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Abstract. To provide in-time reactions to a large volume of surveil-
lance data, uncertainty-enabled event reasoning frameworks for CCTV
and sensor based intelligent surveillance system have been integrated to
model and infer events of interest. However, most of the existing works
do not consider decision making under uncertainty which is important
for surveillance operators. In this paper, we extend an event reasoning
framework for decision support, which enables our framework to predict,
rank and alarm threats from multiple heterogeneous sources.

1 Introduction

In recent years, intelligent surveillance systems have received significant atten-
tions for public safety due to the increasing threat of terrorist attack, anti-social
and criminal behaviors in the present world. In order to analyze a large volume
of surveillance data, in the literature, there are a couple of event modeling and
reasoning systems. For example, Finite State Machines [5], Bayesian Networks
[3], and Event composition with imperfect information [10,11], etc.

However, the decision support issue has not been properly addressed, espe-
cially on how to rank the potential threats of multiple suspects and then focus on
some of the suspects for further appropriate actions (taking immediate actions
or reenforced monitoring, etc.) based on imperfect and conflicting information
from different sources. This problem is extremely important in the sense that
in real-world situations, a security operator is likely to make decisions under a
condition that the security resources are limited whilst several malicious behav-
iors happen simultaneously. Consider an airport scenario, a surveillance system
detects that there is a very high chance that two young people are fighting in the
shopping area, and at the same time, there are a medium chance that a person
may leave a bomb in airport terminal 1. Now suppose there is only one security
team available at that moment, which security problem should be first presented
to the security team?

In order to address this problem, in this paper, we extend the event model-
ing framework [10, 11] with a decision support model for distributed intelligent
surveillance systems, using a multi-criteria fusion architecture. More specifically,
based on Dempster-Shafer (D-S) theory [14], we first improve the event model-
ing framework proposed in [10,11] to handle the multi-criteria event modeling.
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Then we use a normalized version of the Hurwicz’s criterion [4] to obtain the
degree of potential threat of each suspect (or suspects if they work as a team)
with respect to each criterion. Finally, according to some background knowledge
in surveillance, we apply a weighted aggregation operation to obtain the overall
degree of potential threat for each suspect after considering all related criteria,
from which we can set the priority for each subject.

This paper advances the state of the art on information analysis for intel-
ligent surveillance systems in the following aspects. (i) We identify two factors
that influence the potential threats in surveillance system: belief and utility. (ii)
We propose an event modeling and reasoning framework to estimate the poten-
tial threats based on heterogeneous information from multiple sources. (iii) We
introduce a weighted aggregation operator to combine the degrees of potential
threats of each criterion and give an overall estimation to each subject.

The rest of this paper is organized as follows. Section 2 recaps D-S theory and
the event modeling framework in [10, 11]. Section 3 extends the event modeling
framework in [10,11] to handle the multi-criteria issue. Section 4 develops a
decision support model with an aggregation operator to handle the problem of
judging the degrees of potential threats for multiple suspects. Sections 5 provides
a case study to illustrate the usefulness of our model. Finally, Section 6 discusses
the related work and concludes the paper with future work.

2 Preliminaries

This section recaps some basic concepts in D-S theory [14].

Definition 1 Let © be a set of exhaustive and mutually exclusive elements,
called a frame of discernment (or simple a frame). Function m:2° —1[0,1] is a
mass function if m(0)) =0 and >_ o m(A)=1.

One advantage of D-S theory is that it provides a method to accumulate and

combine evidence from multiple sources by using Dempster combination rule:

Definition 2 (Dempster combination rule) Let m; and ms be two mass
functions over a frame of discernment ©. Then Dempster combination rule
miz2 = my P ma is given by:

0 ifz =10
> mi(A)ma(By)
miz(x) = A;NBj=a . 1
12( ) — Z AT ) fo#w ( )
A; N B;=0

In order to reflect the reliability of evidence, a Discount rate was introduced
by which a mass function can be discounted [8]:

Definition 3 Let m be a mass function over frame © and 7 (0 <7 <1) be a
discount rate, then the discounted mass function m” is defined as:

e J=T)m(4)  ifAce
m(4) = {T+(1—T)m(9) ifA=6 @
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Finally, in order to reflect the belief distributions from preconditions to the
conclusion in an inference rule, in [9], a modeling and propagation approach was
proposed based on the notion of evidential mapping I'*.

