
International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Degree of Disputability, Inconsistency Handling, Prioritized Knowledge Base, Software
Requirements, The Blame for the Inconsistency

1. INTRODUCTION

It has been increasingly recognized that incon-
sistency is inevitable during the requirements

process (Easterbrook & Chechik, 2001a;
Nuseibeh et al., 2001). Both general principles of
managing inconsistency and special case-based
approaches to handling inconsistency have
recently been considered. In particular, it has
been pointed out in Gervasi and Zowghi (2005)
that the use of logic in managing inconsistency

A Blame-Based Approach
to Generating Proposals for
Handling Inconsistency in

Software Requirements
Kedian Mu, Peking University, China

Weiru Liu, Queen’s University Belfast, UK

Zhi Jin, Peking University, China

ABSTRACT
Inconsistency has been considered one of the main classes of defects in software requirements specification.
Various logic-based techniques have been proposed to manage inconsistencies in requirements engineering.
However, identifying an appropriate proposal for resolving inconsistencies in software requirements is still a
challenging problem. This paper proposes a logic-based approach to generating appropriate proposals for
handling inconsistency in software requirements. Informally speaking, given an inconsistent requirements
specification, the authors identify which requirements should be given priority to be changed for resolving the
inconsistency in that specification, by balancing the blame of each requirement for the inconsistency against its
value for that requirements specification. The authors follow the viewpoint that minimal inconsistent subsets
of a set of formulas are the purest forms of inconsistencies in that set. According to this viewpoint, a potential
proposal for resolving inconsistencies can be described by a possible combination of some requirements to be
changed that can eliminate minimal inconsistent subsets. Then a method is proposed of evaluating the degree
of disputability of each requirement involved in the inconsistency in a requirements specification. Finally, an
algorithm is provided of generating appropriate proposals for resolving the inconsistency in a given require-
ments specification based on the degree of disputability of requirements.

DOI: 10.4018/jkss.2012010101

2 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

in requirements has been found to be effective
in a number of studies. Various logic-based
techniques have been proposed to manage
inconsistencies in requirements engineering
(Hunter & Nuseibeh, 1998; Gervasi & Zowghi,
2005; Martinez et al., 2008; Zowghi & Gervasi,
2003; Mu et al., 2005a, 2008, 2009). Most of
these logic-based approaches focus on how
to manage inconsistency by applying logical
techniques such as paraconsistent reasoning
and non-monotonic reasoning to requirements
engineering. For example, Hunter and Nuseibeh
(1998) developed the labeled quasi-classic logic
to represent and reason about requirements
specifications in the presence of inconsis-
tency. Gervasi and Zowghi (2005) proposed
methods for reasoning about inconsistencies
in natural language requirements by combining
natural language parsing techniques and non-
monotonic reasoning. Easterbrook and Chechik
(2001b) presented a framework termed χbel for
merging inconsistent viewpoints using multi-
valued logics. This framework was intended
to highlight the source of inconsistency and to
tolerate inconsistencies between viewpoints
during model checking.

In contrast, there are relatively few logic-
based techniques for generating appropriate
proposals for inconsistency resolving actions
in requirements engineering (Finkelstein et
al., 1994; Gabbay & Hunter, 1993; Mu & Jin,
2007; Mu et al., 2008, 2009). Previously, we
have argued that the relative priority of each
requirement should play an important role in
identifying appropriate proposals for resolving
inconsistencies in requirement specifications
(Mu & Jin, 2007; Mu et al., 2008, 2009),
moreover, negotiation and combinatorial vote
may be considered as two appropriate mecha-
nisms of group decision making for identifying
acceptable common proposals for handling
inconsistent requirements specification (Mu
et al., 2008, 2009). However, identifying ap-
propriate actions for resolving inconsistency in
requirements specification is still a challenging
problem (Hunter & Nuseibeh, 1998). Generally,
the choice of inconsistency handling actions is a
rather context-sensitive issue (Finkelstein et al.,

1994; Gabbay & Hunter, 1993). So, as pointed
out in Mu et al. (2008), a feasible proposal for
inconsistency resolving should focus on point-
ing out which requirements to be changed rather
than how to change these requirements.

Roughly speaking, all the requirements
involved in inconsistencies can be considered
disputable. Each of such requirements is a can-
didate for requirements to be changed during the
process of inconsistencies resolving. However,
in many cases in requirements engineering, not
all the requirements involved in inconsistencies
need to be changed to resolve inconsistencies.
Intuitively, the choice of requirements to be
changed should depend on the evaluation of the
blame of each requirement for inconsistencies
in requirements specifications as well as the
evaluation of the value of each requirement.
To address this, in this paper, we present an
approach to generating appropriate proposals
for resolving inconsistencies in requirements
specifications. This approach focuses on iden-
tifying requirements to be changed to resolve
inconsistencies by balancing the blame of each
requirement for inconsistencies against its value
to the system-to-be. Informally, we formulate
requirements specifications as prioritized
knowledge bases in classical logic. Then we
adopt the approach to measuring the blame
of each formula for inconsistent prioritized
knowledge bases presented in Mu et al. (2011)
to evaluate the blame of each requirement for
inconsistencies in an individual requirements
set. Following this, we measure how disputable
an individual requirement involved in inconsis-
tency is by balancing the blame of that require-
ment against its priority. Finally, we propose
an algorithm of choosing requirements to be
changed based on this measurement.

The rest of this paper is organized as fol-
lows. Section 2 gives a brief introduction to
the logical representation of requirements. We
propose an approach to measuring how disput-
able a requirement involved in inconsistency
is by balancing the blame of each requirement
against its priority in Section 3. Section 4 pro-
poses an algorithm of choosing requirements to
be changed based on the degree of disputability.

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 3

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

We compare our approach with related work
in Section 5. Finally, we conclude the paper
in Section 6.

