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Summary. Smart Homes offer improved living conditions and levels of indepen-
dence for the elderly population who require support with both physical and cogni-
tive functions. Sensor technology development and communication networking have
been well explored within the area of smart living environments to meet the demands
for ageing in place. In contrast, information management still faces a challenge to
be practically sound. In our current research we deploy the Dempster-Shafer theory
of evidence to represent and reason with uncertain sensor data along with revision
and merging techniques to resolve inconsistencies among information from different
sources. We present a general framework for sensor information fusion and knowl-
edge revision/merging especially for monitoring activities of daily living in a smart
home.
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1 Introduction

Demographic change is increasing the median age of the human population
and the percentage of the population that is elderly. With 600 million people
aged 60 and over in 2000, the number has been forecast to soar up to 1.2 billion
by 2025 and 2 billion by 2050. It is also reported that in the developed world,
the very old (age 80 and over) is the fastest growing population group [1].
Within this increase in the numbers of elderly comes an associated increase
in the prevalence of chronic disease and disabilities.
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As a result of the aforementioned demographic ageing challenges, there
is a growing demand to develop and deploy technical solutions within the
home environment to address these challenges and offer the desired effect of
supporting elderly people to remain in their home for as long as they can
[2]. Smart homes are viewed as one possible type of solution to this problem.
They combine technological advancements in sensor technology, communica-
tion networking, and information management to offer elderly and disabled
people the means to live independently and safely in their own homes. In ad-
dition, they move one step closer to help reduce the burden which is currently
being placed on health and social care. Within the past few years attempts
to produce solutions within the domain of assisted living have been prolific.
These have varied from healthcare devices capable of measuring vital signs, to
home automation systems to control lighting, heating, door opening/closing
etc., and to highly sensorised Smart Home environments capable of monitor-
ing a person’s interaction within their own home [3, 4]. Although each of these
areas has gained isolated success, larger scale challenges exist in the most ef-
fective means by which all of the information generated can be managed and
used to deliver the most effective solution for people in their own homes and
offer a level of independent living.

It is generally well appreciated that an elderly person’s care requirements
are complex. Hence, automating the process to deliver and manage care re-
quires not only the collection of real time information from the environment
related to the actions undertaken by the person, but also requires the correct
modelling of both numerical information collected by sensors and the reason-
ing about this information using background knowledge and the knowledge
(belief) related to the individual person.

The current study has aimed to develop a hybrid intelligent information
management system to assist with elderly based homecare and to strengthen
the lifestyle and health management of people within their own homes. This
may involve the capability of integrating sensor information (e.g. motion, door
open/close, water tap on/off, cooker on/off, etc.) and making use of this col-
lective information and the knowledge about the care the person in their home
requires. Background knowledge relating to an individual person’s healthcare
needs and lifestyle/general information is the typical type of information that
is stored about the person and may be accessed to support the information
management. In this paper we present a solution to model and reason with
uncertain sensor data to predict the activities of the person being monitored.
We then use background knowledge (such as a carer’s diary) to resolve any
inconsistencies between the predicted action and the actual activities as in-
dicated by background knowledge (e.g., diary). Research in uncertain infor-
mation management has been an active area of research for more than half
a century and still remains a key topic in artificial intelligence and its ap-
plications. There are several methods that have been proposed to model and
reason with uncertainty in either a numeric or symbolic format. Within our
work we adopt the Dempster-Shafer (DS) theory of evidence to fuse uncer-
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tain information detected from sensors for activities of daily living (ADL)
monitoring within a smart home and use ordinal conditional function based
revision and merging approaches to handle inconsistencies within knowledge
from different sources. The remainder of the paper is organised as follows.
Section 2 briefly introduces the challenges posed by ageing and presents an
overview of work in the area of assistive technologies and smart environments
to support independent living. The notion of ADL monitoring is introduced
as one of the most important aspects within the services offered by a smart
home. Section 3 presents our evidence model of uncertain sensor data in in-
ferencing daily living activities and in Section 4 we propose a method of belief
revision and merging to handle possibly situations of conflict resulting from
complex knowledge within the smart living environment. Finally the paper is
concluded in Section 5 along with presentation of research plans for the future
work.