Definition 4 I'* : 265 — 2297 x(0.1) s an evidential mapping, which establishes
relationships between two frames of discernment Og, O, if I'* assigns a subset
E; C Og to a set of subset-mass pairs in the following way:

I'(E;) = (Ha, f(E; = Hi)), ..., (Hyg, f(E; — Hy))) (3)
where Hij C O, i=1, ..., n,j=1, ..., t, and f : 292 x 297 — [0, 1]
satisfying: (i) Hi; 0, =1, ..., t; (ii) f(E; — H;;) >0, =1, ..., t; (i)
t
> f(B: = Hy) = 1; (iv) I*(O) = ((On,1)).

j=1

So a piece of evidence on @ can be propagated to Oy through evidential
mapping I'* as follows:

mey (HJ) = Zm@E (Ez)f(Ez — Hij)- (4>

3 Multiple Criteria Event Modeling Framework

In this section, we extend the event reasoning framework introduced in [10] to
include multi-criteria, in order to allow for better decision making.

Definition 5 In a multi-criteria event modeling framework, an elementary even-
t e for detecting the potential threats is a tuple (EType, occT, IDs, rb, sig, Criterion,
Weight, 1Dy, s1,..., sn), where: (i) EType: describes the event type; (ii) occT': a
time point (or duration) for the observed event; (iii) ID,: the source ID for a de-
tected event; (i) rb: the degree of reliability of a source; (v) sig:the degree of
significance of a given event based on domain knowledge; (vi) Criterion: describes
one of the attributes that can reveal some level of potential threat for a target,
such as age, gender, and so on;' (vii) Weight: the degree of a criterion’s impor-
tance for detecting a potential threat; (viii) ID,: person ID for a detected event;
(i) si: additional attributes required to define event e.

We can associate an event with a mass value and a utility function for a giv-
en criterion. For example: e&'=(FCE, 9:01pm — 9:05pm, 42, 0.9, 0.6, gender, 0.2, 13,
m&' ({male})=0.3, U®) means that for an event type FCE at 9:01pm to 9:05pm,
the gender classification program used by camera 42, whose degree of reliabili-
ty is 0.9, detects that at Foreign Currency Exchange office (FCE), person with
ID = 13 is recognized as male with a certainty of 30%. The significance of this
event is 0.6, the weight of gender criterion for detecting a potential threat is

! We will use the word “criterion” in this paper to define an attribute that can reveal
some level of potential threat of an observed subject. Therefore, we can distinguish
“criterion” from other attributes, such as person ID, location, etc.
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0.2, and UY is the utility function that shows the level of potential threat for
the gender criterion. Related events are grouped together to form event clusters
where events in the same cluster share the same event type, occT, Criterion,
ID,, ID,, but may assign different mass values to subsets of the same frame.
For example, two events for the person with ID 13 that detects by camera 42
at 9:01pm to 9:05pm at FCE with the mass function m%, ({male}) = 0.3 and
m43 ({ female, male})=0.7 respectively are both in the same cluster. Moreover,
the mass values within each cluster come from the same mass function.

Compared with the model in [10], we retain the components EType, sID
and rb, whilst the differences are: (i) We represent events with a time duration,
which is more realistic in real-life applications. (ii) We keep the person ID as a
common attribute, since it is important for surveillance applications. (iii) The
degree of significance in our definition indicates the relative importance of a given
event based on the background information. For example, an event detected in
an area with high crime statistics at midnight is more significant than that in
an area of low-crime in the morning. (iv) In our model, an elementary event
can only have one criterion attribute. For example, a man boards a bus at
8:00am is an elementary event, but a young man boards a bus at 8:00am is
not an elementary event since both age (yonng) and gender (man) are criterion
attributes. In fact, since a classification algorithm only focuses on one criterion
attribute, this semantics of elementary is natural. (v) We introduce the attribute
Weight to reflect the importance of a criterion when determining a potential
threat. For example, age and gender usually are not the critical evidence to
detect the potential threat, while behaviors, such as holding a knife, fighting,
etc., are more important in determining the dangerous level of a subject. (iv)
We introduce the Utility function to distinguish different levels of threat for
the outcomes of each criterion. For example, the threat level of a young person
should be higher than the threat level of an old person.

