {θ1, ..., θn} contains a finite set of n
exclusive and exhaustive hypotheses. The set of subsets of Θ is denoted by the
power set 2Θ. For instance, {A,C,W} is the frame for materials (aluminium,
composite, wood) from which an engineer selects one to construct a wing spar.

DSm DSm proposes new models for the frame of discernment and new rules of
combination that take into account both paradoxical and uncertain information.
In DSm, the free DSm model, Θ = {θ1, ..., θn} is assumed to be exhaustive but
not necessarily exclusive due to the intrinsic nature of its elements, the set of
subsets are denoted by the hyper power-set DΘ (Dedekind’s lattice) described
in detail in [8] which is created with ∪ and ∩ operators. Using the hybrid DSm
(hDSm) model integrity constraints can be set on elements of Θ reducing cardi-
nality and computation time compared to the free model. When Shafer’s model
holds i.e. all exclusivity constraints on elements are included the DΘ reduces to
the power set 2Θ. We denote GΘ the general set on which will be defined the
basic belief assignments, i.e. GΘ = 2Θ when DS is adopted or GΘ = DΘ when
DSm is preferred depending on the nature of the problem.

A basic belief assignment (bba) expressing belief assigned to the elements
of GΘ provided by an evidential source is a mapping function m : GΘ → [0, 1]
representing the distribution of belief satisfying the conditions:

m(∅) = 0 and
∑
A∈GΘ

m(A) = 1 (1)

In evidence theory, a probability range is used to represent uncertainty. The
lower bounds of this probability is called Belief(Bel) and the upper bounds
Plausibility(Pl). The generalized Bl and the Pl for any proposition A ∈ GΘ
can be obtained by:

Bel(A) =
∑
B⊆A
B∈GΘ

m(B) and Pl(A) =
∑

B∩A6=0

B∈GΘ

m(B) (2)

In DSm the Proportional Conflict Redistribution Rule no. 5 (PCR5) has been
proposed as an alternative to Dempster’s rule for combining highly conflicting
sources of evidence. Below Dempster’s combination rule and PCR5 are briefly
detailed, a complete presentation of DSm can be found in [8].

Dempster’s Rule of Combination In DS, Dempster’s rule of combination is
symbolized by the operator ⊕ and used to fuse two distinct sources of evidence
B1 and B2 over the same frame Θ. Let Bel1 and Bel2 represent two belief



functions over the same frame Θ and m1 and m2 their respective bbas. The
combined belief function Bel = Bel1 ⊕ Bel2 is obtained by the combination of
m1 and m2 as: m(∅) = 0 and ∀C 6= ∅ ⊆ Θ

m(C) ≡ [m1 ⊕m2](C) =

∑
A∩B=C m1(A)m2(B)

1−
∑
A∩B=∅m1(A)m2(B)

(3)

Dempster’s rule of combination is associative ([m1⊕m2]⊕m3 = m1⊕ [m2⊕m3])
and commutative (m1 ⊕m2 = m2 ⊕m1).
PCR5 Rule of Combination The PCR5 rule can be used in DSm to com-
bine bbas. PCR5 transfers the conflicting mass only to those elements that are
involved in the conflict and proportionally to their individual masses. This pre-
serves the specificity of the information in the fusion process [3]. For two indepen-
dent bbas m1 and m2 the PCR5 rule defined by [8] is as follows: mPCR5(∅) = 0
and ∀(X 6= ∅) ∈ GΘ

mPCR5(A) =∑
X1,X2∈GΘ

X1∩X2=A

m1(X1)m2(X2) +
∑
X∈GΘ

X∩A=∅

[
m1(A)2m2(X)

m1(A) +m2(X)
+

m2(A)2m1(X)

m2(A) +m1(X)
] (4)

All fractions in (4) which have a denominator of zero are discarded. All propo-
sitions/sets in the formula are in canonical form. PCR5 is commutative and not
associative but quasi-associative.

