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1. INTRODUCTION

It has been increasingly recognized that incon-
sistency is inevitable during the requirements 

process (Easterbrook & Chechik, 2001a; 
Nuseibeh et al., 2001). Both general principles of 
managing inconsistency and special case-based 
approaches to handling inconsistency have 
recently been considered. In particular, it has 
been pointed out in Gervasi and Zowghi (2005) 
that the use of logic in managing inconsistency 
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in requirements has been found to be effective 
in a number of studies. Various logic-based 
techniques have been proposed to manage 
inconsistencies in requirements engineering 
(Hunter & Nuseibeh, 1998; Gervasi & Zowghi, 
2005; Martinez et al., 2008; Zowghi & Gervasi, 
2003; Mu et al., 2005a, 2008, 2009). Most of 
these logic-based approaches focus on how 
to manage inconsistency by applying logical 
techniques such as paraconsistent reasoning 
and non-monotonic reasoning to requirements 
engineering. For example, Hunter and Nuseibeh 
(1998) developed the labeled quasi-classic logic 
to represent and reason about requirements 
specifications in the presence of inconsis-
tency. Gervasi and Zowghi (2005) proposed 
methods for reasoning about inconsistencies 
in natural language requirements by combining 
natural language parsing techniques and non-
monotonic reasoning. Easterbrook and Chechik 
(2001b) presented a framework termed χbel for 
merging inconsistent viewpoints using multi-
valued logics. This framework was intended 
to highlight the source of inconsistency and to 
tolerate inconsistencies between viewpoints 
during model checking.

In contrast, there are relatively few logic-
based techniques for generating appropriate 
proposals for inconsistency resolving actions 
in requirements engineering (Finkelstein et 
al., 1994; Gabbay & Hunter, 1993; Mu & Jin, 
2007; Mu et al., 2008, 2009). Previously, we 
have argued that the relative priority of each 
requirement should play an important role in 
identifying appropriate proposals for resolving 
inconsistencies in requirement specifications 
(Mu & Jin, 2007; Mu et al., 2008, 2009), 
moreover, negotiation and combinatorial vote 
may be considered as two appropriate mecha-
nisms of group decision making for identifying 
acceptable common proposals for handling 
inconsistent requirements specification (Mu 
et al., 2008, 2009). However, identifying ap-
propriate actions for resolving inconsistency in 
requirements specification is still a challenging 
problem (Hunter & Nuseibeh, 1998). Generally, 
the choice of inconsistency handling actions is a 
rather context-sensitive issue (Finkelstein et al., 

1994; Gabbay & Hunter, 1993). So, as pointed 
out in Mu et al. (2008), a feasible proposal for 
inconsistency resolving should focus on point-
ing out which requirements to be changed rather 
than how to change these requirements.

Roughly speaking, all the requirements 
involved in inconsistencies can be considered 
disputable. Each of such requirements is a can-
didate for requirements to be changed during the 
process of inconsistencies resolving. However, 
in many cases in requirements engineering, not 
all the requirements involved in inconsistencies 
need to be changed to resolve inconsistencies. 
Intuitively, the choice of requirements to be 
changed should depend on the evaluation of the 
blame of each requirement for inconsistencies 
in requirements specifications as well as the 
evaluation of the value of each requirement. 
To address this, in this paper, we present an 
approach to generating appropriate proposals 
for resolving inconsistencies in requirements 
specifications. This approach focuses on iden-
tifying requirements to be changed to resolve 
inconsistencies by balancing the blame of each 
requirement for inconsistencies against its value 
to the system-to-be. Informally, we formulate 
requirements specifications as prioritized 
knowledge bases in classical logic. Then we 
adopt the approach to measuring the blame 
of each formula for inconsistent prioritized 
knowledge bases presented in Mu et al. (2011) 
to evaluate the blame of each requirement for 
inconsistencies in an individual requirements 
set. Following this, we measure how disputable 
an individual requirement involved in inconsis-
tency is by balancing the blame of that require-
ment against its priority. Finally, we propose 
an algorithm of choosing requirements to be 
changed based on this measurement.

The rest of this paper is organized as fol-
lows. Section 2 gives a brief introduction to 
the logical representation of requirements. We 
propose an approach to measuring how disput-
able a requirement involved in inconsistency 
is by balancing the blame of each requirement 
against its priority in Section 3. Section 4 pro-
poses an algorithm of choosing requirements to 
be changed based on the degree of disputability. 
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We compare our approach with related work 
in Section 5. Finally, we conclude the paper 
in Section 6.

2. PRELIMINARIES

We use classical logic-based language to rep-
resent requirements in this paper. First order 
logic may be considered as a promising tool 
to represent requirements, since most tools 
and notations for representing requirements 
could be translated into formulas of first order 
logic (Hunter & Nuseibeh, 1998). Moreover, 
in a logic-based framework for representing 
requirements, consistency checking is always 
associated with certain scenarios with regard 
to the requirements specification (Hunter & 
Nuseibeh, 1998), or some specific domain 
knowledge. That is, we must add further relevant 
facts (e.g., domain knowledge) to model each 
scenario. Then reasoning about requirements is 
always based on these certain facts. It implies 
that checking the consistency of requirements 
considers only ground formulas. Furthermore, 
if we assume a universally quantified formula 
is just an abbreviation for the conjunction of 
formulas that can be formed by systematically 
instantiating the variables of the quantified 
formula with the constants in the language, 
then we may restrict the first order language 
to the propositional case. It will render con-
sistency checking decidable. This gives some 
computational advantages. However, restricting 
first order logic to propositional logic in some 
way is a useful and practical way of balancing 
the computational advantages of propositional 
logic against its limited expressive power in 
requirements engineering as well as software 
engineering (Gervasi & Zowghi, 2005; Jackson, 
2000). For these reasons, we assume a classical 
first order language without function symbols 
and existential quantifiers. This classical first 
order logic is the most convenient to illustrate 
our approach, as will be shown in the rest of 
the paper.