There might be a set of event clusters that have the same criterion and event
type but with different source IDs or observation times. For example, a person
broads a bus with its back facing camera 4 at 9:15pm and then sits down with its
face partially detected by camera 6 at 9:20pm. Suppose the gender classification
algorithm shows that mJ"' ({male}) = 0.5 and m%*({ female, male}) = 0.5 by
camera 4 and mg'' ({male}) = 0.7 and m%({ female, male}) = 0.3 by camera 6.
Since these two classification results (in two clusters) refer to the same criterion
about the same subject from different sources, mass functions (after possible
discounting) defined in the two clusters are combined using Dempster’s rule.
When an event is described with a duration, then this event can be instantiated
at any time point within this duration, That is, we can replace the duration with
any time point within the duration. This is particularly useful when combining
mass functions from different clusters, since events in these clusters may not
share exactly the same time points or durations, but as long as their durations
overlap, they can be combined. This is an improvement over [10], which cannot
handle such situation. Finally, a combined mass function must assign mass values
to events in a derived event cluster. In this cluster, every derived event shares the
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same EType, sig, Criterion, Weight, ID,, location, U, as the original events,
but occT, I Dy, and rb are the union of those of the original events, respectively.

Now, we consider the event inference in our framework. Different definitions
of rules in [10], an inference rule in our framework is defined as a tuple (EType,
Condition, m'ET UTET) where: (1) m!FT in our method is the mass function
for the possible intention of a subject. It means that after detecting the tar-
get’s behavior, which satisfies the inference rule, the prediction for the target’s
intention based on the historic data or experts judgement. For example, m!FT
for the event inference rule about loitering in a ticker counter would be over a
frame of discernment {Rob, Wait For Some Friends}. (ii) We only consider
the behavior of the subjects to infer their intentions. Here, we divide behavior
into different categories, such as movements (obtained by trajectory tracking),
relations with objects, relations with peoples (obtained by the binary spatial
relations of objects or people [12]), hand actions to detect a fight (obtained by
2D locations of the hands), etc.

The reasons of these changes are: (i) It is not reasonable to ask experts to
directly assign the degree of a potential threat without any aggregation method
about the factors that contribute to the threat, such as the significance of an
event, the weight of different attributes, the values of each criterion, etc.. Thus,
defining mypr over the frame of discernment about the possible intention of a
subject is more reasonable than the frame of discernment about the potential
threat: {Theart, Not Theart}. (ii) It can reduce the amount of inference rules
since we only consider the behavior of the subjects to infer their intentions. (iii)
It satisfies the result of many social psychology studies that humans can infer
the intentions of others through observations of their behaviors [6].

Finally, since events appeared in the condition of inference rules are them-
selves uncertain, we also apply the notion evidential mapping to obtain the mass
functions of inferred events as [11]. Here is an example for the event inference
rule in our model about the intention of a subject in the shopping area.

Example 1 The rule describing that a person loitering in the Foreign Cur-
rency FExchange office (FCE) could be suspicious can be defined as (EType,
Conditions, m!Tt UIPL) where EType is the Intention of Person loitering in
FCE; Conditions is m[*({loitering}) > 0.5 AND e.location = FCE AND t,, —
to > 10 min; m'PL can be m!PE({Rob}) = 0.5, m!PL({Waiting Friends}) =
0.3, m!PL({Rob, Waiting Friends}) = 0.2; and U'PL can be U'PL = {u(Rob) =
9, u(Waiting Friends)=3}.

4 A Multi-Criteria System for Threat Ranking

In this section, we will construct a decision support system that can automati-
cally rank the potential threat degree of different subjects in a multiple criteria
surveillance environment under uncertainty.

First, calculate the degrees of potential threat for each criterion by extending
the approach in [15]:
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Definition 6 For a subject with ID = w.r.t. a given criterion c specified by
mass function me , over © = {hq, ..., hy}, where h; is a positive value indicating
the wutility (level of potential threat) of each possible outcome for criterion c,
its expected wutility interval (interval degree of potential threat) is EUl.(x) =
[E.(7), E.(7)], where

E. (x)= Z Ma,c(A)min{h; | h; € A}, Ec(z) = Z Ma,c(A) max{h; | h; € A}.

ACO ACO

Second, apply the transformational form of the Hurwicz’s criterion [4], to
find the point-valued degree of potential threat w.r.t. each criterion:

Definition 7 Let EUI.(x) = [E (z), E.(x)] be an interval-valued expected level
of potential threat of criterion c for subject with ID x, 6.(x) = sig be the degree
of significance for the events, then the point-valued degree of potential threat for
subject with ID x w.r.t. criterion c is given by:

ve(r) = (1 = 0c(2)) Eo(2) + 0c(x) Ec(2). ()

Finally, combine the potential threats w.r.t. each criterion by the following
aggregation operator and then obtain the overall degree of potential threat of
each subject.