Probabilistic Transformation We need to obtain pignistic probabilities for
decision making purposes for this study. Fused beliefs are mapped to a probabil-
ity measure using the generalized pignistic transformation approach DSmP [2],
an alternative to the familiar approach BetP proposed by Smets et al [9]. DSmP
is advantageous as it can be applied to all models (DS, DSm, hDSm) and can
work on both refined and non-refined frames. DSmP is defined by DSmPε(∅) = 0
and ∀X ∈ GΘ by

DSmPε(X) =
∑
Y ∈GΘ

∑
Z⊆X∩Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )∑
Z⊆Y
C(Z)=1

m(Z) + ε · C(X ∩ Y )
m(Y ) (5)

where GΘ corresponds to the hyper power set; C(X ∩ Y ) and C(Y ) denote the
cardinals of the sets X ∩ Y and Y respectively; ε ≥ 0 is a tuning parameter
which allows the value to reach the maximum Probabilistic Information Content
(PIC) of the approximation of m into a subjective probability measure [2]. The
PIC value is applied to measure distribution quality for decision-making. The
PIC of a probability measure denoted P associated with a probabilistic source
over a discrete finite set Θ = {θ1, ..., θn} is defined by:

PIC(P ) = 1 +
1

Hmax
·
n∑
i=1

P{θi}log2(P{θi}) (6)

where Hmax is the maximum entropy value. A PIC value of 1 indicates the total
knowledge to make a correct decision is available whereas zero indicates the
knowledge to make a correct decision does not exist [2].



3 Evidential Operations

Evidence to support or refute design options in a decision making process can
be extracted from numerous information sources including reports, journals and
magazine articles. Some sources may be regarded as being reliable or have a
higher priority than others. It is important to manage these factors in the fusion
process to reduce errors in reporting beliefs for decision options. Prior knowledge
is applied to estimate both the reliability and priority discounting values.

To aid with determining which sources should be discounted before fusion, we
can construct a maximal consistent subset. This involves constructing a subset
of sources that are consistent with each other. Discounting could be applied to
sources deemed dissimilar or non-coherent. To measure the coherence between
evidence sources the Euclidean similarity measure based on distance is applied,
other distance measure are also applicable. This measure is commutative. Let
Θ = {θ1, ..., θn} where n > 1 and m1 and m2 are defined over GΘ, Xi is the ith
element of GΘ and |GΘ| the cardinality of GΘ, the function can be defined by:

S(m1,m2) = 1
1√
2

√√√√|GΘ|∑
i=1

(m1(Xi)−m2(Xi))2 (7)

Application of other similarity approaches could also have been applied, however,
Euclidean distance was selected for simplicity.

Reliability Discounting Techniques In reliability discounting a discounting
factor α in [0, 1] can be applied to characterize the quality of an evidence source
[7]. For instance, evidence extracted from an aviation journal is considered higher
quality than a blog post. The reliability factor transforms the belief of each source
to reflect credibility. Shafer’s discounting technique [6] has been proposed for the
combination of unreliable evidence sources. Incorporation of the reliability factor
1− α ∈ [0, 1] in the decision making process is defined as:{

mα(X) = α ·m(X),∀X ⊂ Θ
mα(Θ) = α ·m(Θ) + (1− α)

(8)

whereby α = 0 represents a fully reliable source and α = 1 an unreliable source.
The discounted mass is committed to m(Θ). Using prior knowledge, we set re-
liability factors whereby evidence extracted from a journal, magazine and blog
post are represented by the factors α = 0.1, α = 0.3, α = 0.7 respectively.