Let P  be a set of predicate symbols, V be a 
set of variable symbols, and C a set of constant 

symbols. We call A  ={p(q1, …, qn) |p∈P and 
q1, …, qn ∈ V  ∪C} the set of atoms. Let F be the 
set of classical formulas formed from a set of 
atoms A   and logical connectives {∨,∧,→,¬}. In 
particular, we call p(q1, …, qn) a ground atom if 
and only if q1, …, qn are all constant symbols. 
Let A0 be a set of ground atoms. Let F0 be the set 
of classical formulas formed from a set of atoms 
A0 and logical connectives {∨,∧,→,¬}. Let G 
be the set of formulas formed from F, where if 
α∈F, and X1,…, Xn are the free variables of α, 
then ∀X1,…, ∀Xn α∈ G. Essentially, the set G 
contains only universally quantified formulas 
(in which the quantifiers are outermost) and 
ground formulas.

A classical knowledge base K  is a finite 
set of formulas in F0. K  is inconsistent if there 
is a formula α∈F0 such that K  a  and 
K  a . We abbreviate a aÙ  as ^  if there is 
no confusion. Then an inconsistent knowledge 
base K  is denoted by K ^ . Moreover, an 
inconsistent knowledge base K  is called a 
minimal inconsistent set if none of its proper 
subset is inconsistent. If K K' Í  and K '  is 
a minimal inconsistent set, then we call K '  a 
minimal inconsistent subset of K .

Let MI K( )  be the set of all the minimal 
inconsistent subsets of K , i.e.,

MI
K K K

and K K K
K( ) =

⊆ ⊥

∀ ⊂ ⊥













' '

'' '

| ,

, ''

�

�
.	

The minimal inconsistent subsets can be 
considered as the purest form of inconsistency 
for conflict resolution where the syntactic 
representation of the information is important, 
since removing one formula from each minimal 
inconsistent subset would be sufficient to re-
solve the inconsistency (Reiter, 1987). In 
contrast, a free formula of a knowledge base 
K  is referred to as a formula of K  that does 
not belong to any minimal inconsistent subset 
of K . In this paper, we use FREE K( )  to denote 
the set of free formulas of K.

We can use formulas in G to formulate 
requirements expressed in natural language. 
For example, we can represent a requirement, 
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“if an authorized user requests to borrow a 
book and the book is available, then the user 
can borrow the book”, as

∀ ∀ ∧
∧ →
User Book auth User requ User Book

avai Book borr Us

( ( ) ( , )

( ) ( eer Book, )).

However, to check inconsistency of re-
quirements collections, the universally quan-
tified formulas are always instantiated by the 
constants in certain scenarios. For example, 
given the following facts: “Alice is an autho-
rized user, and she applies to borrow the book 
of software engineering; The book of software 
engineering is available’’. Then we use the fol-
lowing ground formula as a substitute for the 
universally quantified formula above:

auth Alice requ Alice Soft eng

avai Soft eng borr Ali

( ) ( , _ )

( _ ) (

∧
∧ → cce Soft eng, _ )

Generally, if ground formulas a a a1 2, , ,¼ n

are the instantiations of the universally quanti-
fied formula a  by using different facts in a 
scenario, then we may use a a a1 2∧ ∧…∧ n

as a substitute for a  in the scenario. Thus, we 
concentrate on the instantiated requirements in 
the rest of this paper. That is, we assume that 
an individual set of requirements can be for-
mulated by a classical knowledge base. With 
this, we restrict the first order logical represen-
tation of requirements to the propositional case.

In particular, we call a knowledge base K
a (partial) requirements specification if each 
formula of K  represents a requirement. If there 
is no confusion we make no distinction between 
a classical knowledge base and a requirements 
specification in the rest of this paper.

On the other hand, it has been increas-
ingly recognized that the relative importance 
of requirements can help stakeholders to make 
some necessary trade-off decisions for resolv-
ing inconsistency. To address this, we need to 
attach a weight or qualitative priority level to 
each formula that represents an individual re-
quirement. For convenience and simplicity and 
without losing generality, we assume that the 

set of priorities used in this paper is ( , ]0 1 . Let 
K  be a classical knowledge base, then a pri-
oritization over K  is a function fK  from K  to 
(0,1] such that the bigger the priority value of 
a formula, the more preferred is the formula. 
By this, we can use K fK,  to formulate pri-
oritized requirements specification. For simplic-
ity, we call K fK,  a prioritized knowledge base. 
Note that this kind of prioritized knowledge 
base is exactly Type-I prioritized knowledge 
base defined in Mu et al. (2011).

We use the following example to illustrate 
the formulation of requirements in the form of 
classical logic formulas.