Definition 8 Let C be the whole set of related criteria, nu.(x) be the point-

valued degree of potential threat for subject with ID x w.r.t. criterion ¢, w. be

the weight of each criterion ¢, and k be the highest utility value for the outcomes

of all criteria, then the overall degree of potential threat for subject x, denoted

as O, is given by

o — 2 chc wenue ()
x chc(k —+ 1)'UJC

In fact, Equation (6) is a form of weighting average, where )_ . wenu.(x)
is the overall value that considers the weighting effect of each criterion for the
overall evaluation of potential threat, ) -~ (k+1)w./2 is the averaging operator
designed to avoid the situation that the more criteria the surveillance system
detects, the higher value the potential threat is, and (k4 1)/2 can be consider
as an intermediate value to distinguish low threat levels from high threat levels.

Now, we reveal some properties of our model by the following Theorems:

(6)

Theorem 1 Let EUI.(z) = [E (z), E.(z)] be an interval-valued ezpected utility
of criterion ¢ for subject x, 6.(x) and &.(x) be the degrees of significance for two
different surveillance scenarios, and 0.(x) > 0.(x), then v.(xz) > v.(z)

Proof. By Equation (5), d.(x) > 6.(x) and E > E, we have:
ve(@) = vi(z) = (8c(2) — 6,(2)) (Be(x) — E,(2)) > 0 O

From Theorem 1 with d.(z) representing significance, we can see that the
point-valued degree of potential threats w.r.t. each criterion for the subjects
would be higher if the set of events happen in an area with high crime statistics
than that if the set of events happen in a lower crime area.
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Theorem 2 Let EUI.(i) = [E,.(i), E.(i)] be an interval-valued expected level of
potential threat of the criterion c for subject with ID i (i € {z,y}), and 6.(i) be
the degrees of significance for the event of subject with ID i, then the point-valued
degree of potential threat for these two subjects satisfies:

(i) if Eo(x) > Ec(y), then ve(z) > ve(y);

(ii) if E.(z) > E.(y), Ec(z) > E.(y), and 6.(x) > 8:(y), then v.(z) > v.(y).

Proof. (i) By d.(k) € [0,1] (k € {z,y}) and Definition 7, we have E_.(k) <

ve(k) < E.(k). As aresult, by E (z) > E.(y), we have
ve(x) = ve(y) > E (k) = ve(y) > E.(k) — E(y) > 0.
So, item (i) holds.

)
ve(z)=ve(y) = (Ec(x) = Ec(y)) + de(x)(Ee(x) — Eo(x)) = de(2)(Ee(y) — Ec(y))
= (1= 0c(2))(Ee(x) = Eo(y)) + 0c(2)(Ec(z) — (Ee(y))
>0

So, item (ii) holds. O

In fact, Theorem 2 states two intuitions when considering the point-valued
degree of potential threat of any two suspects: (i) for a given criterion, if the
lowest expected level of potential threat for a suspect is higher than the highest
expected level of potential threat of another suspect, the point-valued degree
of potential threat of the first one should be higher; and (ii) if the degree of
significance for the events of a suspect is not less than that of another, and the
lowest and highest expected levels of potential threat of this suspect are higher
than those of another respectively, the point-valued degree of potential threat of
the first one should be higher.

Theorem 3 Let O, and O, be the overall degrees of potential threat for subject
z andy, C' = CUs and C” = C Ur be the whole sets of related criteria for
subjects x and y, k be the highest utility value for the outcomes of all criteria,
and for any criterion ¢ € C, we have nu.(x) = nu.(y). Suppose vs(z) > v, (y)
and ws = wy, then Oy > O,.

