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Abstract The number of clinical trials reports is increasing rapidly due to a large
number of clinical trials being conducted, it therefore raises an urgent need to utilize
the clinical knowledge contained in the clinical trials reports. In this paper, we focus on
the qualitative knowledge instead of quantitative knowledge. More precisely, we aim
to model and reason with the qualitative comparison (QC for short) relations which
consider qualitatively how strongly one drug/therapy is preferred to another in a clinical
point of view. To this end, first, we formalize the QC relations, introduce the notions
of QC language, QC base, and QC profile; second, we propose a set of induction rules
for the QC relations, and provide grading interpretations for the QC bases and show
how to determine whether a QC base is consistent. Furthermore, when a QC base
is inconsistent, we analyze how to measure inconsistencies among QC bases, and we
propose different approaches to merging multiple QC bases. Finally, a case study on
lowering intraocular pressure is conducted to illustrate our approaches.

Keywords Qualitative Comparison Relation; Clinical Knowledge; Biomedical
Knowledge; Grading Interpretation; Inconsistency Measure; Pair-wise merging; Pri-
oritized merging; Induction Rule

1 Introduction
There is a huge and rapidly expanding amount of information available for scientists in
various online resources. However, this wealth of information has created challenges
for scientists who wish to analyze these pieces of knowledge. One of the key prob-
lems that exist is that the knowledge may be uncertain, incomplete and inconsistent.
Scientists therefore need tools that are tolerant of uncertainty, incompleteness and in-
consistency in order to query and merge scientific knowledge.
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To illustrate, consider the area of clinical trials. A clinical trial is a study that com-
pares the effect of one medication (or other treatment) against another [13]. A huge
number of clinical trials have been carried out in the last few decades and new trials are
being designed and implemented from time to time. Trial results are a summary of the
underlying statistical analysis, usually there is a qualitative statement comparing two
drugs of interest. For example, in [1, 5, 6, 7, 12, 14], comparisons of different drugs on
the efficacy of lowering intraocular pressure (called IOP reduction) are experimented.
The comparisons of drugs on IOP reduction are often expressed in the form of e.g.
travoprost was superior to latanoprost [6] or travoprost appears to be equivalent to
bimatoprost and latanoprost [14] or IOP reduction obtained with travoprost was sig-
nificantly higher than that obtained with latanoprost [1] (note travoprost, bimatoprost,
latanopros, and timolol are all names of drugs for IOP reduction).

Such comparison sentences can be briefly summarized as the following three rela-
tions p > q, p ' q, and p À q, respectively. By looking through scientific papers about
drugs on IOP reductions and papers on drugs for breast cancer treatments, it shows
that such three relations are sufficient and necessary to express qualitative comparison
knowledge occurring in clinical trials papers. Hence important questions arising from
this observation are (a) how to model and reason with these three types of knowledge;
(b) what properties such a model shall posses; (c) how to merge different sets of bases
containing such knowledge; and (d) how to measure consistencies and conflict among
multiple sets of such knowledge.

Qualitative reasoning has studied in many papers, from the study on signs of quan-
tities [16, 10] to the study on order of magnitude reasoning [24, 22, 8, 11, 2, 25] where
basically it presents three relations, i.e., “close to” (Vo), “comparable to” (Co), “neg-
ligible w.r.t” (Ne). It seems that our three QC relations are similar to the order of
magnitude relations (i.e., Vo vs. ', Co vs. >, and Ne vs. À), however, unfortunately
the clinical context we study prevents us from using the results of order of magnitude
reasoning for drug comparisons. First, the relations introduced in order of magnitude
reasoning can not catch > and À exactly, e.g., in our context, obviously p > q and
q > p are totally different and need to be distinguished, but in order of magnitude
reasoning, the Co relation is symmetric (and the “distant from” relation introduced in
[8] is also symmetic). What is worse is that the semantic meanings of Co and Ne do
not fit for > and À, respectively in our context. In fact, in most cases, the effects of
different drugs tested in clinical trials are comparable. That is to say, > and À are to
some extent sub-relations of Co while the Ne relation is just of no use in our context.
Second, in order of magnitude reasoning rules, addition and concatenation are used on
objects like p V o q implies t.p V o t.q while in our context, no operation is allowed
on objects as each object stands for the effect of a drug, and it is very odd to add or
concatenate the effects of two different drugs. According to the above reasons, we will
develop a new framework suitable for the clinical trial context. To our knowledge few,
if any, papers are on this issue.