Priority Discounting Technique Source priority can be viewed as a subjec-
tive attribute whereby an expert can assign a priority value to an individual
source [3]. We characterize priority using a factor denoted β in [0, 1], repre-
sentative of a priority weight assigned by an expert to a source. The highest
priority assigned to a source is characterized by β = 1 and minimum β = 0.
In this research, pieces of evidence have been ranked in accordance to priority;
for instance, it is essential that the material selected to construct a wing spar is
verified to be safe. Therefore a piece of evidence supporting the material safety
is set with a priority factor of 1. Priority discounting is defined with respect to



∅ and not Θ as in the Shafer reliability approach. The discounting of a source
having a priority factor β can be defined as:{

mβ(X) = β ·m(X), for X 6= ∅
mβ(∅) = β ·m(∅) + (1− β)

(9)

which allows m(∅) ≥ 0, thereby preserving specificity of the primary information
as all focal elements are discounted with same priority factor [7]. When full prior-
ity is selected by the expert i.e. β = 1, the source will retain its full importance
in the fusion process. Therefore the original mass of the bba is not changed.
PCR5 is applied to demonstrate the fusion process when priority discounting is
used as Dempster’s rule of combination does not respond to the discounting of
sources towards the empty set [7]

4 Case Study

This study is intended to illustrate how heterogeneous information from dis-
parate sources can be fused to aid engineers when deciding upon material for a
wing spar. The PCR5 rule of combination has been selected to fuse pieces of ev-
idence. Dempster’s rule of combination is used for comparative purposes as this
rule may generate errors in decision making when the level of conflict between
evidence sources is high. Furthermore, priority discounting cannot be illustrated
using the DS approach. Before fusion, a maximal consistent subset (i.e. sets of
consistent evidential sources) is determined. Obtaining the maximum consistent
subset will aid in identifying sources to be discounted. Either reliability or pri-
ority discounting can be applied. The aim of applying these approaches is to
improve the correctness of fusion results. Decision making is based on pignistic
probabilities where results are presented using both DSmP and BetP transfor-
mation methods for comparative purposes.

Standards, Requirements and Evidence The material selected to construct
a wing spar must fulfill specified design requirements. It is assumed that an avi-
ation expert has assigned priory and reliability values. To determine if materials
adhere to these requirements we have extracted evidence from a total of 50 het-
erogeneous sources including: 18 journal articles, 6 technical white papers, 9
books, 7 aviation magazines and 10 blogs (argumentation mining is being ap-
plied in DEEPFLOW to automatically extract these information). These sources
varied in terms of certainty and consistency, and the resulting knowledge base
could contain some conflicting evidence. Using this information, an input evi-
dence vector was constructed by mapping the evidence for the design options to
relevant design requirements fulfilled or otherwise. A sample vector is presented
in Table 1.
4.1 Implementation of Scenario

An engineer has the task of selecting a material from the set: aluminum (A),
composites (C) and wood (W) to construct a wing spar. The frame of discern-
ment Θ = {A,C,W}, is used in the fusion. For simplification, we assume that
the selected material needs to fulfill just four requirements: safety, damage toler-
ance, ease of fabrication and availability of supply. We use four different evidence



Table 1. Sample Evidence Vector

Aluminium Composite Wood

Evidence Tolerant material Damage resistance Limited availability

Reliability Journal (0.1) Magazine (0.3) Blog (0.7)

Requirement Safety Damage Tolerance Availability

Priority High priority (1) High priority (1) Low priority (0.2)

sources that assign belief to the hypotheses. The estimated respective bbas: m1,
m2, m3 and m4 are given in Table 2. These are estimated using information from
the digital knowledge base along with expert knowledge.

Table 2. Basic Belief Assignments for Evidence Sources

A C W Θ

m1 0.4 0.5 0 0.1
m2 0.7 0 0.3 0
m3 0.2 0.8 0 0
m4 0.4 0.4 0.1 0.1

Maximal Consistent Subset It is known that conflict between evidence
sources can have a detrimental impact upon the fusion process. To address this,
we present a methodology to determine a maximal consistent subset. Before fu-
sion is performed, priority or reliability discounting factors can be applied to
those bbas which are considered dissimilar. An outline of this methodology is
presented in Algorithm 1. The first step is to rank the evidential sources repre-

Algorithm 1 Calculation of Maximal Consistent Subset

FORALL bbas calculate information content using PIC approach
SELECT bba with highest information content, add to maximal consistent subset.
If more than one bba have the same PIC value, choose one arbitrarily
REPEAT