2. PRELIMINARIES

We use classical logic-based language to rep-
resent requirements in this paper. First order
logic may be considered as a promising tool
to represent requirements, since most tools
and notations for representing requirements
could be translated into formulas of first order
logic (Hunter & Nuseibeh, 1998). Moreover,
in a logic-based framework for representing
requirements, consistency checking is always
associated with certain scenarios with regard
to the requirements specification (Hunter &
Nuseibeh, 1998), or some specific domain
knowledge. That is, we must add further relevant
facts (e.g., domain knowledge) to model each
scenario. Then reasoning about requirements is
always based on these certain facts. It implies
that checking the consistency of requirements
considers only ground formulas. Furthermore,
if we assume a universally quantified formula
is just an abbreviation for the conjunction of
formulas that can be formed by systematically
instantiating the variables of the quantified
formula with the constants in the language,
then we may restrict the first order language
to the propositional case. It will render con-
sistency checking decidable. This gives some
computational advantages. However, restricting
first order logic to propositional logic in some
way is a useful and practical way of balancing
the computational advantages of propositional
logic against its limited expressive power in
requirements engineering as well as software
engineering (Gervasi & Zowghi, 2005; Jackson,
2000). For these reasons, we assume a classical
first order language without function symbols
and existential quantifiers. This classical first
order logic is the most convenient to illustrate
our approach, as will be shown in the rest of
the paper.

Let P be a set of predicate symbols, V be a
set of variable symbols, and C a set of constant

symbols. We call A ={p(q1, …, qn) |p∈P and
q1, …, qn ∈ V ∪C} the set of atoms. Let F be the
set of classical formulas formed from a set of
atoms A and logical connectives {∨,∧,→,¬}. In
particular, we call p(q1, …, qn) a ground atom if
and only if q1, …, qn are all constant symbols.
Let A0 be a set of ground atoms. Let F0 be the set
of classical formulas formed from a set of atoms
A0 and logical connectives {∨,∧,→,¬}. Let G
be the set of formulas formed from F, where if
α∈F, and X1,…, Xn are the free variables of α,
then ∀X1,…, ∀Xn α∈ G. Essentially, the set G
contains only universally quantified formulas
(in which the quantifiers are outermost) and
ground formulas.

A classical knowledge base K is a finite
set of formulas in F0. K is inconsistent if there
is a formula α∈F0 such that K  a and
K  a . We abbreviate a aÙ as ^ if there is
no confusion. Then an inconsistent knowledge
base K is denoted by K ^ . Moreover, an
inconsistent knowledge base K is called a
minimal inconsistent set if none of its proper
subset is inconsistent. If K K' Í and K ' is
a minimal inconsistent set, then we call K ' a
minimal inconsistent subset of K .

Let MI K() be the set of all the minimal
inconsistent subsets of K , i.e.,

MI
K K K

and K K K
K() =

⊆ ⊥

∀ ⊂ ⊥













' '

'' '

| ,

, ''

�

�
.	

The minimal inconsistent subsets can be
considered as the purest form of inconsistency
for conflict resolution where the syntactic
representation of the information is important,
since removing one formula from each minimal
inconsistent subset would be sufficient to re-
solve the inconsistency (Reiter, 1987). In
contrast, a free formula of a knowledge base
K is referred to as a formula of K that does
not belong to any minimal inconsistent subset
of K . In this paper, we use FREE K() to denote
the set of free formulas of K.

We can use formulas in G to formulate
requirements expressed in natural language.
For example, we can represent a requirement,

4 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

“if an authorized user requests to borrow a
book and the book is available, then the user
can borrow the book”, as

∀ ∀ ∧
∧ →
User Book auth User requ User Book

avai Book borr Us

(() (,)

() (eer Book,)).

However, to check inconsistency of re-
quirements collections, the universally quan-
tified formulas are always instantiated by the
constants in certain scenarios. For example,
given the following facts: “Alice is an autho-
rized user, and she applies to borrow the book
of software engineering; The book of software
engineering is available’’. Then we use the fol-
lowing ground formula as a substitute for the
universally quantified formula above:

auth Alice requ Alice Soft eng

avai Soft eng borr Ali

() (, _)

(_) (

∧
∧ → cce Soft eng, _)

Generally, if ground formulas a a a1 2, , ,¼ n

are the instantiations of the universally quanti-
fied formula a by using different facts in a
scenario, then we may use a a a1 2∧ ∧…∧ n

as a substitute for a in the scenario. Thus, we
concentrate on the instantiated requirements in
the rest of this paper. That is, we assume that
an individual set of requirements can be for-
mulated by a classical knowledge base. With
this, we restrict the first order logical represen-
tation of requirements to the propositional case.

In particular, we call a knowledge base K
a (partial) requirements specification if each
formula of K represents a requirement. If there
is no confusion we make no distinction between
a classical knowledge base and a requirements
specification in the rest of this paper.

On the other hand, it has been increas-
ingly recognized that the relative importance
of requirements can help stakeholders to make
some necessary trade-off decisions for resolv-
ing inconsistency. To address this, we need to
attach a weight or qualitative priority level to
each formula that represents an individual re-
quirement. For convenience and simplicity and
without losing generality, we assume that the

set of priorities used in this paper is (,]0 1 . Let
K be a classical knowledge base, then a pri-
oritization over K is a function fK from K to
(0,1] such that the bigger the priority value of
a formula, the more preferred is the formula.
By this, we can use K fK, to formulate pri-
oritized requirements specification. For simplic-
ity, we call K fK, a prioritized knowledge base.
Note that this kind of prioritized knowledge
base is exactly Type-I prioritized knowledge
base defined in Mu et al. (2011).

We use the following example to illustrate
the formulation of requirements in the form of
classical logic formulas.

Example 1

Consider the following requirements for updat-
ing an existing software system. A representative
of the sellers of the new system, provides the
following demands:

(a) 	 The system-to-be should be open, that is,
the system-to-be could be extended easily.