Proof. By Definition 8, nu.(z) = nu.(y), vs(z) > vr(y), and ws = w, we have:
2(wsnus (z) + 32 .c o Wenue()) B 2(wrnuy (y) + Y co wenue(r))
(k+ 1) (ws + chc we) (k+ 1) (w, + chc we)

2ws(nus(x) - Vr(y))

(k+ 1) (ws + chc we)
>0

O, -0, =

Actually, Theorem 3 means that the increase of the point-valued degree of po-
tential threat about a given criterion for a subject will cause the increase of the
overall degree of potential threat for this subject, ceteris paribus.
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Table 1. Event modeling for the airport security surveillance scenario

event|Etype occT IDg|rb |sig|Criterion|Weight|I D, |Location mass value utility
eZél SA 9:01pm 42 10.9]0.7| age 0.3 13 FCE {young},0.3 U®
er SA 9:01pm 42 10.9]0.7| age 0.3 13 FCE {young, old},0.7 U®
eZél SA [9:03-9:15pm| 45 [0.9|0.7| age 0.3 13 FCE {young},0.6 U®
5252 SA [9:03-9:15pm| 45 [0.9]0.7 age 0.3 13 FCE {young, old},0.4 Ue
eiél SA 9:01pm 42 10.9]0.7| gender 0.3 13 FCE {female}, 0.4 U9
62’22 SA 9:01pm 42 10.9]0.7| gender 0.3 13 FCE {female, male}, 0.6 U9
ei.’sl SA [9:03-9:15pm| 45 [0.9]0.7| gender 0.3 13 FCE {male}, 0.7 u?

65‘1;2 SA [9:03-9:15pm| 45 [0.9]0.7| gender 0.3 13 FCE {female, male}, 0.3 U9

e:&’l SA 9:01pm 42 10.9/0.7| move 0.8 13 FCE |{toeast,loitering},0.8

eg’2 SA 9:01pm 42 10.9]/0.7| move 0.8 13 FCE ©,,0.2

e SA [9:03-9:15pm| 45 [0.9]0.7] move 0.8 | 13| FCE {loiter},0.9

eg’2 SA 19:03-9:15pm| 45 [0.9|0.7| move 0.8 13 FCE ©,,0.1

egél cC 9:03pm 29 |1 (0.9 age 0.3 19 MoC {young},0.7 U
egéz CcC 9:03pm 29 | 1 (0.9 age 0.3 19 MoC {young, old},0.3 Ue
egél cC 9:03pm 29 |1 (0.9 age 0.3 19 MoC {male},0.7 [
eg’g2 CcC 9:03pm 29 | 1 (0.9 age 0.3 19 MoC {male, female}, 0.3 U9
ese’| CC | 9:03pm [ 291 0.9] sr 0.8 [ 19| MoC {unmatch}, 0.8 Us"
e‘;g’Q CcC 9:03pm 29 | 1 (0.9 sr 0.8 19 MoC |{unmatch, match},0.2| U°"
Where ©,, = {toeast, ..., tonorth, stay, loitering}; U* : {u”(young) =6, u®(old) =2};
U9 : {u9(male) =6, u9(female)=4}; U*" = {u*" (notmatch) = 8, u*" (match) = 4}; and the scale
of measurement for the level of potential threat is H = {1,...,9}.

5 Case Study

Let us consider a scenario in an airport between at 9:00pm to 9:15pm, which
covers the following two areas: Shopping Area (SA) and Control Center (CC).

— in the Shopping Area (SA), a person (id: 13) loiters near a Foreign Currency
Exchange office (FCE) for a long time. Also, camera 42 catches its back
image at the entrance of the shopping area at 9:01pm and camera 45 catches
its side face image at FCE from 9:03pm to 9:15pm;

— in the Control Center (CC), the face of a person (id: 19) appears in the
camera 29 in the middle of the corridor (MoC) to the control center at
9:03pm. However, the person’s face does not appear in camera 23 monitoring
the entrance to the corridor.

We assume that video classification algorithms can detect age, gender, behav-
ior, and then re-acquire subjects (sr) when needed. We also assume that there is
only one security team available. What should the system do at this moment?

First, the surveillance system detects the elementary events for each person
as shown in Table 1 based on the information of multiple sensors.