2 Assistive Living Environments for the Elderly

2.1 Ageing in Place

It is now recognised that approaches which can effectively and efficiently sup-
port persons within their own are much required to combat the effects of the
ageing population. As people become older it becomes more difficult for them
to live on their own. Not only do they require certain assistance to live a
normal life, but also support is required to ensure their safety and wellbeing.
Traditional institutional services may be viewed as being expensive and by
the elderly as not their preferred habitual location (they would prefer to live
in their own homes). In addition, existing services have already been stretched
in terms of resources in efforts to manage the needs of the increasing numbers
of elderly within the population.

Modern assistive technologies attempt to provide a solution to compro-
mise the imbalance between the growing needs and declined capability of
caring for the elderly. Assisted living environments can provide supervision or
assistance with ADLs, help with the coordinating of health care services and
monitor people’s activities to help ensure their health, safety, and well-being.
Such environments are perceived to enable elderly people to remain living in
their homes for longer periods of time and hence support the desired effect
of ‘ageing in place’ [5]. This provides benefit not only to the elderly, however,
also provides numerous benefits to their carers, families and even society as a
whole.

2.2 Smart Sensorised Homes

Smart homes are a form of assisted living environments equipped with sen-
sors/actuators, communication networks and information management sys-
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tems. Sensors are the fundamental physical layer within the smart home hi-
erarchy which have the ability to dynamically perceive changes within the
environment.

Among the various sensor technologies currently available, anonymous bi-
nary sensors such as contact switches and pressure sensors are the most pop-
ular. They generate information in a non-intrusive manner about a person’s
interaction with domestic objects in addition to crudely profiling how the
person moves around the house. At any given time binary sensors have the
ability to present one of two possible values as an output. Whenever the state
of a certain context (object, movement) associated with a sensor is changed,
the value of the sensor is changed from ‘0’ to ‘1’ and hence reflects the fact
that the context has been interacted as it has changed from a static state. For
example, a contact switch sensor attached to the door of a fridge can tell the
opening and closing of the fridge door when its value changes from ‘0’ to ‘1’.

Fig. 1 shows a set of wireless binary sensors installed in a semi-functional
kitchen within the smart laboratory in our department. These suite of sen-
sors have the ability to assess if a person is preparing a simple drink and to
subsequently identify if a hot or cold drink is being prepared[6].

(a) (b)

(c) (d) (e)

Fig. 1: Sensors within smart kitchen environment to assess the ADL of prepar-
ing a drink (a) picture of the semi-functioning kitchen, (b) cupboard with door
sensor, (c) kettle with tilt switch and contact switch on tap, (d) contact sen-
sors on sugar, tea and coffee jar and (e) contact sensor on coffee in ‘on’ state
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2.3 Daily Living Activity Monitoring

Monitoring ADLs within the home environment can provide a means to as-
sess an elderly person’s wellbeing and in certain circumstances can be used
to measure both cognitive and physical decline. The measurement of ADL
performance in certain circumstances also allows the assessment of treatment
effects, care-giver burden, the targeting of interventions and care packages
along with the elucidation of the link between cognition and everyday func-
tional ability [7].

ADLs refer to activities that reflect the person’s capacity of self-care and
hence reflects on their ability to live independently within the community.
They can be activities that don’t involve interactions with domestic objects
and on the other hand those that do. The ADLs commonly monitored for
assessing elder people include bathing, dressing, using the toilet, preparing
meals, preparing drinks, taking medications, light housework, using the tele-
phone, watching TV, etc. One of the key supporting features offered by a
smart home is its ability to monitor ADLs through the deployment of sensor
technology.

It is a common knowledge that people performing an ADL within the home
need to move around the environment and interact with certain objects. For
example, the ADL of ‘preparing a simple drink’ taking place in the kitchen
involves the interactions of taking a cup from the cupboard, taking a tea bag
or taking coffee, boiling the water in the kettle and pouring hot water into
the cup. These activities may be followed by opening the fridge to take the
milk if required and adding sugar if preferred. As such, monitoring people
interacting with objects through observations of sensors installed in the home
has become a very active approach in recognising and distinguishing ADLs
which have been performed [8].

3 Sensor Uncertainty

In this section we first review Dempster-Shafer (DS) theory in representing
and reasoning with uncertain information. The evidential network model of
ADL recognition proposed in [9] is then reviewed briefly in the second part of
this section.