(b) 	 The system-to-be should be secure.
(c) 	 The user interface of the system-to-be

should be fashionable.

A representative of the users of the exist-
ing system, provides the following demands:

(d) 	 The system-to-be should be developed
based on the techniques used in the existing
system;

(e) 	 The user interface of the system-to-be
should maintain the style of the existing
system.

The domain expert in requirements engi-
neering provides the following constraint, which
is a consequence of (b) above:

(f) 	 To guarantee the security of the system-to-
be, openness (or ease of extension) should
not be considered.

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 5

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

With regard to the prioritization over these
requirements, suppose that both (b) and (f) are
assigned to 0.9. Both (a) and (c) are assigned
to 0.6, and (e) is assigned to 0.4. (d) is assigned
to 0.7.

If we

•	 Use the predicate Open sys �() to denote
that the system is open;

•	 Use the predicate Fash int f �(_) to denote
that the interface is fashionable;

•	 Use the predicate Exis sys() to denote
that the system will be developed based
on the techniques used in the existing
system;

•	 Use the predicate Secu sys() to denote
that the system is secure.

Then we have a prioritized knowledge base
K fK, for the requirements above, where

K Open sys Secu sys Fash f

Exis sys Fash

= ¬� �{ (),� (),� (int_),�

(),� (innt_),� () � ()�},f Secu sys Open sys→¬

and f KK : (,] 0 1 such that

f Open sys

f Fash f

f Fash

K

K

K

�(()) . ,� � �

�((int_)) . ,� �

�((int

=

=

¬

0 6

0 6

__)) . ,f = 0 4

	

f Exis sys f Secu sys

f Secu sys Open s
K K

K

�(()) . ,� �(())

� �(() � (

=

= → ¬

0 7

yys)) . .= 0 9
	

Clearly, the following inconsistencies can
be identified from these requirements:

� () � (),� � � �

(int_) � (int_).�

K Open sys Open sys

K Fash f Fash f




∧¬
∧¬ ��

	

And the set of minimal inconsistent subsets
of K is

MI K Fash f Fash f

Open sys Secu sys e

�() {{ (int_) � (int_)},

{ (),� (),

= ∧
ccu sys Open sys() � ()}}→¬

The set of free formulas of K is
FREE K Exis sys() { ()}= .

3. MEASURING THE DEGREE
OF DISPUTABILITY

“Inconsistency Implies Actions” is recognized
as a meta-rule for inconsistency handling (Gab-
bay & Hunter, 1993; Hunter & Nuseibeh, 1998)
in many application domains. However, as
mentioned earlier, identifying appropriate ac-
tions for resolving inc ¬ onsistency is still a
challenging issue in requirements engineering.
A feasible general approach to handling incon-
sistencies in requirements should focus on
identifying some potential requirements to be
changed rather than identifying potential actions
for changing them. That is, we need to know
which requirements are disputable and how
disputable these requirements are.

To characterize that some formulas are
more disputable than others in an inconsistent
knowledge base, we define the degree of dis-
putability of a formula. Intuitively, given an in-
consistent knowledge base, each of the formulas
involved in minimal inconsistent subsets of that
knowledge base may be considered disputable,
since removing this formula can eliminate at
least one minimal inconsistent subset. This
motivates us to present the following general
definition of the degree of disputability.

Definition 1

(The degree of disputability) Let K fK, be a
prioritized knowledge base. A degree of dispu-
tability function for K , denoted dK , is a func-
tion from K to [,)0 +∞ such that

(1C) () 0Kd a = 	

If	

a Î FREE K() .	

(2C) () 0Kd a > 	

6 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

If

� � ()� . .� �∃ ∈ ∈M MI K s t Ma .	

Note that this definition of the degree of
disputability function provides only intuitive
constraints on the degree of disputability. The
first condition states that each free formula of
a knowledge base has null degree of disputabil-
ity. This accords with the viewpoint that free
formulas have nothing to do with inconsisten-
cies conveyed by minimal inconsistent subsets.
The second condition ensures that any formula
involved in minimal inconsistent subsets is
disputable.

The simplest type of the degree of dispu-
tability function one can define is the drastic
MinInc inconsistency value defined in Hunter
and Konieczny (2008).

Definition 2

Let K fK, be a prioritized knowledge base. dK
1

is defined as:

∀ ∈ =

=
∈ ()

∃ ∈ () ∈





a a a

a
a

K d MIV K

FREE K

M MI K s t M

K D, () (,)

, ,

, . .

1

0

1 .	

Note that dK
1 allows us just to make a dis-

tinction between free formulas and disputable
formulas. It cannot make a distinction between
two formulas involved in minimal inconsistent
subsets of a knowledge base, as shown in
Hunter and Konieczny (2008). However, to
identify desirable proposals for inconsistency
resolving actions, we need to choose some
formulas to be changed from these disputable
formulas in some systematic way. Then it is
necessary to make a distinction between these
disputable formulas.

It is intuitive to use the blame of each
formula for the inconsistency in a knowledge
base to make a distinction between formulas in
the knowledge base. For example, Hunter et al
have argued that the blame of each formula in a
flat (or classical) knowledge base can be used

to stratify the knowledge base in Hunter and
Konieczny (2010). However, in many practical
software projects, developers need to balance
the blame of each requirement for the incon-
sistency against its value for the system-to-be
when making a necessary trade-off decision
on inconsistency resolving. Then an intuitive
measure for the degree of disputability of a re-
quirement should take into account the relative
importance of the requirement as well as the
blame of the requirement for the inconsistency
to be resolved. To address this, we refine the
notation of the degree of disputability loosely
defined by introducing the blame and the relative
importance of requirements explicitly.

Definition 3

(The blame-based degree of disputability) Let
K fK, be a prioritized knowledge base. Let
Blame K(,)a be the blame of a for inconsisten-
cies in K . A blame-based degree of disputabil-
ity for K , denoted dK

B , is a function from K
to [,)0 +∞ such that

() 0B
Kd a = 	 (1)

if

a Î FREE K() .	