Example 1

Consider the following requirements for updat-
ing an existing software system. A representative 
of the sellers of the new system, provides the 
following demands:

(a) 	 The system-to-be should be open, that is, 
the system-to-be could be extended easily.

(b) 	 The system-to-be should be secure.
(c) 	 The user interface of the system-to-be 

should be fashionable.

A representative of the users of the exist-
ing system, provides the following demands:

(d) 	 The system-to-be should be developed 
based on the techniques used in the existing 
system;

(e) 	 The user interface of the system-to-be 
should maintain the style of the existing 
system.

The domain expert in requirements engi-
neering provides the following constraint, which 
is a consequence of (b) above:

(f) 	 To guarantee the security of the system-to-
be, openness (or ease of extension) should 
not be considered.
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With regard to the prioritization over these 
requirements, suppose that both (b) and (f) are 
assigned to 0.9. Both (a) and (c) are assigned 
to 0.6, and (e) is assigned to 0.4. (d) is assigned 
to 0.7.

If we

•	 Use the predicate Open sys �( ) to denote 
that the system is open;

•	 Use the predicate Fash int f �( _ ) to denote 
that the interface is fashionable;

•	 Use the predicate Exis sys( ) to denote 
that the system will be developed based 
on the techniques used in the existing 
system;

•	 Use the predicate Secu sys( ) to denote 
that the system is secure.

Then we have a prioritized knowledge base 
K fK, for the requirements above, where

K Open sys Secu sys Fash f

Exis sys Fash

= ¬� �{ ( ),� ( ),� (int_ ),�

( ),� (innt_ ),� ( ) � ( )�},f Secu sys Open sys→¬

and f KK : ( , ] 0 1 such that

f Open sys

f Fash f

f Fash

K

K

K

�( ( )) . ,� � �

�( (int_ )) . ,� �

�( (int

=

=

¬

0 6

0 6

__ )) . ,f = 0 4

	

f Exis sys f Secu sys

f Secu sys Open s
K K

K

�( ( )) . ,� �( ( ))

� �( ( ) � (

=

= → ¬

0 7

yys)) . .= 0 9
	

Clearly, the following inconsistencies can 
be identified from these requirements:

� ( ) � ( ),� � � �

(int_ ) � (int_ ).�

K Open sys Open sys

K Fash f Fash f




∧¬
∧¬ ��

	

And the set of minimal inconsistent subsets 
of K  is

MI K Fash f Fash f

Open sys Secu sys e

�( ) {{ (int_ ) � (int_ )},

{ ( ),� ( ),

= ∧
ccu sys Open sys( ) � ( )}}→¬

The set of free formulas of K is 
FREE K Exis sys( ) { ( )}= .

3. MEASURING THE DEGREE 
OF DISPUTABILITY

“Inconsistency Implies Actions” is recognized 
as a meta-rule for inconsistency handling (Gab-
bay & Hunter, 1993; Hunter & Nuseibeh, 1998) 
in many application domains. However, as 
mentioned earlier, identifying appropriate ac-
tions for resolving inc ¬ onsistency is still a 
challenging issue in requirements engineering. 
A feasible general approach to handling incon-
sistencies in requirements should focus on 
identifying some potential requirements to be 
changed rather than identifying potential actions 
for changing them. That is, we need to know 
which requirements are disputable and how 
disputable these requirements are.

To characterize that some formulas are 
more disputable than others in an inconsistent 
knowledge base, we define the degree of dis-
putability of a formula. Intuitively, given an in-
consistent knowledge base, each of the formulas 
involved in minimal inconsistent subsets of that 
knowledge base may be considered disputable, 
since removing this formula can eliminate at 
least one minimal inconsistent subset. This 
motivates us to present the following general 
definition of the degree of disputability.

Definition 1

(The degree of disputability) Let K fK, be a 
prioritized knowledge base. A degree of dispu-
tability function for K , denoted dK , is a func-
tion from K to [ , )0 +∞ such that

(1C) ( ) 0Kd a = 	
 

If	

a Î FREE K( ) .	

(2C)  ( ) 0Kd a > 	
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If

� � ( )� . .� �∃ ∈ ∈M MI K s t Ma .	

Note that this definition of the degree of 
disputability function provides only intuitive 
constraints on the degree of disputability. The 
first condition states that each free formula of 
a knowledge base has null degree of disputabil-
ity. This accords with the viewpoint that free 
formulas have nothing to do with inconsisten-
cies conveyed by minimal inconsistent subsets. 
The second condition ensures that any formula 
involved in minimal inconsistent subsets is 
disputable.

The simplest type of the degree of dispu-
tability function one can define is the drastic 
MinInc inconsistency value defined in Hunter 
and Konieczny (2008).

Definition 2

Let K fK, be a prioritized knowledge base. dK
1

is defined as:

∀ ∈ =

=
∈ ( )

∃ ∈ ( ) ∈





a a a

a
a

K d MIV K

FREE K

M MI K s t M

K D, ( ) ( , )

, ,

, . .

1

0

1 .	

Note that dK
1 allows us just to make a dis-

tinction between free formulas and disputable 
formulas. It cannot make a distinction between 
two formulas involved in minimal inconsistent 
subsets of a knowledge base, as shown in 
Hunter and Konieczny (2008). However, to 
identify desirable proposals for inconsistency 
resolving actions, we need to choose some 
formulas to be changed from these disputable 
formulas in some systematic way. Then it is 
necessary to make a distinction between these 
disputable formulas.