3.1 Dempster-Shafer Theory

The DS theory of evidence originated in Dempster’s work [10] and further
formalised by Shafer in [11], is a generalization of traditional probability which
allows us to better quantify uncertainty [12, 13].
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Basic Concepts

At the core of DS theory is the concept of the frame of discernment. The frame
of discernment refers to the exhaustive set of mutually exclusive values that
a variable can hold, denoted Θ. It contains a set of hypotheses about values
that the variable may hold.

Once the frame of discernment is established a number between 0 and 1
can be assigned to represent the degree of belief on the observation called
evidence in a form of mass functions. A mass function is a function mapping
2Θ to [0, 1] and represents the distribution of a unit of belief over Θ, satisfying
the following two conditions:

(1) m(∅) = 0 ∅ : the empty set;
(2)

∑
A⊆Θ m(A) = 1 A : a subset of Θ.

Based on a mass function the belief (Bel) and plausibility (Pls) functions
are defined. Bel and Pls are the lower and upper bounds of the probability
that are distinctly used in DS theory to represent uncertainty. They can be
calculated from a mass function as follows.

Bel(A) =
∑

B⊆A m(B) and Pls(A) =
∑

B⊇A m(B).

Bel represents the total weight of evidence in supporting A and Pls on failing
to refute A, which can be used to determine the amount of support on A. They
can be used to induce rules based on the belief distributions and may thus
be regarded as providing pessimistic and optimistic measures of how strong a
rule might be [14].

One feature of DS theory is that it can accumulate evidence from inde-
pendent sources by the Dempster’s rule of combination. Let m1 and m2 be
mass functions on 2Θ. Combining m1 and m2 gives a new mass function m
called the orthogonal sum of m1 and m2 as:

m(C) = (m1 ⊕m2)(C) =
∑

A∩B=C m1(A)m2(B)
1−∑

A∩B=∅m1(A)m2(B)

Extended Concepts

Many research efforts have aimed to extend DS theory to provide widely
applicable solutions in real world applications.

Discount rate was first defined in [15], by which the evidential function may
be discounted in an effort to reflect the reliability of the evidence itself. Let
r (0 ≤ r ≤ 1) be a discount rate. The discounted mass function can then be
represented in the following way:

mr(A) =
{

(1− r)m(A) A ⊂ Θ
r + (1− r)m(Θ) A = Θ
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where
(a) r = 0 the source is absolutely reliable
(b) 0 < r < 1 the source is reliable with a discount rate r
(c) r = 1 the source is completely unreliable

Translation [15] operation is used to determine the impact of evidence orig-
inally appearing on a frame of discernment ΘE upon elements of a com-
patibly related frame of discernment ΘH through a multivalued mapping
Γ : ΘE → 2ΘH as follows:

mΘH
(Hj) =

∑

Γ (ei)=Hj

mΘE
(ei)

where ei ∈ ΘE , Hj ⊆ ΘH .
Propagation [16] is the generalised form of translation, in which relationships
betweeen evidence space ΘE and hypothesis space ΘH can be certain or un-
certain. In [17] evidential mapping was proposed to represent such complex
relationships. The evidential mapping generalises the multivalued mapping by
assigning an element of ei of ΘE a set of subset-mass pairs rather than a set
of subsets as the multvalued mapping does in the following way:

Γ ∗(ei) = {(Hij , f(ei → Hij)), ..., (Him, f(ei → Him))}
where ei ∈ ΘE , Hij ⊆ ΘH , i = 1, ..., n, j = 1, ..., m, satisfying

(a) Hij 6= ∅, j = 1, ..., m;
(b) f(ei → Hij) > 0, j = 1, ..., m;
(c)

∑m
j=1 f(ei → Hij) = 1;

(d) Γ ∗(ΘE) = {(ΘH , 1)}.
A piece of evidence on ΘE can then be propagated to ΘH through the

evidential mapping Γ ∗ as follows:

mΘH (Hj) =
∑

i

mΘE (ei)f(ei → Hij)

where hi = {Hi1, ..., Him}, and Hj ∈ hj , Γ ∗(ei) = {(Hi1, f(ei → Hi1)), ...,
(Him, f(ei → Him))}, f(ei → Hj) ∈ [0, 1].
Equally weighted sum operator [9] is the extension of the operator originally
defined in [12] for integrating aggregates from different samples in a dis-
tributed database. Let ΘA = {A,¬A} and ΘB = {B,¬B} are two frames
of discernment. We call the frame of discernment Θ = {(A,B),¬(A,B)} the
composite frame of ΘA and ΘB . If we have two mass functions m1 and m2 on
the composite frame Θ originated from ΘA and ΘB , then a new mass function
can be formed by using equally weighted sum operator in the following way:

m(C) = m1 ⊕ m2(C) =
m1(C) + m2(C)

2
where C ⊆ Θ.