 () 0B
Kd a > 	 (2)

if	

� � ()� . .� �∃ ∈ ∈M MI K s t Ma .	

, Ka b" Î 	 (3)

s.t.	

f fK K() (),α β= 	

if 	

Blame K Blame K(,) (,)α β³ 	

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 7

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

then 	

d dK
B

K
B() ()α β³ .	

∀ ∈α β, K (4)	

s.t. 	

Blame K Blame K, (,)α β() = ,	

if	

� () ()f fK Kα β³ 	

then 	

d dK
B

K
B() ()α β£ .	

Note that (1C) and (2C) are the two basic
constraints for the degree of disputability men-
tioned above. The condition of (3C) requires
that as the blame of a formula with a given
priority increases, its degree of disputability
cannot decrease. The last condition requires
that as the priority of a formula with a given
blame for inconsistency increases, its degree
of disputable should decrease.

There are a number of functions appropri-
ate for instantiating the blame-based degree of
disputability defined. Now we give the follow-
ing simple function as the blame-based degree
of disputability.

Definition 4

Let K fK, be a prioritized knowledge base. Let
Blame K(,)a be the blame of a for inconsisten-
cies in K . The function dK

B0 is defined as fol-
lows:

∀ ∈ =a a
a

a
K d

Blame K
fK

B

K

, ()
(,)
()

0 .	

Note that dK
B0 uses the ratio of the blame

of a formula to the priority level of the for-
mula to capture how disputable the formula is.
This ensures that dK

B0 satisfies the last two in-

tuitive constraints about the blame-based degree
of disputability.

Just for the simplicity of discussion, we
can provide the following normalized version
of dK

B0 as follows.

Definition 5

Let K fK, be a prioritized knowledge base. Let
Blame K(,)a be the blame of a for inconsisten-
cies in K . The function dK

B1 is defined as fol-
lows:

∀ ∈

=
()+

a a
a

a a

K d

Blame K
Blame K f

K
B

K

, ()

(,)
, ()

1

.	

Note that �d
d

dK
B K

B

K
B

1

0

0 1
a

a

a
() =

()
()+

and

�0 11≤ () <dK
B a for all a ÎK . In essence, the

degree of disputability function dK
B1 ()a focuses

on the ratio of the blame of a for inconsisten-
cies in K to the relative importance of a , such
that the most disputable formulas provide the
largest fraction of the total blame for the incon-
sistency but have the smallest fraction of the
total importance.

Evidently, both dK
B0 ()a and dK

B1 ()a satisfy
the conditions (3C) and (4C). To be measures
for the degree of disputability, both dK

B0 ()a and
dK
B1 ()a need to satisfy the basic constraints (1C)

and (2C). This also implies that the blame
measure Blame K(,)a we used should satisfy

Blame K,a() = 0 	

if	

a Î FREE K() .	

Blame K(,)a > 0 	

if	

� � ()� . .� �∃ ∈ ∈M MI K s t Ma .	

8 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

However, these are exactly two of the es-
sential properties of the measures for the blame
of formulas for the inconsistency in a knowledge
base (Mu et al., 2011). Therefore, given a blame
measure, we can get a corresponding measure
for the degree of disputability.

In this paper, we use two particular blame
measures, i.e., Blamemean and Blamemax , to
define the measures for the degree of disputabil-
ity, respectively. Previously, we have proposed
an approach to measuring the blame of each
formula for inconsistencies in a prioritized
knowledge base (Mu et al., 2011). Roughly
speaking, this approach to measuring the blame
of each formula for inconsistency is guided by
the principle of proportionality, which insists
on that the more important the formulas opposed
to the formula are, the more severe the deserved
blame of the formula should be. We make use
of two particular measures of the blame of each
formula for inconsistencies in a prioritized
knowledge base presented in Mu et al. (2011).

Informally, for a given formula a of K ,
its blame for the inconsistency in a minimal
inconsistent subset M is determined by the set
of formulas of M that would be disengaged
from the inconsistency if a was removed from
M . We call the set of such formulas the set of
opposed formulas to a w.r.t. M , and use
Opp M(,)a to denote it (Mu et al., 2011), i.e.,

Opp M

if M

M if M

M

,

, ,

, ,

, .

a

a a
a a

a

()

=
= { }

−{ } { } ⊂
∅ ∉










	

Note that for a singleton set M = { }a , the
opposed formula to a is a , since a is a self-
contradictory formula.

Further, let Sig K()be a particular measure
for the relative importance of K . Given a
minimal inconsistent subset M , let Inc M()be
the measure for the amount of inconsistency in
M . Then under guidance of the principle of
proportionality, the blame of a formula for the

inconsistency in M , is defined as (Mu et al,
2011)

∀ ∈ ()

= ×
∈∑

α α

α
β

β

K Blame M

Sig Opp M

Sig Opp M
Inc M

M

, ,

((,))

((,))
().	

Moreover, the blame of a formula for the
inconsistency in a knowledge base K is the
sum of the blame of the formula for the incon-
sistency in each minimal inconsistent subset
of the knowledge base (Mu et al., 2011), i.e.,

∀ ∈ ()
=

∈
∑

a a

a

K Blame K

Blame M
M MI K

, ,

(,)
()

.	