It is intuitive to use the blame of each 
formula for the inconsistency in a knowledge 
base to make a distinction between formulas in 
the knowledge base. For example, Hunter et al 
have argued that the blame of each formula in a 
flat (or classical) knowledge base can be used 

to stratify the knowledge base in Hunter and 
Konieczny (2010). However, in many practical 
software projects, developers need to balance 
the blame of each requirement for the incon-
sistency against its value for the system-to-be 
when making a necessary trade-off decision 
on inconsistency resolving. Then an intuitive 
measure for the degree of disputability of a re-
quirement should take into account the relative 
importance of the requirement as well as the 
blame of the requirement for the inconsistency 
to be resolved. To address this, we refine the 
notation of the degree of disputability loosely 
defined by introducing the blame and the relative 
importance of requirements explicitly.

Definition 3

(The blame-based degree of disputability) Let 
K fK, be a prioritized knowledge base. Let 
Blame K( , )a be the blame of a for inconsisten-
cies in K . A blame-based degree of disputabil-
ity for K , denoted dK

B , is a function from K
to [ , )0 +∞ such that

( ) 0B
Kd a = 	 (1)

if

a Î FREE K( ) .	

 ( ) 0B
Kd a > 	 (2)

if	

� � ( )� . .� �∃ ∈ ∈M MI K s t Ma .	

, Ka b" Î 	 (3)

s.t.	

f fK K( ) ( ),α β= 	

if 	

Blame K Blame K( , ) ( , )α β³ 	
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then 	

d dK
B

K
B( ) ( )α β³ .	

∀ ∈α β, K (4)	

s.t. 	

Blame K Blame K, ( , )α β( ) = ,	

if	

� ( ) ( )f fK Kα β³ 	

then 	

d dK
B

K
B( ) ( )α β£ .	

Note that (1C) and (2C) are the two basic 
constraints for the degree of disputability men-
tioned above. The condition of (3C) requires 
that as the blame of a formula with a given 
priority increases, its degree of disputability 
cannot decrease. The last condition requires 
that as the priority of a formula with a given 
blame for inconsistency increases, its degree 
of disputable should decrease.

There are a number of functions appropri-
ate for instantiating the blame-based degree of 
disputability defined. Now we give the follow-
ing simple function as the blame-based degree 
of disputability.

Definition 4

Let K fK, be a prioritized knowledge base. Let 
Blame K( , )a be the blame of a for inconsisten-
cies in K . The function dK

B0 is defined as fol-
lows:

∀ ∈ =a a
a

a
K d

Blame K
fK

B

K

, ( )
( , )
( )

0 .	

Note that dK
B0 uses the ratio of the blame 

of a formula to the priority level of the for-
mula to capture how disputable the formula is. 
This ensures that dK

B0 satisfies the last two in-

tuitive constraints about the blame-based degree 
of disputability.

Just for the simplicity of discussion, we 
can provide the following normalized version 
of dK

B0 as follows.

Definition 5

Let K fK, be a prioritized knowledge base. Let 
Blame K( , )a be the blame of a for inconsisten-
cies in K . The function dK

B1 is defined as fol-
lows:

∀ ∈

=
( )+

a a
a

a a

K d

Blame K
Blame K f

K
B

K

, ( )

( , )
, ( )

1

.	

Note  that  �d
d

dK
B K

B

K
B

1

0

0 1
a

a

a
( ) =

( )
( )+

and 

�0 11≤ ( ) <dK
B a for all a ÎK . In essence, the 

degree of disputability function dK
B1 ( )a focuses 

on the ratio of the blame of a for inconsisten-
cies in K to the relative importance of a , such 
that the most disputable formulas provide the 
largest fraction of the total blame for the incon-
sistency but have the smallest fraction of the 
total importance.

Evidently, both dK
B0 ( )a and dK

B1 ( )a satisfy 
the conditions (3C) and (4C). To be measures 
for the degree of disputability, both dK

B0 ( )a and 
dK
B1 ( )a need to satisfy the basic constraints (1C) 

and (2C). This also implies that the blame 
measure Blame K( , )a we used should satisfy

Blame K,a( ) = 0 	

if	

a Î FREE K( ) .	

Blame K( , )a > 0 	

if	

� � ( )� . .� �∃ ∈ ∈M MI K s t Ma .	
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However, these are exactly two of the es-
sential properties of the measures for the blame 
of formulas for the inconsistency in a knowledge 
base (Mu et al., 2011). Therefore, given a blame 
measure, we can get a corresponding measure 
for the degree of disputability.

In this paper, we use two particular blame 
measures, i.e., Blamemean and Blamemax , to 
define the measures for the degree of disputabil-
ity, respectively. Previously, we have proposed 
an approach to measuring the blame of each 
formula for inconsistencies in a prioritized 
knowledge base (Mu et al., 2011). Roughly 
speaking, this approach to measuring the blame 
of each formula for inconsistency is guided by 
the principle of proportionality, which insists 
on that the more important the formulas opposed 
to the formula are, the more severe the deserved 
blame of the formula should be. We make use 
of two particular measures of the blame of each 
formula for inconsistencies in a prioritized 
knowledge base presented in Mu et al. (2011).