The equally weighted sum operator satisfies both the commutative and
associative laws. It can be applied to sum up n mass functions.
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Maximization [9] is defined to aggregate mass functions on the frame of dis-
cernment to which the frames’ masses originally come from are alternative.
Frames ΘA = {A, ¬A} and ΘB = {B, ¬B} are said to be alternative in
relation to the frame ΘC = {C, ¬C} if the followings are satisfied:

(1) if < {A} is true > or < {B} is true >, then < {C} is true >;
(2) if < {¬A} is true > and < {¬B} is true >, then < {¬C} is true >;
(3) if < ΘA is true > and < ΘB is true >, then < ΘC is true >.

If m1 and m2 are two mass functions over ΘC originally from ΘA and ΘB ,
the new mass function over ΘC can be formed in the following way:

mΘC
= max(m1,m2).

In the form of belief and plausibility functions, this maximization operation
can also be represented as follows:

BelΘC
= max(Bel1, Bel2), and PlsΘC

= max(Pls1, P ls2).

3.2 Representing and Reasoning with Uncertain Sensor Data

Sensor Evidence Representation

In a sensorised smart home, sensor activations detected provide evidence
about which activities have been performed. With DS theory evidence can
be represented in the form of mass functions.

Example 1 Between 2:30pm and 2:40pm, the system detects nothing apart
from two sensors on the doors of the cupboard and the fridge (denoted as scup
and sfri) in the kitchen were triggered. These two sensor activations can be
described as follows:

mΘscup({scup}) = 1, mΘsfri
({sfri}) = 1

where Θscup = {scup, ¬scup}, Θsfri = {sfri, ¬sfri}
Many practical issues such as the type of a sensor, distance between a

sensor and its receiver, previous reliability and the place where a sensor is
installed make the sensor vulnerable to misreading or malfunctioning. Dis-
counting allows these to be taken into account to reflect the reliability of the
sensor.

Example 2 (Example 1 continued) Sensor scup and sfri both are door contact
switch sensors. Sensor scup has been replaced with a new battery recently.
However, sensor sfri has been installed for over 5 months which is near to
the end of its battery’s life time of 6 months. We consider sfri is less reliable
than scup. If we assume that scup works 98 out of 100 times and sfri does 90
out of 100, scup and sfri activation evidence given in Example 1 can then be
revaluated by discounting in the following way:

rscup = 2% ⇒ mr
Θscup

({scup}) = 0.98, mr
Θscup

({Θscup}) = 0.02;

rsfri = 10% ⇒ mr
Θsfri

({sfri}) = 0.90, mr
Θsfri

({Θsfri}) = 0.10.
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ADL Evidential Networks

Performing an activity in a sensorised smart home involves a series of interac-
tions with objects, in turn activations of sensors associated with the objects.

Example 3 ‘Preparing a simple drink’ can be ‘preparing a cold drink’ or
‘preparing a hot drink’. If it is the latter it is possible to categorise this further
to establish if the drink is tea or coffee. Within the setup of the smart kitchen
described in Fig. 1 in Section 2.2, we can identify the necessary interactions
involved with the preparation of each drink and mapped these onto an array
of sensors (as shown in Table 1) that would be required to monitor in order
to distinguish between which activity was actually being performed.

Table 1: Summary of sensor technology used for the ADL of preparing a simple
drink (O - Optional, Y - Yes, N - No)

Sensor name Description Tea Coffee
Cold
drink

1. Fridge (sfri)
Detects if the fridge is
opened

O O Y

2. Cupboard (scup)
Detects if a cup or glass is
removed from the cupboard

Y Y Y

3. Coffee (scof) Detects if coffee is taken N Y N

4. Tea (stea) Detects if tea is taken Y N N

5. Sugar (ssug) Detects if sugar is taken O O N

6. Water tap (swat)
Detects if the tap on the
sink is turned on

O O N

7. Kettle (sket)
Detects if water is poured
from the kettle

Y Y N

Upon the collection of knowledge about performing an activity along with
object interactions and sensor activations, evidential networks are built for
inferring which activity has been performed. An evidential network is a graph-
ical representation of ADL inference hierarchy, which contains the following
contents.