We study this topic following the way of studying knowledge bases. Thus, we
first propose the QC language as a foundation (just like the propositional language
serves as the foundation of knowledge bases). Based on the QC language, we formally
define the notions of QC base and QC profile (similar to knowledge bases and knowl-
edge profiles). Moreover, we provide some induction rules for the QC language and
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give grading interpretations for the QC relations which are compatible with the induc-
tion rules. Based on the grading interpretations, we are also able to define whether a
QC base is consistent. Furthermore, we investigate how to measure the inconsistency
among multiple QC bases and propose different kinds of merging methods, i.e., the
prioritized merging, pair-wise merging and grading interpretation based merging, for
different purposes.

The rest of the paper is organized as follows. In Section 2, we define the QC
language, notions of QC base and QC profile. In Section 3, we propose some induc-
tion rules of QC relations and grading interpretations of QC bases. Next, we propose
measures of inconsistency of the QC bases in Section 4. Following this, we propose
different merging methods in Section 5. A case study of lowering intraocular pressure
is presented in Section 6. Finally, in Section 7, we conclude the paper.

2 Notations and Definitions
To formalize the comparison sentences mentioned in Introduction, in this section, we
define the qualitative comparison language LP over a finite set P of symbols (we don’t
call them atoms because the symbols themselves are not in the language). We will
use lower case letters p, q, r, etc to denote the symbols (maybe with subscripts). Three
standard connectives, i.e., À, >, and ', are used to connect two symbols and thus
form sentences in LP .

Semantically and intuitively, p À q means that p is considered significantly more
preferred (e.g. more effective, reliable, probable, etc) than q, e.g., IOP reduction ob-
tained with travoprost was significantly higher than that obtained with latanoprost [1];
p > q means that p is more preferred (but not significantly) than q, e.g., travoprost is
more effective than timolol in lowering IOP in patients with open-angle glaucoma or
ocular hypertension [14]; and p ' q means p is more or less equivalently preferred
to q, e.g., travoprost appears to be equivalent to bimatoprost and latanoprost [14]. It
should be noted that p À q does not simply lead to p > q since p > q implies that
preference of p to q is not significant.

By abuse of language, we call the relations p À q, p > q, and p ' q propositions
in language LP . So in the following when we mention propositions, we in fact mean
these three kinds of sentences if there is no confusion.

A qualitative comparison base (QCB for short) Q is a multi-set of propositions.
A qualitative comparison profile (QCP for short) E is a multi-set of QCBs such that
E = {Q1, Q2, . . . , Qn}1. For convenience, we denote

⋃
E the union of the QCBs in

E, i.e.,
⋃

E =
⋃|E|

i=1 Qi where |X| means the cardinality of the set X .
⋃

E can also
be seen as a QCB itself.

3 Basic Properties
In this section, we discuss some basic properties of the QC relations. First, we define
the induction rules on the QC relations. Second, we propose grading interpretations for

1We use multi-set instead of set as there might be repeated propositions or QCBs.
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QCBs and QCPs. The induction rules and the grading interpretations together form a
foundation for inconsistency analysis and merging of QCBs.

3.1 Induction Rules
In this subsection, we establish some induction rules for the QC relations.

Let ./ represent one of the three connectives À, >, and ', and p, q, r be any
symbols in P . Then, we have the following induction rules:
reflection rule: p ' p
symmetry rule: p ' q implies q ' p
totality rule: p ' q or q > p or p > q or p À q or q À p.
transition rules:

1. p ./1 q and q ./2 r implies p À r if at least one of ./1 and ./2 is À.

2. p ./ q and q ' r implies p ./ r.

3. p ' q and q ./ r implies p ./ r.

4. p > q and q > r implies p À r.