Informally, for a given formula a of K , 
its blame for the inconsistency in a minimal 
inconsistent subset M is determined by the set 
of formulas of M that would be disengaged 
from the inconsistency if a was removed from 
M . We call the set of such formulas the set of 
opposed formulas to a w.r.t. M , and use 
Opp M( , )a to denote it (Mu et al., 2011), i.e.,

Opp M

if M

M if M

M

,

, ,

, ,

, .

a

a a
a a

a

( )

=
= { }

−{ } { } ⊂
∅ ∉










	

Note that for a singleton set M = { }a , the 
opposed formula to a is a , since a is a self-
contradictory formula.

Further, let Sig K( )be a particular measure 
for the relative importance of K . Given a 
minimal inconsistent subset M , let Inc M( )be 
the measure for the amount of inconsistency in 
M . Then under guidance of the principle of 
proportionality, the blame of a formula for the 

inconsistency in M , is defined as (Mu et al, 
2011)

∀ ∈ ( )

= ×
∈∑

α α

α
β

β

K Blame M

Sig Opp M

Sig Opp M
Inc M

M

, ,

( ( , ))

( ( , ))
( ).	

Moreover, the blame of a formula for the 
inconsistency in a knowledge base K is the 
sum of the blame of the formula for the incon-
sistency in each minimal inconsistent subset 
of the knowledge base (Mu et al., 2011), i.e.,

∀ ∈ ( )
=

∈
∑

a a

a

K Blame K

Blame M
M MI K

, ,

( , )
( )

.	

Based on different measures for the relative 
importance of a knowledge base and measures 
for the inconsistency in a minimal inconsistent 
subset, we can get different measures for the 
blame of each formula for the inconsistency. 
Previously, we have also proposed a set of 
properties to develop and to characterize such 
measures in Mu et al. (2011). In particular, if 
we use Sig K fmean

K
K( ) ( )=

∈
∑
g

g to measure the 

relative importance of K in Mu et al. (2011). 
Then we define the blame of each formula for 
the inconsistency Blamemean as follows:

Definition 6

(The Blame of each formula for the Inconsis-
tency Blamemean ) (Mu et al., 2011) Let K fK,
be a prioritized knowledge base. The blame of 
each formula belonging to K for the inconsis-
tency of K , denoted Blamemean , is a function 
such that

∀ ∈ ( )
=

∈
∑

a a

a

K Blame K

Blame K

mean

M MI K
mean

, ,

( , )
( )

,	

where
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Blame M

Sig Opp M

Sig Opp M

Sig

mean

mean

M mean

m

,

( ( , ))

( ( , ))

α

α
β

β

( )

=

×

∈∑
eean M

M

( )
2

	

for each minimal inconsistent subset M  of K .
Roughly speaking, the blame of a  for the 

inconsistency of K  is the accumulation of the 
blames of a  for the inconsistency of each mini-
mal inconsistent subset of K . Within a minimal 
inconsistent subset M , the amount of inconsis-

tency in M  is captured by 
Sig M

M
mean( )

2
, more-

over, the blame of a  for the inconsistency of 
M  is proportionate to Sig Opp Mmean( ( , ))a . 
We have shown in Mu et al. (2011) that 
Blamemean satisfies the set of intuitive proper-
ties an intuitive measure for the blame should 
have. In particular, Blamemean satisfies the 
properties of Innocence and Necessity, i.e.,

(B1) Innocence:

� ( )∀ ∈M MI K ,	

∀ ∉a M ,	

Blame Mmean( , )a = 0.	

(B2) Necessity:

� ( )∀ ∈M MI K ,	

∀ ∈a M ,	

Blame Mmean ,a( ) > 0.	

We use the following example to illustrate 
this measure for the blame of each formula for 
inconsistency.

Example 2

Consider K fK1 1
, , 

where K a a a c b c d1 = ¬ ¬ ∨ ¬{ , , , , , } and

f a

f a

f a c

K

K

K

1

1

1

0 6

0 4

0 8

( ) =
¬( ) =
¬ ∨ =

. ,

. ,

( ) . ,

	

f b

f c

f d

K

K

K

1

1

1

0 5

0 1

0 9

( ) =
¬( ) =
=

. ,

. ,

( ) . .

	

T h e n  MI K M M( ) { , }1 1 2= ,  w h e r e 
M a a1 = ¬�{ ,� } , M a c a c2 = ¬ ∨ ¬{ , , }. So, the 
blame of each formula for inconsistency in M1
is given as follows:

Blame M amean( , ) . ,1 0 1= 	

 BlameBlame M amean( , ) . ,1 0 15¬ = 	

 BlameBlame M cmean( , ) ,1 0¬ = 	

 BlameBlame M a cmean( , ) ,1 0¬ ∨ = 	

Blame M bmean( , ) ,1 0= 	

Blame M dmean( , ) .1 0= 	

The blame of each formula for inconsis-
tency in M2 is given as follows:

Blame M amean( , ) . ,2 0 05= 	

 BlameBlame M amean( , ) ,2 0¬ = 	

 BlameBlame M cmean( , ) . ,2 0 08¬ = 	

 BlameBlame M a cmean( , ) . ,2 0 04¬ ∨ = 	

Blame M bmean( , ) ,2 0= 	

Blame M dmean( , ) .2 0= 	

The blame of each formula for inconsis-
tency in K1 is given as

Blame K amean( , ) . ,1 0 15= 	
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 BlameBlame K amean( , ) . ,1 0 15¬ = 	

 BlameBlame K cmean( , ) . ,1 0 08¬ = 	

 BlameBlame K a cmean( , ) . ,1 0 04¬ ∨ = 	

Blame K bmean( , ) ,1 0= 	

Blame K dmean( , ) .1 0= 	

This example also shows that the blame 
of a formula for inconsistency is insufficient 
for characterizing how disputable a formula is. 
To illustrate this, consider the example above,

BlameBlame K a Blame K amean mean1 1 0 15, ( , ) . ,( ) = ¬ =

but it is intuitive to consider that a is more disput-
able in this case since f a f aK K1 1

¬( ) < ( ). It also 
implies that the degree of disputability of a for-
mula should be determined by the blame of that 
formula together with the priority of that for-
mula.