For example, the first row in Table 2 means that for an event type SA in
FCE at 9:01pm, the age classification program used by camera 42, whose degree
of reliability is 0.9, detects a person with ID = 13 as male with a certainty of
30%. The significance of this event is 0.6, the weight of age criterion for detecting
a potential threat is 0.3, and U is the utility function that shows the level of
potential threat for the age criterion. Moreover, some events in the table are
within the same event cluster, such as ef3' and 62’22 which share the same event
type, occT, Criterion, IDs, ID,, but assign different mass values to different
subsets of the same frame and the sum of these mass values is 1.
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Second, since some sensors are not completely reliable in our example, we
obtain the discounted mass functions by Definition 2. For example, consider the
age criterion for the person in FCE, we have :

m$ ({young})= 0.3 x 0.9 = 0.27, m$3’ ({young, old}) = 0.1 4+ 0.7 x 0.9 = 0.73;
mS ({young}) = 0.54, m%2> ({young, old}) = 0.46.

Third, we consider the combination of mass functions associated with events
in different clusters (from different sources) where these events are all about a
common criterion, using Dempster’s rule in Definition 1. For example, consider
the age criterion for the person in FCE, we have:

mkas ({young}) = (0.27x0.544-0.27 x 0.46+0.73x0.54) /1 = 0.664,
mS a5 ({young, old}) = (0.73x0.46)/1 = 0.336.

Note that each mass value is associated with a derived event, such as, for the
person in FCE, msy .- ({young}) = 0.664 is associated with ey ,=(SA, 9:01—9:15
pm, 42&45, 0.9, 0.7, age, 0.3, 13, FCE, mZé{gl45({young}):O.664, u®).

Forth, we consider event inference. For the person in FCE, by the inference
rule in Example 1, mjy. . ({to east,lotering}) = 0.137, m}5e .- ({lotering}) = 0.81,
myye s (0m) =0.053, and Equation (4), we have m'"*({ Rob}) = 0.41, m' "X ({W aiting
Friends}) = 0.24, m'TL({Rob, Waiting Friends}) = 0.35.

Fifth, we obtain the expected utility interval for each criterion of each person
by Definition 6. For example, for the person (id:13) in FCE, we have

E,3,=4.656,E13.=06; E 5 ,=5.044, E13,4= 5.656; By ;p, = 5.43, E13,1pr = 7.542.
Sixth, we obtain the point-valued degree of potential threat for each criterion
of each person by Definition 7. For example, for the person (id:13) in FCE:
Va(13) = (1 — 0.7) X 4.656 + 0.7 x 6 = 5.6; 14(13) = 5.47; vpr(13) = 6.91.
Seventh, we get the overall degree of potential threat of each target after
considering all relative criteria at 9:15pm by Definition 8:
2(0.3 x 5.6 + 0.3 x 5.47 4+ 0.8 x 6.91)
O13 =
(9+1)(0.3+0.340.8)
Hence, in this example, we derive that ¢d 19 > id 13. Thus, If we have only

one security team available at that moment, the surveillance system will suggest
to prevent the further action of the person (id: 19) in the control center first.

=1.26; O19 = 1.41.

6 Related Work and Summary

Ahmed and Shirmohammadi in [1] designed a probabilistic decision support
engine to prioritizes multiple events in different cameras. In this model, they
incorporated the feedbacks of operators, event correlation and decision modula-
tion to rank the importance of events. Jousselme et al. [7] presented the concept
of a decision support tool together with the underlying multi-objective opti-
mization algorithm for a ground air traffic control application. However, none of
these models provides a method to handle multiple criteria information under
uncertainty as our model does. Moreover, the problem of information fusion has
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become a key challenge in the realm of intelligent systems. A common method
to handle this challenge is to introduce aggregation operators. Albusac et al.
in [2] analyzed different aggregation operators and proposed a new aggregation
method based on the Sugeno integral for multiple criteria in the domain of in-
telligent surveillance. Also, Rudas et al. in [13] offered a comprehensive study of
information aggregation in intelligence systems from different application fields
such as robotics, vision, knowledge based systems and data mining, etc. How-
ever, to the best of our knowledge, there is no research considering the decision
making problem under uncertainty in surveillance systems.

In this paper, we introduced our extended event reasoning framework, inte-
grating a multi-criteria decision making element in sensor network based surveil-
lance systems. We also discussed some properties of our framework. Our next
step of work is to experiment the decision making element with surveillance data.
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