Nodes

Nodes represent sensors, objects and activities. There are four types of nodes
represented in different shapes.

Circular nodes are sensor nodes which bear evidence of sensor activations on
performing an activity.
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Square nodes are objects which performing an activity needs to interact with.
Some objects are not associated with a sensor, that means their interactions
can not be detected directly through sensors’ activations but may be deduced
from other objects’ interactions. In the network such a node is outlined by
double lines to distinguish from an object associated with a sensor outlined
by a single line.

Eclipse nodes are composite nodes which are formed from the object nodes
below whose involvements are compulsory in consideration of performing an
activity.

Rectangle nodes represent activities to be inferred or to be used to infer a
higher level activity.

Edges

An edge linking two nodes represents a relation between the two nodes.

Certain relation in the form of a solid line with an arrowhead is a simple
relationship between two nodes in terms of multivalue mapping.

Heuristic relation in the form of a dashed line with an arrowhead represents
an uncertain relationship between two nodes in terms of evidential mapping.

Alternation relations exist between nodes at a layer (e.g. layer A) and a node
at one layer above them (e.g. layer B). The nodes at layer A are alternative
in relation to the node at layer B when their existence satisfies the definition
given in Section 3.1. Alternative relations are represented by a line joining the
nodes at layer A to the node at layer B ending with a hollow triangle.

Composition relations describe compulsory existence of some nodes in relation
to another node. Such relation is represented by a line joining the composite
node to its compulsory nodes, with a solid diamond at the end.

There are two types of evidential networks: sensors-objects-activity and
activities-activity networks. A sensors-objects-activity network contains sen-
sor, object and activity nodes, which can infer which activity is performed ac-
cording to object interactions evidenced by sensor activations. An activities-
activity network containing only activity nodes represents a higher level of
activity inference, which identifies an abstract activity from detailed sub-
activities.

Example 4 Continued from Example 3, we can draw the evidential networks
of two types as given in Fig. 2 and 3. An additional example of activities-
activity network is given in Fig. 2b to cover more connecting relations possibly
existing in an evidential network.

Once evidential networks are constructed and new sensor evidence is col-
lected, activity inference can then be carried out to achieve a decision of the
activity performed. The sensor evidence is processed along the directions of
links in the network through discounting, translation, propagation, equally
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Making drink 

Making cold drink Making hot drink 

(a) Making drink

Washing Brushing teeth Combing hair 

Grooming

(b) Grooming

Fig. 2: Examples of evidential networks of activities-activity

fridge

Making cold drink 

sfri

juice 

scup

cup

cup, juice 

(a) Cold drink

ssug

milk 

scup swat sket

Making hot drink

cup water

sugar

kettle 
tea/ 

coffee

cup, water, kettle, tea/coffee

fridge

sfri stea scof

tea coffee

(b) Hot drink

Fig. 3: Examples of evidential networks of sensors-objects-activity
Sensor abbreviations: sfri - fridge, swat - water tap, sket - kettle, scup - cup,
stea - tea, scof - coffee, ssug - sugar

weighted sum, maximisation and combination. At last an activity with the
highest belief above a threshold will be identified as the activity most possi-
bly performed.

4 Revision and Merging Based Inconsistency Handling

In a smart home environment, information from different sources often be-
comes conflict. Most typically, information generated from ADLs inferred from
sensor evidence (in short ADLs throughout this section) and some kind of
background knowledge such as a diary plan is not always consistent. If we
consider one source of information is more reliable than another, then we can
resort to a revision process, while if we cannot tell which piece of information
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Table 2: Summary of Graphical Notations used in Fig. 2 and Fig. 3

Node Context Link Relation 

sensor 
sensor A is associated with 

object B 

object (associated with a 

sensor) 
object A derives object B 

object (derived from other 

object) 

A and B are compulsory to 

C; A, B and C can be objects 

or activities 

object (a set of compulsory 

objects) 

A and B are alternative to C; 

A, B and C can be objects or 

activities 

activity 

A is compulsory to activity 

B; A can be an object, a 

compound object, or an 

activity 

A is optional to activity B; A 

can be an object, or an 

activity 

sensor

object 

object 

composite object 

activity 

A B

A B

A

B

A

B

A B

A B

C

C

is more reliable, then a merging process is needed. In this section, we will
explore the revision and merging based inconsistency handling techniques.