By using the blame measure Blamemean , 
we define the degree of disputability function 
dK
Bmean as follows.

Definition 7

Let K fK, be a prioritized knowledge base. The 
function dK

Bmean is defined as follows:

∀ ∈

=
( )+

a a
a

a a

K d

Blame K

Blame K f

K
B

mean

mean K

mean, ( )

( , )

, ( ).	

Note that the properties of Innocence and 
Necessity of Blamemean ensure that dK

Bmean satis-
fies (C1) and (C2), i.e., dK

Bmean is a degree of 
disputability function. The following proposi-
tion shows that dK

Bmean is an anticipated measure 

for the degree of disputability of each formula 
for a prioritized knowledge base.

Proposition 1

dK
Bmean is a blame-based degree of disputability 

function, i.e., dK
Bmean satisfies (1C)-(4C).

Example 3

Consider K fK1 1
, again. Then

�d a �K
Bmean
1

1
5

( ) ,= 	

d aK
Bmean
1

3
11

( ) ,¬ = 	

d cK
Bmean
1

7
16

¬( ) = , 	

d a cK
Bmean
1

7
151

( ) ,¬ ∨ = 	

d bK
Bmean
1

0( ) ,= 	

d dK
Bmean
1

0( ) .= 	

Besides the blame measure Blamemean , 
we may also use the other blame measures to 
define the blame-based degree of disputability 
function.

Note that Sigmean considers the sum of the 
priority values of all the formulas in a knowledge 
base as the relative importance or the priority 
of the whole knowledge base. It essentially uses 
the average of the priority levels of all the 
formulas to evaluate the relative importance of 
the whole knowledge base. However, in some 
cases, the highest priority level of the formulas 
involved in inconsistency plays a dominant role 
in evaluating the relative importance of incon-
sistency. To address this, we may use the high-
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est priority level of formulas in a knowledge 
base to evaluate the relative importance of the 
knowledge base.

If we use

Sig K

K f KK

max( )

max{ ( ) | }= ⋅ ∈a a
	

to measure the relative importance of K , then 
the inconsistency in a minimal inconsistent 
s u b s e t  M c a n  b e  c a p t u r e d  b y 

Inc M
Sig M

Mmax
max( )
( )

| |
=

2
in Mu et al. (2011). 

We can define another blame measure along 
this line.

Definition 8

(The Blame of each formula for the Inconsis-
tency Blamemax (Mu et al., 2011)) Let K fK, be 
a prioritized knowledge base. The blame of 
each formula belonging to K for the inconsis-
tency of K , denoted Blamemax, is a function 
such that

∀ ∈ ( )
=

∈
∑

a a

a

K Blame K

Blame K
M MI K

, ,

( , )

max

( )
max

,	

where

Blame M

Sig Opp M

Sig Opp M

Sig
M

max

max

max

max

,

( ( , ))

( ( , ))

(

α

α
β

β

( )

=

×

∈∑
MM

M

)
2

	

for each minimal inconsistent subset M of 
K .

Note that the measure Blamemax also ac-
cords with the principle of proportionality. That 
is, within a minimal inconsistent subset M , 
the blame of a formula for the inconsistency in 
M is proportionate to the relative importance 
of the opposed formulas to that formula. More-

over, the blame of a formula for the inconsisten-
cies in a knowledge base is the sum of the blame 
of the formula for the inconsistency in each 
minimal inconsistent subset of the knowledge 
base.

We use the following example to illustrate 
the measure Blamemax .

Example 4

Consider K fK2 2
, , 

where K a a a c b c d2 = ¬ ¬ ∨ ¬{ , , , , , } and

f a

f a

f a c

K

K

K

2

2

2

0 6

0 4

0 9

( ) =
¬( ) =
¬ ∨ =

. ,

. ,

( ) . ,

	

f b

f c

f d
K

K

2 0 7

0 3

0 7
2

2

( ) =
¬( ) =
=

. ,

. ,

( ) . .