Based on different measures for the relative
importance of a knowledge base and measures
for the inconsistency in a minimal inconsistent
subset, we can get different measures for the
blame of each formula for the inconsistency.
Previously, we have also proposed a set of
properties to develop and to characterize such
measures in Mu et al. (2011). In particular, if
we use Sig K fmean

K
K() ()=

∈
∑
g

g to measure the

relative importance of K in Mu et al. (2011).
Then we define the blame of each formula for
the inconsistency Blamemean as follows:

Definition 6

(The Blame of each formula for the Inconsis-
tency Blamemean) (Mu et al., 2011) Let K fK,
be a prioritized knowledge base. The blame of
each formula belonging to K for the inconsis-
tency of K , denoted Blamemean , is a function
such that

∀ ∈ ()
=

∈
∑

a a

a

K Blame K

Blame K

mean

M MI K
mean

, ,

(,)
()

,	

where

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 9

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Blame M

Sig Opp M

Sig Opp M

Sig

mean

mean

M mean

m

,

((,))

((,))

α

α
β

β

()

=

×

∈∑
eean M

M

()
2

	

for each minimal inconsistent subset M of K .
Roughly speaking, the blame of a for the

inconsistency of K is the accumulation of the
blames of a for the inconsistency of each mini-
mal inconsistent subset of K . Within a minimal
inconsistent subset M , the amount of inconsis-

tency in M is captured by
Sig M

M
mean()

2
, more-

over, the blame of a for the inconsistency of
M is proportionate to Sig Opp Mmean((,))a .
We have shown in Mu et al. (2011) that
Blamemean satisfies the set of intuitive proper-
ties an intuitive measure for the blame should
have. In particular, Blamemean satisfies the
properties of Innocence and Necessity, i.e.,

(B1) Innocence:

� ()∀ ∈M MI K ,	

∀ ∉a M ,	

Blame Mmean(,)a = 0.	

(B2) Necessity:

� ()∀ ∈M MI K ,	

∀ ∈a M ,	

Blame Mmean ,a() > 0.	

We use the following example to illustrate
this measure for the blame of each formula for
inconsistency.

Example 2

Consider K fK1 1
, ,

where K a a a c b c d1 = ¬ ¬ ∨ ¬{ , , , , , } and

f a

f a

f a c

K

K

K

1

1

1

0 6

0 4

0 8

() =
¬() =
¬ ∨ =

. ,

. ,

() . ,

	

f b

f c

f d

K

K

K

1

1

1

0 5

0 1

0 9

() =
¬() =
=

. ,

. ,

() . .

	

T h e n MI K M M() { , }1 1 2= , w h e r e
M a a1 = ¬�{ ,� } , M a c a c2 = ¬ ∨ ¬{ , , }. So, the
blame of each formula for inconsistency in M1
is given as follows:

Blame M amean(,) . ,1 0 1= 	

 BlameBlame M amean(,) . ,1 0 15¬ = 	

 BlameBlame M cmean(,) ,1 0¬ = 	

 BlameBlame M a cmean(,) ,1 0¬ ∨ = 	

Blame M bmean(,) ,1 0= 	

Blame M dmean(,) .1 0= 	

The blame of each formula for inconsis-
tency in M2 is given as follows:

Blame M amean(,) . ,2 0 05= 	

 BlameBlame M amean(,) ,2 0¬ = 	

 BlameBlame M cmean(,) . ,2 0 08¬ = 	

 BlameBlame M a cmean(,) . ,2 0 04¬ ∨ = 	

Blame M bmean(,) ,2 0= 	

Blame M dmean(,) .2 0= 	

The blame of each formula for inconsis-
tency in K1 is given as

Blame K amean(,) . ,1 0 15= 	

10 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

 BlameBlame K amean(,) . ,1 0 15¬ = 	

 BlameBlame K cmean(,) . ,1 0 08¬ = 	

 BlameBlame K a cmean(,) . ,1 0 04¬ ∨ = 	

Blame K bmean(,) ,1 0= 	

Blame K dmean(,) .1 0= 	

This example also shows that the blame
of a formula for inconsistency is insufficient
for characterizing how disputable a formula is.
To illustrate this, consider the example above,

BlameBlame K a Blame K amean mean1 1 0 15, (,) . ,() = ¬ =

but it is intuitive to consider that a is more disput-
able in this case since f a f aK K1 1

¬() < (). It also
implies that the degree of disputability of a for-
mula should be determined by the blame of that
formula together with the priority of that for-
mula.

By using the blame measure Blamemean ,
we define the degree of disputability function
dK
Bmean as follows.

Definition 7

Let K fK, be a prioritized knowledge base. The
function dK

Bmean is defined as follows:

∀ ∈

=
()+

a a
a

a a

K d

Blame K

Blame K f

K
B

mean

mean K

mean, ()

(,)

, ().	

Note that the properties of Innocence and
Necessity of Blamemean ensure that dK

Bmean satis-
fies (C1) and (C2), i.e., dK

Bmean is a degree of
disputability function. The following proposi-
tion shows that dK

Bmean is an anticipated measure

for the degree of disputability of each formula
for a prioritized knowledge base.

Proposition 1

dK
Bmean is a blame-based degree of disputability

function, i.e., dK
Bmean satisfies (1C)-(4C).

Example 3

Consider K fK1 1
, again. Then

�d a �K
Bmean
1

1
5

() ,= 	

d aK
Bmean
1

3
11

() ,¬ = 	

d cK
Bmean
1

7
16

¬() = , 	

d a cK
Bmean
1

7
151

() ,¬ ∨ = 	

d bK
Bmean
1

0() ,= 	

d dK
Bmean
1

0() .= 	

Besides the blame measure Blamemean ,
we may also use the other blame measures to
define the blame-based degree of disputability
function.

Note that Sigmean considers the sum of the
priority values of all the formulas in a knowledge
base as the relative importance or the priority
of the whole knowledge base. It essentially uses
the average of the priority levels of all the
formulas to evaluate the relative importance of
the whole knowledge base. However, in some
cases, the highest priority level of the formulas
involved in inconsistency plays a dominant role
in evaluating the relative importance of incon-
sistency. To address this, we may use the high-

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 11

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

est priority level of formulas in a knowledge
base to evaluate the relative importance of the
knowledge base.

If we use

Sig K

K f KK

max()

max{ () | }= ⋅ ∈a a
	

to measure the relative importance of K , then
the inconsistency in a minimal inconsistent
s u b s e t M c a n b e c a p t u r e d b y

Inc M
Sig M

Mmax
max()
()

| |
=

2
in Mu et al. (2011).