4.1 Belief Revision

Knowledge/Belief revision ([18, 19, 20]) is one of the fundamental activities
of an intelligent agent in which an agent revises its beliefs upon receiving new
evidence (if new evidence is treated as being more important). Often, new
information is conflicting with its current beliefs. Therefore, belief revision is
a framework to characterize the process of belief change in order to revise
the agent’s current beliefs to accommodate new evidence and to reach a new
consistent set of beliefs. One of the fundamental assumptions in belief revision
is that new information is believed more reliably than old beliefs, so new
information must be taken into account in order to reflect the true state of
the object being observed.

The AGM postulates [18] formulated in the propositional setting in [19]
characterize what a revision operator shall comply with regard to belief change
and they are successful for one-step revision activities. However, it has been
pointed out that these postulates are too weak for iterated belief revision
where a counterintuitive result may emerge after a sequence of new informa-
tion is observed and a belief set is revised accordingly [20].

To overcome this problem, revision by epistemic states (instead of belief
set) has been investigated and gradually becomes a mainstream, especially for
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iterated belief revision ([20, 21, 22, 23], etc). However, these papers do not
provide a explicitly and clear definition of epistemic states1.

In contrast to the above approaches to epistemic state revision derived
from AGM revision framework in logics, epistemic state revision has also been
studied in numerical settings. The well known probability distributions can
be viewed as an instantiation of epistemic states and probability updating is
thus considered as revision by epistemic states. In [24], ordinal conditional
functions (OCFs) are introduced to render the dynamics of the change of
epistemic states (i.e., epistemic state revision). In [25], a possibility counter-
part was proposed by Dubois and Prade. Remarkably, a generalized model for
the dynamics (strategies) of epistemic state revision under the framework of
plausibility measures introduced by Friedman and Halpern [26] is proposed in
[27], which takes probability distributions, OCFs and possibility measures as
its special cases.

To illustrate the revision strategies, we introduce the following notations.
Let W denote a non-empty set of possible worlds, let A be a subset of W
denoting the new evidence. ∀A ⊆ W , A = W \A.

For probability distributions, the revision strategy is commonly referred
to as Jeffrey’s Rule [28], and it is described as follows.

Let P be a prior probability distribution on W , and a new piece of evidence
is provided as P ′(A) = α and P ′(A) = 1 − α where P ′ is also a probability
distribution on W but up to now, P ′(w), ∀w ∈ W is unknown. The responsi-
bility of revision is to rationally assign values to P ′(w), ∀w ∈ W based on P ,
P ′(A) and P ′(A).

P ′(w) =

{
αP (w)
P (A) for w ∈ A
1−αP (w)

P (A)
for w ∈ A

(1)

An ordinal conditional function [24], also known as a ranking function [29]
or a kappa-function, commonly denoted as κ, is a function from W to the set
N ∪ {+∞} where N is the set of ordinal numbers.

Function κ is normalized (consistent) if there exists at least one possible
world w such that κ(w) = 0. Value κ(w) is understood as the degree of
disbelief of world w. So the smaller the value, the more plausible the world
is. The ranking value of a set A is defined as:

κ(A) = minw∈Aκ(w)
The conditioning of ordinal conditional function is defined as:

κ(B|A) = minw∈A∩B(κ(w))− κ(A) = κ(A ∩B)− κ(A).

Note that in [24], κ(∅) = ∞. So when A ∩B = ∅, κ(B|A) = ∞.
In [24], the (A,α)-conditionalization, also commonly regarded as (A,α)-

revision, is proposed as follows. Let an agent’s current belief be represented
1 In these paper, to some extent an epistemic state is implicitly considered as con-

structed from plausibility orderings between possible worlds which is dated back
to Spohn’s ordinal conditional function [24], but there are no explicit definitions.
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by an OCF κ, and let new evidence concerning event A be given as κ′(A) = 0
and κ′(A) = α, then the revision of κ by κ′ is defined as:

κ′(w) =
{

κ(w|A) for w ∈ A
α + κ(w|A) for w ∈ A

(2)

A possibility distribution π is a mapping from W to [0, 1]. It induces a
possibility measure Π : 2W → [0, 1] and a necessity measure N : 2W → [0, 1]
as follows:

Π(A) = maxw∈Aπ(w) and N(A) = 1−Π(A).