The reflection and symmetry rules seem intuitive and uncontroversial. The totality
rule actually shows the range we consider, i.e., we only consider the three relations and
any two symbols should satisfy at least one relation. The transition rules, however, al-
though reasonable, deserve some explanation. The most arguable transition rule might
be the fourth one (the last one) which says p > q and q > r implies p À r. This rule is
an empirical rule. From our investigation, this rule is particularly adequate in the clini-
cal context. When comparing the effects of two drugs, we find that the effects are more
or less comparable2, e.g., drug A may reduce the IOP 6.8mm Hg, drug B may reduce
4.5mm Hg, etc. In this sense, we consider it rational to combine two discrepancies into
a big discrepancy, namely the fourth transition rule. The other three transition rules are
consistent with the idea of order of magnitude reasoning and not surprising. Neverthe-
less, the use of reflection rule and symmetric rule do not propagate uncertainty whilst
the use of transition rules may increase the uncertainty. Hence if a proposition p ./ q is
induced by applying the transition rules, then this proposition is not as reliable as the
original propositions.

Proposition 1 Let p, q, r be symbols, then p À r and q > r implies p À q or p > q.

Proof: Please see appendix for all the proofs.

This proposition shows that the converse of the fourth transition rule does not hold,
i.e., À is not simply equivalent to two >s.

Definition 1 A QCB Q is called simeq closed iff for any proposition p ' q ∈ Q, q ' p
is also in Q.

2This may because when clinicians design their clinical trials, the tested drugs they choose are already
considered effective. The aim of trials is to obtain to what extent the drugs are effective and to compare such
drugs.
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We need QCBs to be simeq closed in order to facilitate the induction process. More-
over, as mentioned above, putting q ' p into Q does not bring more uncertainty (and
of course does not bring more information).

A QCB Q can be easily extended to be a simeq closed QCB Qsc by the following
procedure.

1. Set Qsc = Q.

2. For each proposition p ' q ∈ Q, let Qsc = Qsc ∪ {q ' p}.

Obviously, Q and its corresponding simeq closed QCB Qsc provide the same in-
formation.

The necessity of extending a QCB to be simeq closed is illustrated by the following
example.

Example 1 Let Q = {p À q, r ' q} be a QCB, then its corresponding simeq closed
QCB is Qsc = {p À q, r ' q, q ' r}. We cannot use the transition rules directly
on Q since there are not enough propositions to allow the inductions rules to work.
However, on Qsc we can induce p À r by the transition induction rules.

We define the simeq closed QCPs below.

Definition 2 A QCP E is called simeq closed iff ∀Q ∈ E, Q is simeq closed and for
each symbol p appeared in E, p ' p is in E.

A QCP E can be easily extended to be a simeq closed QCP Esc by the following
procedure.

1. Set Esc = ∅.

2. For each QCB Q ∈ E, let Esc = Esc ∪ {Qsc} where Qsc is the corresponding
simeq closed QCB of Q.

3. For all symbols p1, . . . , pn appeared in E, we construct a QCB Qsim = {p1 '
p1, . . . , pn ' pn} and let Esc = Esc ∪ {Qsim}.

QCP E and its corresponding simeq closed set Esc is equivalently informative.
The reason why we should include the propositions like p ' p into Esc is briefly
demonstrated by the following example.

Example 2 Let E = {{p > q}, {q > p}}, then Esc = {{p > q}, {q > p}, {p '
p, q ' q}}. By the transition induction rules, we can induce p À p and q À q in both
E and Esc which are apparently counterintuitive. Now let us examine them in detail.
In QCP E, since p À p and q À q are not contradicted with either p > q or q > p, we
have no reason to reject such two induced propositions. However, in Esc, the existence
of p ' p and q ' q can be used to exclude the induced propositions p À p and q À q
(because the transition induction rules are fault prone, such two propositions are taken
to be less reliable than the original ones). This example will be discussed further after
we have introduced the priority level of propositions in Section 4.