	

T h e n  MI K M M( ) { , }1 1 2= ,  w h e r e 
M a a1 = ¬�{ ,� } , M a c a c2 = ¬ ∨ ¬{ , , } . So, the 
blame of each formula for inconsistency in M1
is given as follows:

Blame M amax( , ) . ,1 0 12= 	

BlameBlame M amax( , ) . ,1 0 18¬ = 	

BlameBlame M cmax( , ) ,1 0¬ = 	

BlameBlame M a cmax( , ) ,1 0¬ ∨ = 	

Blame M bmax( , ) ,1 0= 	

Blame M dmax( , ) .1 0= 	

The blame of each formula for inconsis-
tency in M2 is given as follows:

Blame M amax( , ) . ,2 0 11= 	

BlameBlame M amax( , ) ,2 0¬ = 	
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 BlameBlame M cmax( , ) . ,2 0 11¬ = 	
 BlameBlame M a cmax( , ) . ,2 0 075¬ ∨ = 	

Blame M bmax( , ) ,2 0= 	

Blame M dmax( , ) .2 0= 	

The blame of each formula for inconsis-
tency in K1 is given as

Blame K amax( , ) . ,2 0 23= 	

 BlameBlame K amax( , ) . ,2 0 18¬ = 	

 BlameBlame K cmax( , ) . ,2 0 11¬ = 	

 BlameBlame K a cmax( , ) . ,2 0 075¬ ∨ = 	

Blame K bmax( , ) ,2 0= 	

Blame K dmax( , ) .2 0= 	

Evidently, the measure Blamemax also 
satisfies the properties of Innocence and Neces-
sity. By using the blame measure Blamemax , 
we define the degree of disputability function 
dK
Bmax as follows:

Definition 9

Let K fK, be a prioritized knowledge base. The 
function dK

Bmax is defined as follows:

∀ ∈

=
( )+

a a
a

a a

K d

Blame K

Blame K f

K
B

K

, ( )

( , )

, ( )

max

max

max .	

Evidently, dK
Bmax is also an anticipated 

measure for the degree of disputability of each 
formula for a prioritized knowledge base.

Proposition 2

dK
Bmax is a blame-based degree of disputability 

function, i.e., dK
Bmax satisfies (C1)-(C4).

We use the following example to illustrate 
the degree of disputability function dK

Bmax.

Example 5

Consider K fK2 2
, again. Then

�d a �K
Bmax
2

23
83

( ) ,= 	

� ( ) ,�maxd aK
B

2

9
29

¬ = 	

� ,maxd cK
B

2

11
41

¬( ) = 	

� (� ) ,maxd a cK
B

2

1
13

¬ ∨ = 	

�d b �K
Bmax
2

0( ) ,= 	

�d dK
Bmax
2

0( ) .= 	

To compare the formulas of a given priori-
tized knowledge base in terms of their degrees of 
disputability, we define a total ordering relation 
over the prioritized knowledge base termed as 
more disputable than as follows.

Definition 10

(The relation of more disputable than, ³d ) Let 
K fK, be a prioritized knowledge base and dK

B

the blame-based degree of disputability for K . 
A binary relation on K , denoted ³d , is defined 
as follows:

α β³d i f and only if d dK
B

K
B( ) ( )α β³ .	

Further, α β>d if α β³d  and β αd . 
α βd if α β³d  and β α³d .We say that a
is strictly more disputable than b if α β>d .
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Example 6

Consider K fK1 1
, again. Suppose that we use 

dK
Bmean to measure the degree of disputability. 

Then
¬ > ¬ > > ¬ ∨ >c a a a c b dd d d d d       	

According to this ordering relation, a is 
more disputable than Øa , although they have 
the same blame for inconsistencies in K1 . This 
comparison is intuitive, since the priority of a
is higher than that of a .

4. GENERATING APPROPRIATE 
PROPOSALS FOR HANDLING 
INCONSISTENCY

As mentioned above, a useful general approach 
to generating proposals for handling incon-
sistency should focus on pointing out which 
requirements to be changed rather than how to 
change these requirements. In this sense, gen-
erating proposals for handling inconsistency is 
a process of identifying potential requirements 
to be changed.

Without loss of generality, we use dK
Bmean

as the degree of disputability function in the 
following examples if there is no confusion.

Definition 11

Let K fK, be an inconsistent prioritized knowl-
edge base. A proposal for handling the incon-
sistency in K , denoted p( )K , is a subset of 
K such that MI K K− ( )( ) = ∅p .

Note that � ( )p K  is a subset of K such that 
all the minimal inconsistent subsets of K would 
be eliminated if formulas of p( )K were removed 
from K . For example, both { }a and { , }Ø Øa c
are proposals for handling inconsistency in K1 .

How to evaluate the appropriateness of a 
proposal is also a difficult issue in requirements 
engineering. Intuitively, the more disputable 

requirements should be given a priority to be 
included in a proposal. We present an algorithm 
for generating proposals which provides support 
for this intuition.

Definition 12

Let K fK, be an inconsistent prioritized knowl-
edge base. ∀ ∈p p1 2, Π , p1 is more appropriate 
than p2 for handling inconsistency in K if 
∀ ∈M MI K� ( ) , ∃ ∈ ∩α πM 1 such that α β³d  

for all β π∈ ∩M 2 .

For example, for K fK1 1
, , the proposal 

{ , }Ø Øa c i s  more  app rop r i a t e  t han 
{ , }¬ ¬ ∨a a c .

Let MAX K( ) be the set of formulas of K
with the highest degree of disputability, i.e.,

MAX K K

and K d dK
B

K
B

( ) = ∈

∀ ∈ ≤

{ | ,

, ( ) ( )}

α α

β β α
.	

For example, MAX K a1( ) = ¬{ } and 
MAX b d b d({ , }) { , }= . Let Q be a set of 

subsets of K , then we abbreviate ∪ ∈K QK' '
as Q


. Then an algorithm for generating 
proposals for handling inconsistency based on 
the degree of disputability is given as shown 
in Box 1.