FIND most similar bbas using distance measure to those bbas in maximal con-
sistent subset

IF similarity value > threshold then join bba to maximal consistent subset
UNTIL similarity values for all remaining bbas not in maximal consistent subset
obtain value < threshold or no bbas remain

sented by bbas (m1,m2,m3,m4) based on their information content. Information
content values were obtained using the PIC formula detailed in Equation 6. m4

was identified as obtaining the highest PIC value and this is the first member of
a potential maximal consistent subset. In the next step, m4 is joined by other
bbas considered most similar to m4. The similarity (S) for the subsets: {m4,m1},
{m4,m2} and {m4,m3} was calculated. A threshold parameter (tuned by the
system designer) was set at 0.65 which was judged an acceptable threshold sim-
ilarity value. The highest similarity value of 0.86 was obtained for {m4,m1}.
Therefore the maximal consistent subset now consists of m1 and m4. We mea-
sure the similarity between the bbas in the current maximal consistent subset



and m2 and m3, respectively. It was observed that S(m2,m1,4) and S(m3,m1,4)
were both low 0.27 and 0.52, respectively (where m1,4 represents the both sub-
sets m1 and m4). Both these values fall below the threshold parameter, therefore
m2 and m3 are not considered members of the maximal consistent subset.

To highlight the importance of considering conflict in the decision making
process we present a number of examples where evidence sources are fused using
PCR5 and Dempster’s rule of combination. In the first example evidence sources
are considered equal; in the second and third, we use reliability and priority
discounting, respectively.

Example 1: No Discounting We present the case where evidence was fused
using the PCR5 and Demspter’s rule of combination based on the assumption
that all sources are equal in terms of reliability and priority. Furthermore, the
maximal consistent subset and identification of dissimilar sources were not con-
sidered. The results obtained for this scenario are shown in Table 3. Pignistic
values are presented for both combination rules, m12...,m1234 corresponds to
the sequential fusion of the sources m1...,m4. The PIC criterion was applied to
obtain information content values for the probability distributions generated by
DSm and BetP.

Based on the results in Table 3 it can be seen that PCR5 and Dempster’s rule
of combination assigned different probability values to the hypotheses. Demp-
ster’s rule of combination distributes uniformly over all focal elements of 2Θ the
total conflicting mass resulting in a potentially imprecise and incorrect result. In
comparison, PCR5 obtains more realistic probabilistic values transferring con-
flicting masses proportionally to non-empty sets.

Table 3. Dempster’s Rule of Combination and PCR5 Rule No Discounting

PCR5 Dempster’s Rule of Combination

Generalized BetP DSmPε=0 BetP DSmPε=0

m12 m123 m1234 m12 m123 m1234 m12 m123 m1234 m12 m123 m1234

A 0.62 0.38 0.40 0.62 0.38 0.40 0.92 1.00 1.00 0.92 1.00 1.00
C 0.24 0.59 0.58 0.24 0.59 0.58 0.00 0.00 0.00 0.00 0.00 0.00
W 0.14 0.03 0.02 0.14 0.03 0.02 0.08 0.00 0.00 0.08 0.00 0.00
Θ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PIC 0.30 0.30 1.00 1.00

Example 2: Reliability Discounting Reliability weightings for the pieces of
evidence represented by bbas depend on the source from which the information
was extracted (where α1 =journal, α2 =magazine, α3 =blog and α4 =magazine).
This results in the discounting factors α1 = 0, α2 = 0.3, α3 = 0.7, α4 = 0.3. Tak-
ing into consideration the maximal consistent subset, reliability discounting fac-
tors are applied to the dissimilar sources m2 and m3. As m4 is a member of the
maximal consistent subset it is not discounted. Table 4 presents results where
reliability discounting is applied and evidence sources fused using Dempster’s
rule of combination and PCR5 respectively. Dempster’s rule of combination and
PCR5 rule assign the highest belief to hypothesis C followed by A when re-
liability factors and consistent subsets are considered. By applying reliability



discounting factors the degree of conflict between m2 and m3 was reduced. The
discounted mass was committed to Θ resulting in Dempster’s combination rule
assigning similar probabilities to the PCR5 approach. This highlights the ef-
fect that conflict can have on the fusion process when compared to the results
without discounting in Table 3.