Π(A) estimates to what extent an agent believes the truth value is in the
subset A while N(A) estimates the degree the agent believes the truth value
should be necessarily in A.

There are several conditioning methods in possibility theory, and we adopt
the following one in this paper [25].

Π(B|A)
def
=

Π(B ∩A)
Π(A)

(3)

A counterpart of Spohn’s (A, α)-conditionalization was suggested in [25]
in possibility theory such that if new evidence suggests that Π ′(A) = 1 and
Π ′(A) = 1− α (which implies that N ′(A) = α), then the belief change of an
agent’s current belief π can take the following form

π′(w) =
{

π(w|A) for w ∈ A
(1− α)π(w|A) for w ∈ A

(4)

where π(w|A) = π(w)/Π(A) which can be derived from Equation 3 with B
being a singleton, i.e., B = {w}.
Example 5 Suppose that information from a diary is always considered as
more reliable than information generated from ADLs. Let us look at the fol-
lowing simple scenarios.

Scenario 1: Information by ADLs shows that the person is using the tele-
phone while the diary records that the person is attending the doctor’s appoint-
ment. Let i denote that the person is at home, ¬i denote otherwise, u denote
using the telephone, and d denote at the doctor’s appointment.

If we use a logical approach2, that is, the less reliable information is u,
and the more reliable one is d. As u |= i and d |= ¬i, we know that u and d
are inconsistent (i.e., d |= ¬u). Then a revision of u by d, denoted as u ◦ d,
results in d. That is, revision supports that the agent is at the doctor’s, then
the information of using the telephone might be either

1. the phone sensor made a bad recording (so the related sensors are ill-
functional),

2 Here we mean classical propositional logic. Lowercase letters are used to represent
propositions. a |= b means that a implies b.
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2. or it is not the person but his carer who is making the call.

If we use ordinal conditional functions for belief revision, that is, assuming
information by ADLs is provided as (The person is using the telephone, at least
more possibly at home than not)

κ1(u) = 0, κ1(i ∧ ¬u) = 10, κ1(¬i) = 100,

and the diary gives (The person is at the doctor’s, at least more possibly outside
than at home)

κ2(d) = 0, κ2(¬i ∧ ¬d) = 10, κ2(i) = 100,

then the revision result is

κ(d) = 0, κ(¬i ∧ ¬d) = 10, κ(u) = 100, κ(i ∧ ¬u) = 110.

This result shows that the person is at the doctor’s, at least more possible
outside than at home, and if he is at home, he is more possibly using the
telephone.

Scenario 2: Information by ADLs shows that the person is preparing a
drink while the diary gives that the person is in the kitchen having lunch. Let
p denote that the person is preparing a drink, l denote that the person is having
lunch. Note that preparing a drink is a step of having lunch, i.e., p |= l.

If we use a logical approach, that is, the less reliable information is p, and
the more reliable one is l. As p |= l, we know that p and l are consistent.
Then a revision of p by l, denoted as p◦ l, results in p3. That is, belief revision
further supports the information generated from ADLs based on the diary
information.

If we use ordinal conditional functions for belief revision, that is, assuming
information by ADLs is provided as

κ1(p) = 0, κ1(¬p ∧ l) = 10, κ1(¬l) = 20,

and the diary gives
κ2(l) = 0, κ2(¬l) = 10,

then the revision result is

κ(p) = 0, κ(¬p ∧ l) = 10, κ(¬l) = 20.

This result shows that the consistent information is retained after revision.
3 In fact, if two pieces of information a, b are consistent, then belief revision postu-

lates [19, 20] make a ◦ b = a ∧ b.
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4.2 Belief Merging

In many applications, there is a need to combine possibly conflicting infor-
mation from different sources in order to get coherent knowledge. This is the
origin of information/data fusion problem. As a very important part of the
data fusion problem, in the last two decades, the merging of knowledge bases
(especially in propositional logic) has attracted significant attention.

Knowledge bases (or belief bases) can be flat or stratified/ranked. In a
flat knowledge base, all the logical formulae are viewed as equally important.
In stratified knowledge bases, however, formulae are assigned with different
levels of importance (priority). A formula at a higher level is viewed as more
important than those at a lower level, while in a ranked knowledge base, each
formula is attached to a rank (e.g., an ordinal number). A formula with a
higher rank is more preferred than those with lower ranks.