We can define another blame measure along
this line.

Definition 8

(The Blame of each formula for the Inconsis-
tency Blamemax (Mu et al., 2011)) Let K fK, be
a prioritized knowledge base. The blame of
each formula belonging to K for the inconsis-
tency of K , denoted Blamemax, is a function
such that

∀ ∈ ()
=

∈
∑

a a

a

K Blame K

Blame K
M MI K

, ,

(,)

max

()
max

,	

where

Blame M

Sig Opp M

Sig Opp M

Sig
M

max

max

max

max

,

((,))

((,))

(

α

α
β

β

()

=

×

∈∑
MM

M

)
2

	

for each minimal inconsistent subset M of
K .

Note that the measure Blamemax also ac-
cords with the principle of proportionality. That
is, within a minimal inconsistent subset M ,
the blame of a formula for the inconsistency in
M is proportionate to the relative importance
of the opposed formulas to that formula. More-

over, the blame of a formula for the inconsisten-
cies in a knowledge base is the sum of the blame
of the formula for the inconsistency in each
minimal inconsistent subset of the knowledge
base.

We use the following example to illustrate
the measure Blamemax .

Example 4

Consider K fK2 2
, ,

where K a a a c b c d2 = ¬ ¬ ∨ ¬{ , , , , , } and

f a

f a

f a c

K

K

K

2

2

2

0 6

0 4

0 9

() =
¬() =
¬ ∨ =

. ,

. ,

() . ,

	

f b

f c

f d
K

K

2 0 7

0 3

0 7
2

2

() =
¬() =
=

. ,

. ,

() . .

	

T h e n MI K M M() { , }1 1 2= , w h e r e
M a a1 = ¬�{ ,� } , M a c a c2 = ¬ ∨ ¬{ , , } . So, the
blame of each formula for inconsistency in M1
is given as follows:

Blame M amax(,) . ,1 0 12= 	

BlameBlame M amax(,) . ,1 0 18¬ = 	

BlameBlame M cmax(,) ,1 0¬ = 	

BlameBlame M a cmax(,) ,1 0¬ ∨ = 	

Blame M bmax(,) ,1 0= 	

Blame M dmax(,) .1 0= 	

The blame of each formula for inconsis-
tency in M2 is given as follows:

Blame M amax(,) . ,2 0 11= 	

BlameBlame M amax(,) ,2 0¬ = 	

12 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

 BlameBlame M cmax(,) . ,2 0 11¬ = 	
 BlameBlame M a cmax(,) . ,2 0 075¬ ∨ = 	

Blame M bmax(,) ,2 0= 	

Blame M dmax(,) .2 0= 	

The blame of each formula for inconsis-
tency in K1 is given as

Blame K amax(,) . ,2 0 23= 	

 BlameBlame K amax(,) . ,2 0 18¬ = 	

 BlameBlame K cmax(,) . ,2 0 11¬ = 	

 BlameBlame K a cmax(,) . ,2 0 075¬ ∨ = 	

Blame K bmax(,) ,2 0= 	

Blame K dmax(,) .2 0= 	

Evidently, the measure Blamemax also
satisfies the properties of Innocence and Neces-
sity. By using the blame measure Blamemax ,
we define the degree of disputability function
dK
Bmax as follows:

Definition 9

Let K fK, be a prioritized knowledge base. The
function dK

Bmax is defined as follows:

∀ ∈

=
()+

a a
a

a a

K d

Blame K

Blame K f

K
B

K

, ()

(,)

, ()

max

max

max .	

Evidently, dK
Bmax is also an anticipated

measure for the degree of disputability of each
formula for a prioritized knowledge base.

Proposition 2

dK
Bmax is a blame-based degree of disputability

function, i.e., dK
Bmax satisfies (C1)-(C4).

We use the following example to illustrate
the degree of disputability function dK

Bmax.

Example 5

Consider K fK2 2
, again. Then

�d a �K
Bmax
2

23
83

() ,= 	

� () ,�maxd aK
B

2

9
29

¬ = 	

� ,maxd cK
B

2

11
41

¬() = 	

� (�) ,maxd a cK
B

2

1
13

¬ ∨ = 	

�d b �K
Bmax
2

0() ,= 	

�d dK
Bmax
2

0() .= 	

To compare the formulas of a given priori-
tized knowledge base in terms of their degrees of
disputability, we define a total ordering relation
over the prioritized knowledge base termed as
more disputable than as follows.

Definition 10

(The relation of more disputable than, ³d) Let
K fK, be a prioritized knowledge base and dK

B

the blame-based degree of disputability for K .
A binary relation on K , denoted ³d , is defined
as follows:

α β³d i f and only if d dK
B

K
B() ()α β³ .	

Further, α β>d if α β³d and β αd .
α βd if α β³d and β α³d .We say that a
is strictly more disputable than b if α β>d .

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 13

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Example 6

Consider K fK1 1
, again. Suppose that we use

dK
Bmean to measure the degree of disputability.

Then
¬ > ¬ > > ¬ ∨ >c a a a c b dd d d d d  	

According to this ordering relation, a is
more disputable than Øa , although they have
the same blame for inconsistencies in K1 . This
comparison is intuitive, since the priority of a
is higher than that of a .

4. GENERATING APPROPRIATE
PROPOSALS FOR HANDLING
INCONSISTENCY

As mentioned above, a useful general approach
to generating proposals for handling incon-
sistency should focus on pointing out which
requirements to be changed rather than how to
change these requirements. In this sense, gen-
erating proposals for handling inconsistency is
a process of identifying potential requirements
to be changed.

Without loss of generality, we use dK
Bmean

as the degree of disputability function in the
following examples if there is no confusion.