Note that condition Q = ∅ ensures that 
each proposal p generated by the algorithm 
satisfies MI K K− ( )( ) = ∅p . In contrast, the 
part from Line 6 to Line 10 of the algorithm 
ensures that p is one of the most appropriate 
proposals for handling inconsistency in K .

Example 7

Cons ider  K fK1 1
, aga in .  Evident ly,

Π1 = ¬{{ }},c  Π2 = ¬ ¬{{ , }}c a . Then the 
proposal for inconsistency handling generated 
is p( ) { , }K a c1 = ¬ ¬ .

We use the following example to illustrate 
the algorithm.
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Example 8 (Example 1 Continued)

Then

d Fash f d

Fash f d O

K
B

K
B

K
B

mean mean

mean

¬( ) = >

( )( ) = ¬

(int_ )

int_

3
11

ppen sys( )( ) = >
1
7

	

d Secu sys

d Secu sys Open sys

d E

K
B

K
B

K
B

mean

mean

mean

( )

( ) ( )

( )
= →( )
= xxis sys( ) .( ) = 0

	

So, based on the algorithm,

Π1 = ¬ ( ){ }{ int_ }Fash f ,	

Π2 = ¬ ( ){ }{ int_ , ( ) }Fash f Open sys .	

Then

p( ) int_ , ( )K Fash f Open sys= ¬ ( ){ } 	

is the generated proposal, i.e., the requirements 
(a) and (e) are recommended to be changed 
for resolving inconsistency. This proposal is 
intuitive.

5. RELATED WORK

Handling inconsistent requirements is a per-
vasive issue in requirements engineering. 

Box 1. 
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Most of logic-based techniques for managing 
inconsistent requirements are concerned with 
reasoning about requirements in the presence 
of inconsistency. There are relatively few logic-
based approaches to identifying appropriate 
proposals for handling inconsistency actions. 
In this paper we proposed an approach to 
identifying requirements to be changed from 
the set of requirements involved in inconsis-
tencies by using the measure of the degree of 
disputability for requirements. In the following, 
we compare our approach with some of closely 
related proposals.

Our previous paper (Mu et al., 2008, 2009; 
Mu & Jin, 2007) presented two approaches 
to identifying acceptable common propos-
als for handling inconsistency in distributed 
requirements. However, this paper focuses on 
generating proposals for handling inconsistent 
requirements with weighted or numerical priori-
ties within one perspective. The blame-based 
degree of disputability plays an important role 
in identifying potential requirements to be 
changed. In contrast, our previous papers (Mu et 
al., 2008 2009; Mu & Jin, 2007) are concentrated 
on multi-perspective requirements with quali-
tative priority levels (such as High and Low). 
These approaches emphasized the importance 
of group decision making mechanisms such 
as negotiation among multiple perspectives 
(Mu et al., 2008, 2009) and combinatorial vote 
(Mu & Jin, 2007) in identifying requirements 
to be changed.

Note that the blames of formulas for 
inconsistency are crucial for measuring how 
a formula disputable is. We make use of a 
particular measure for the blames of formulas 
for inconsistency defined in Mu et al. (2011) 
in characterizing the degree of disputability 
of formulas involved in inconsistency. Rough 
speaking, the blame of a formula measures 
how bad that formula is, in contrast, the pri-
ority of a formula states describes how good 
that formula is. In this sense, the blame-based 
degree of disputability of a formula balances the 
advantages of remaining that formula against 
the disadvantages.

Note that we translate a set of requirements 
with priority levels into a prioritized knowledge 
base in this paper. It is natural to translate re-
quirements into a classical knowledge base 
when there is no prioritization over require-
ments. However, a classical knowledge base 
may be considered as a special kind of prioritized 
knowledge base if we consider each formula 
in the knowledge base has the highest priority 
value 1. Then the approach presented in this 
paper can also be applied to classical knowledge 
bases. But in such cases, fK a( ) = 1 for all 
a ÎK , and then

d
Blame K

Blame K

K
B0

1
a

a

a

( ) =

=

( , )

( , )
	

and

d
Blame K
Blame KK

B1

1
a

a
a

( ) =
( )+
( , )
,

.	

This means such disputability functions 
are determined by only the blame of a for the 
inconsistency in K . That is, within the context 
of classical knowledge bases, the degree of 
disputability essentially accords with the idea 
of stratifying knowledge bases by the blame of 
formulas presented in Hunter and Konieczny 
(2010).

6. CONCLUSION

We have presented an approach to generating 
proposals for handling inconsistent require-
ments specification. This paper presented the 
following contributions to managing inconsis-
tency in requirements engineering:

(a) 	 We argued that how disputable a require-
ment is depends on the blame of that 
requirement for inconsistency as well as 
the priority of that requirement.

(b) 	 We defined two blame-based degree of 
disputability functions for formulas of a 
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prioritized knowledge base by balancing 
the blames of formulas for inconsistency 
against the relative priorities of formulas. 
Also, we defined a total ordering relation 
termed more disputable than over a priori-
tized knowledge base.

(c) 	 We presented an algorithm for generating 
appropriate proposals for handling incon-
sistent requirements by using the relation 
of more disputable than over inconsistent 
requirements specification.

Note that we assume that the priority level 
of each requirement is a real number in (0,1]. 
However, in many software projects, the priority 
level of requirements is a qualitative value such 
as High or Low. How to handle inconsistency in 
such prioritized requirements will be the main 
direction for our future work.
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