Konieczny and Pino-Perez [30] gave a systematic examination on all the
possible postulates for merging flat knowledge bases. It includes a basic set
of six postulates (usually mentioned as KP postulates) and an extra set of
postulates such as the majority postulate and the arbitrary postulate. The
relations of these postulates are studied and some concrete merging operators
are provided to show the consistency of these postulates.

Meyer and his coworkers studied the epistemic state merging [31, 32].
Meyer extends the KP postulates to the epistemic state version and gives some
concrete examples. But no systematic examination on the epistemic merging
postulates is given. The merging of stratified ranked knowledge bases has been
studied in many papers such as, [33, 34, 35, 36, 37]. The prioritized merging
postulates proposed by Delgrande, Dubois and Lang [36] can be induced by
flat merging operators. It also shows that iterated revision can be seen as
a kind of prioritized merging. However, these prioritized merging postulates
only consider the knowledge bases and no systematic examination is provided.

Here we also introduce the merging of ordinal conditional functions.
The merging of two ordinal conditional functions κ1 and κ2 is defined in

[38] as

(κ1⊕̂κ2)(w) = κ1(w) + κ2(w)−minw∈W (κ1(w) + κ2(w)) (5)

This rule is applicable only when minw∈W (κ1(w) + κ2(w)) < +∞.

Example 6 Suppose that information from different sources is of equal reli-
ability. Let us look at the following simple scenarios.

Scenario 3: Information by ADLs shows that the person is taking medicine
while the diary gives that the person is also within 10 minutes of the expected
time the person was to take medicine. Let t denote that the person is taking
medicine, a denote that medicine has already been taken, n = ¬t ∧ ¬a denote
the person does not take medicine.

Here we use ordinal conditional functions. Assuming information by ADLs
is provided as (The person is taking medicine)
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κ1(t) = 0, κ1(a) = κ1(n) = 100,

and the diary gives (The person has already taken medicine, but as 10 minutes
is a relative small amount of time, it is also very likely he is taking medicine
or has not)

κ2(a) = 0, κ2(t) = κ2(n) = 10,

then the merging result is

κ(t) = 0, κ(a) = 90, κ(n) = 100.

This result shows that the person is taking medicine, and more possibly has
taken than not.

Scenario 4: Information by ADLs shows that the bathroom door sensor is
activated at 8:00 while the diary gives that the person usually gets out of bed
at 8:00. Let b denote that the person is in the bathroom, g denote that the
person has already got out of bed. Note that b implies g, i.e., b |= g.

Obviously, this scenario is a bit similar to scenario 2 in Example 5. In that
scenario, we use belief revision to deal with it and get a satisfactory result.
In fact, we can also use belief merging. In a logical approach, the merging of
b and g, denoted as b⊕̂g, results in b4. That is, if pieces of information are
consistent, then belief revision and belief merging lead to the same result.

If we use ordinal conditional functions here, that is, assuming information
by ADLs is provided as

κ1(b) = 0, κ1(¬b) = 100,

and the diary gives
κ2(g) = 0, κ2(¬g) = 10,

then the merging result is

κ(b) = 0, κ(¬b ∧ g) = 100, κ(¬g) = 130.

This result shows that the consistent information is also retained after merg-
ing.

From the examples, we find that if pieces of information are totally incon-
sistent, we may resort to belief revision to get a consistent knowledge. If pieces
of information are totally consistent, then belief revision and belief merging
are both suitable approaches. If pieces of information are partially consistent
but a bit differs in time, like scenario 3, then it is better to use belief merging.
4 In fact, if two pieces of information a, b are consistent, then belief merging pos-

tulates [30] make a⊕̂b = a ∧ b.
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5 Conclusion

Comparing the well developed state of sensorising technologies within smart
homes, information management is far behind to change the vision of smart
homes into a practical concept. In this paper we proposed solutions to infer
ADLs with uncertain sensor data and manage inconsistency of ADLs with
knowledge from other sources.

We are currently investigating the implementation of the solutions in a set
of scenarios extracted from clinical simulation within our smart laboratory
environment. With assistive living environments being constructed in relation
to the project we are involved, we also expect to test the solutions in a real
practical setup at a complex scale.
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