Definition 11

Let K fK, be an inconsistent prioritized knowl-
edge base. A proposal for handling the incon-
sistency in K , denoted p()K , is a subset of
K such that MI K K− ()() = ∅p .

Note that � ()p K is a subset of K such that
all the minimal inconsistent subsets of K would
be eliminated if formulas of p()K were removed
from K . For example, both { }a and { , }Ø Øa c
are proposals for handling inconsistency in K1 .

How to evaluate the appropriateness of a
proposal is also a difficult issue in requirements
engineering. Intuitively, the more disputable

requirements should be given a priority to be
included in a proposal. We present an algorithm
for generating proposals which provides support
for this intuition.

Definition 12

Let K fK, be an inconsistent prioritized knowl-
edge base. ∀ ∈p p1 2, Π , p1 is more appropriate
than p2 for handling inconsistency in K if
∀ ∈M MI K� () , ∃ ∈ ∩α πM 1 such that α β³d

for all β π∈ ∩M 2 .

For example, for K fK1 1
, , the proposal

{ , }Ø Øa c i s more app rop r i a t e t han
{ , }¬ ¬ ∨a a c .

Let MAX K() be the set of formulas of K
with the highest degree of disputability, i.e.,

MAX K K

and K d dK
B

K
B

() = ∈

∀ ∈ ≤

{ | ,

, () ()}

α α

β β α
.	

For example, MAX K a1() = ¬{ } and
MAX b d b d({ , }) { , }= . Let Q be a set of

subsets of K , then we abbreviate ∪ ∈K QK' '
as Q


. Then an algorithm for generating
proposals for handling inconsistency based on
the degree of disputability is given as shown
in Box 1.

Note that condition Q = ∅ ensures that
each proposal p generated by the algorithm
satisfies MI K K− ()() = ∅p . In contrast, the
part from Line 6 to Line 10 of the algorithm
ensures that p is one of the most appropriate
proposals for handling inconsistency in K .

Example 7

Cons ider K fK1 1
, aga in . Evident ly,

Π1 = ¬{{ }},c Π2 = ¬ ¬{{ , }}c a . Then the
proposal for inconsistency handling generated
is p() { , }K a c1 = ¬ ¬ .

We use the following example to illustrate
the algorithm.

14 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Example 8 (Example 1 Continued)

Then

d Fash f d

Fash f d O

K
B

K
B

K
B

mean mean

mean

¬() = >

()() = ¬

(int_)

int_

3
11

ppen sys()() = >
1
7

	

d Secu sys

d Secu sys Open sys

d E

K
B

K
B

K
B

mean

mean

mean

()

() ()

()
= →()
= xxis sys() .() = 0

	

So, based on the algorithm,

Π1 = ¬ (){ }{ int_ }Fash f ,	

Π2 = ¬ (){ }{ int_ , () }Fash f Open sys .	

Then

p() int_ , ()K Fash f Open sys= ¬ (){ } 	

is the generated proposal, i.e., the requirements
(a) and (e) are recommended to be changed
for resolving inconsistency. This proposal is
intuitive.

5. RELATED WORK

Handling inconsistent requirements is a per-
vasive issue in requirements engineering.

Box 1.

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 15

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Most of logic-based techniques for managing
inconsistent requirements are concerned with
reasoning about requirements in the presence
of inconsistency. There are relatively few logic-
based approaches to identifying appropriate
proposals for handling inconsistency actions.
In this paper we proposed an approach to
identifying requirements to be changed from
the set of requirements involved in inconsis-
tencies by using the measure of the degree of
disputability for requirements. In the following,
we compare our approach with some of closely
related proposals.

Our previous paper (Mu et al., 2008, 2009;
Mu & Jin, 2007) presented two approaches
to identifying acceptable common propos-
als for handling inconsistency in distributed
requirements. However, this paper focuses on
generating proposals for handling inconsistent
requirements with weighted or numerical priori-
ties within one perspective. The blame-based
degree of disputability plays an important role
in identifying potential requirements to be
changed. In contrast, our previous papers (Mu et
al., 2008 2009; Mu & Jin, 2007) are concentrated
on multi-perspective requirements with quali-
tative priority levels (such as High and Low).
These approaches emphasized the importance
of group decision making mechanisms such
as negotiation among multiple perspectives
(Mu et al., 2008, 2009) and combinatorial vote
(Mu & Jin, 2007) in identifying requirements
to be changed.

Note that the blames of formulas for
inconsistency are crucial for measuring how
a formula disputable is. We make use of a
particular measure for the blames of formulas
for inconsistency defined in Mu et al. (2011)
in characterizing the degree of disputability
of formulas involved in inconsistency. Rough
speaking, the blame of a formula measures
how bad that formula is, in contrast, the pri-
ority of a formula states describes how good
that formula is. In this sense, the blame-based
degree of disputability of a formula balances the
advantages of remaining that formula against
the disadvantages.

Note that we translate a set of requirements
with priority levels into a prioritized knowledge
base in this paper. It is natural to translate re-
quirements into a classical knowledge base
when there is no prioritization over require-
ments. However, a classical knowledge base
may be considered as a special kind of prioritized
knowledge base if we consider each formula
in the knowledge base has the highest priority
value 1. Then the approach presented in this
paper can also be applied to classical knowledge
bases. But in such cases, fK a() = 1 for all
a ÎK , and then

d
Blame K

Blame K

K
B0

1
a

a

a

() =

=

(,)

(,)
	

and

d
Blame K
Blame KK

B1

1
a

a
a

() =
()+
(,)
,

.	

This means such disputability functions
are determined by only the blame of a for the
inconsistency in K . That is, within the context
of classical knowledge bases, the degree of
disputability essentially accords with the idea
of stratifying knowledge bases by the blame of
formulas presented in Hunter and Konieczny
(2010).

6. CONCLUSION

We have presented an approach to generating
proposals for handling inconsistent require-
ments specification. This paper presented the
following contributions to managing inconsis-
tency in requirements engineering:

(a) 	 We argued that how disputable a require-
ment is depends on the blame of that
requirement for inconsistency as well as
the priority of that requirement.