Table 4. Dempster’s and PCR5 Rule of Combination Results Reliability Discounting

PCR5 Dempster’s Rule of Combination

Generalized BetP DSmPε=0 BetP DSmPε=0

m12 m123 m1234 m12 m123 m1234 m12 m123 m1234 m12 m123 m1234

A 0.469 0.341 0.364 0.479 0.341 0.364 0.502 0.502 0.351 0.517 0.351 0.351
C 0.485 0.644 0.615 0.497 0.651 0.616 0.459 0.459 0.637 0.470 0.637 0.639
W 0.046 0.015 0.021 0.024 0.008 0.020 0.040 0.040 0.012 0.012 0.012 0.009
Θ 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
PIC 0.32 0.32 0.36 0.37

Example 3: Priority Discounting Pieces of evidence represented by bbas
were ranked in order of priority based on the expert opinion of a design en-
gineer (where β1 =safety, β2 =availability of supply, β3 =ease of fabrication
and β4 =damage resistance). The priority factors for the respective four bbas
are: β1 = 1, β2 = 0.2, β3 = 0.6, β4 = 1. The impact of this approach is demon-
strated using the PCR5 rule of combination. m1 and m4 were identified as the
highest priority bbas and both are members of the maximal consistent subset.
By applying priority discounting to m2 and m3 we can view the impact on
the decision making process in Table 5 where hypothesis C obtains the highest
pignistic value followed by A. Marginal higher PIC values (i.e. the probability
of making a precise/correct decision is increased) were obtained compared to
the PCR5 fusion in Table 3 where no discounting was performed. These re-

Table 5. PCR5 Rule of Combination with Priority Discounting

Generalized BetP DSmPε=0

m12 m123 m1234 m12 m123 m1234

A 0.453 0.351 0.372 0.463 0.352 0.372
C 0.508 0.633 0.606 0.523 0.643 0.607
W 0.039 0.016 0.022 0.013 0.005 0.021
Θ 0.000 0.000 0.000 0.000 0.000 0.000
PIC 0.31 0.32

sults demonstrate how consistency measuring and discounting techniques may
be beneficial within decision support systems. Furthermore, the examples reflect
the difficulty in decision making within Aerospace. For example, the metal Alu-
minium has commonly been applied to construct wing spars with advantageous
properties including ease of manufacture and repair. In comparison, the use of
composites in aircraft is more recent than aluminum resulting in less knowledge
on its safety. However, composites are light weight and cost effective. The use
of DEEPFLOW offers benefits here. For instance, in the cases of conflicts or in-
conclusive decisions, DEEPFLOW could further examine and obtain additional
evidence from unstructured documents to strengthen or weaken the arguments.



5 Conclusion

This paper provides an overview of our proposed evidential reasoning framework
which is applied in the DEEPFLOW project. Furthermore, we detail a novel ap-
plication of this framework to decision analysis in the Aerospace domain. A case
study was used to illustrate the importance of selecting a valid combination rule
to analyze critical design decisions when information is conflicting and uncertain.
Furthermore, it highlighted the importance of taking into account discounting
factors obtained from prior knowledge and measuring consistency between ev-
idence sources before making design decisions. In future work we will further
investigate the complexity of the algorithm to obtain the maximal consistent
subset and the impact this has on the fusion process. As part of this research
we will also compare and contrast different distance measures to measure simi-
larity. This evidential framework can be applied to aid decision-making in other
problem domains where information may be incomplete and unreliable.
Acknowledgments: The DEEPFLOW project is funded by Invest NI ref: RD1208002
and SAP (AG).
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