(b) 	 We defined two blame-based degree of
disputability functions for formulas of a

16 International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

prioritized knowledge base by balancing
the blames of formulas for inconsistency
against the relative priorities of formulas.
Also, we defined a total ordering relation
termed more disputable than over a priori-
tized knowledge base.

(c) 	 We presented an algorithm for generating
appropriate proposals for handling incon-
sistent requirements by using the relation
of more disputable than over inconsistent
requirements specification.

Note that we assume that the priority level
of each requirement is a real number in (0,1].
However, in many software projects, the priority
level of requirements is a qualitative value such
as High or Low. How to handle inconsistency in
such prioritized requirements will be the main
direction for our future work.

ACKNOWLEDGMENTS

This work was partly supported by the National
Natural Science Foundation of China under
Grant No. 61170300, the National Basic Re-
search 973 program of China under Grant No.
2009CB320701, the Key Project of National
Natural Science Foundation of China under
Grant No. 90818026, and the NSFC and the
British Royal Society China-UK Joint Project.
This paper is a revised and extended version
of the paper “An Approach to Generating
Proposals for Handling Inconsistent Software
Requirements” presented at KSEM2011.

REFERENCES

Easterbrook, S., & Chechik, M. (2001a). 2nd
international workshop on living with inconsis-
tency. Software Engineering Notes, 26(6), 76–78.
doi:10.1145/505532.505552

Easterbrook, S., & Chechik, M. (2001b). A frame-
work for multi-valued reasoning over inconsistent
viewpoints. In Proceedings of the International
Conference on Software Engineering, Toronto,
ON, Canada (pp. 411-420). Washington, DC: IEEE
Computer Society.

Finkelstein, A., Gabbay, D., Hunter, A., Kramer,
J., & Nuseibeh, B. (1994). Inconsistency handling
in multiperspective specifications. IEEE Transac-
tions on Software Engineering, 20(8), 569–578.
doi:10.1109/32.310667

Gabbay, D., & Hunter, A. (1993). Making incon-
sistency respectable 2: Meta-level handling of in-
consistent data. In M. Clarke, R. Kruse, & S. Moral
(Eds.), Proceedings of the European Conference on
Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty, Granada, Spain (LNCS 474,
pp. 129-136).

Gervasi, V., & Zowghi, D. (2005). Reasoning about in-
consistencies in natural language requirements. ACM
Transactions on Software Engineering and Methodol-
ogy, 14(3), 277–330. doi:10.1145/1072997.1072999

Hunter, A., & Konieczny, S. (2008). Measuring
inconsistency through minimal inconsistent sets. In
Proceedings of the Eleventh International Confer-
ence on Principles of Knowledge Representation
and Reasoning, Sydney, Australia (pp. 358-366).
Palo Alto, CA: AAAI Press.

Hunter, A., & Konieczny, S. (2010). On the measure
of conflicts: Shapley inconsistency values. Artificial
Intelligence, 174(14), 1007–1026. doi:10.1016/j.
artint.2010.06.001

Hunter, A., & Nuseibeh, B. (1998). Managing incon-
sistent specification. ACM Transactions on Software
Engineering and Methodology, 7(4), 335–367.
doi:10.1145/292182.292187

Jackson, D. (2000). Automating first-order relational
logic. ACM SIGSOFT Software Engineering Notes,
25(6), 130–139. doi:10.1145/357474.355063

Martinez, A. B., Arias, J. P., Vilas, A. F., Duque, J.
G., Norse, M. L., Redondo, R. P., & Fernandez, Y. B.
(2008). On the interplay between inconsistency and
incompleteness in multi-perspective requirements
specifications. Information and Software Technolo-
gy, 50(4), 296–321. doi:10.1016/j.infsof.2007.02.001

Mu, K., & Jin, Z. (2007). Identifying acceptable
common proposals for handling inconsistent soft-
ware requirements. In J. Derrick & J. Vain (Eds.),
Proceedings of the 27th IFIP WG 6.1 International
Conference on Formal Techniques for Networked
and Distributed Systems, Tallinn, Estonia (LNCS
4574, pp. 296-308).

International Journal of Knowledge and Systems Science, 3(1), 1-17, January-March 2012 17

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Mu, K., Jin, Z., Lu, R., & Liu, W. (2005). Measuring
inconsistency in requirements specifications. In L.
Godo (Ed.), Proceedings of the 8th European Con-
ference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, Barcelona, Spain
(LNCS 3571, pp. 440-451).

Mu, K., Jin, Z., & Zowghi, D. (2008). A priority-based
negotiations approach for handling inconsistency in
multi-perspective software requirements. Journal of
Systems Science and Complexity, 21(4), 574–596.
doi:10.1007/s11424-008-9136-4

Mu, K., Liu, W., & Jin, Z. (2011). Measuring the
blame of each formula for inconsistent prioritized
knowledge bases. Journal of Logic and Computation.

Mu, K., Liu, W., Jin, Z., Yue, A., Lu, R., & Bell,
D. (2009). Handling inconsistency in distributed
software requirements specifications based on pri-
oritized merging. Fundamenta Informaticae, 91(3-
4), 631–670.

Nuseibeh, B., Easterbrook, S., & Russo, A. (2001).
Making inconsistency respectable in software de-
velopment. Journal of Systems and Software, 58(2),
171–180. doi:10.1016/S0164-1212(01)00036-X

Reiter, R. (1987). A theory of diagnosis from first
principles. Artificial Intelligence, 32(1), 57–95.
doi:10.1016/0004-3702(87)90062-2

Zowghi, D., & Gervasi, V. (2003). On the interplay
between consistency, completeness, and correctness
in requirements evolution. Information and Software
Technology, 45(14), 993–1009. doi:10.1016/S0950-
5849(03)00100-9