In the following, all the mentioned QCBs and QCPs are already extended to the
simeq closed version. Moveover, by abuse of notations, we still use Q (not Qsc) to
denote the simeq closed QCB and E to denote the simeq closed QCP.
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3.2 Grading Interpretations
In this subsection, we introduce grading interpretations for the QCBs and QCPs and
show that they match the induction rules proposed above.

Definition 3 Let f be a mapping from P to a set of ordinal numbers. We call f a
grading interpretation of a QCB Q iff it satisfies:

1. If p ' q ∈ Q, then f(p)− f(q) = 0.

2. If p > q ∈ Q, then f(p)− f(q) = 1.

3. If p À q ∈ Q, then f(p)− f(q) ≥ 2.

Moreover, f is called a grading interpretation of a QCP E iff f is a grading interpre-
tation of

⋃
E.

A grading interpretation f in fact depicts the grades obtained by the symbols in the
QCB (or QCP). From this perspective, f(p)− f(q) = 0 should be understood as p and
q are in the same grade, hence p ' q; f(p)− f(q) = 1 as p is one grade higher than q
hence p > q; and f(p)−f(q) ≥ 2 as p is at least two grades (and possible more) higher
than q hence p À q. This interpretation also helps to rational the fourth transition rule
defined earlier.

With the help of grading interpretations, we now define when a QCB (or a QCP) is
called consistent.

Definition 4 A QCB Q is called consistent iff there exists a function f such that f is
a grading interpretation of Q. A QCP E is called consistent iff

⋃
E is consistent.

Thus in a consistent QCB (or a QCP), a grading interpretation can be used to ana-
lyze the relations between symbols. As a consequence, the theorem below shows that
the grading interpretations perfectly matches the induction rules in a consistent QCB
and QCP.

Theorem 1 Let f be a grading interpretation of a consistent QCB Q (resp. QCP E),
then it induces the induction rules on Q (resp. E).

This theorem reveals that the induction rules and the grading interpretations are
to some extent equivalent. Hence, we can use the grading interpretations to assist the
reasoning of induction rules.

Obviously, there can be many grading interpretations for a consistent QCP (or
QCB). We want to find a representative grading interpretation for the QCPs (or QCBs).

Definition 5 Let F be the set of all grading interpretations for a consistent QCP (or
QCB). We define a total pre-order relation ≤ on F such that ∀f, g ∈ F , we write
f ≤ g iff for all symbols p1, . . . , pn appeared in the QCP (or QCB),

∑n
i=1 f(pi) ≤∑n

i=1 g(pi).

Definition 6 Let F be the set of all grading interpretations for a consistent QCP (or
QCB), then ∀f ∈ F , f is called minimal iff f ∈ min(F ,≤).
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We hope that the minimal grading interpretation is unique, thus it can be taken
as a good representative of the consistent QCP (or QCB). Fortunately, the following
theorem does show that the minimal grading interpretation is unique.

Theorem 2 LetF be the set of grading interpretations for a consistent QCP (or QCB),
then |min(F ,≤)|= 1.

Example 3 Let a QCB Q be Q = {p ' q, p À r, s > r, r > t, p À t, q > s, l À
q, l À t}. Then the unique minimal grading interpretation f is: f(l) = 5, f(p) =
f(q) = 3, f(s) = 2, f(r) = 1, f(t) = 0.

Let a QCB Q
′

be Q
′

= {p ' q, p À r, q > r}. Because there are no grading
interpretations available for Q

′
, Q

′
is inconsistent.

4 Inconsistency Measures of Qualitative Comparison
Bases

In this section, we analyze the inconsistency of multiple QCBs, or, a QCP E. First, we
consider the priority levels of propositions in E. Second, based on these priority levels,
we investigate how to measure the inconsistency of E.

4.1 Priority level
Recall that in the previous section, we have commented that the transition induction
rules should be applied with caution because the transition rules are fault prone. If
one proposition p ./1 q appears directly in a QCB Q ∈ E, while another proposition
p ./2 q is obtained by induction from the transition rules, where ./1, ./2∈ {À, >,'},
then it is natural that p ./1 q should be taken as more reliable than p ./2 q. Hence
p ./1 q should have a higher priority than that of p ./2 q when these two propositions
are considered. Moreover, if a proposition p ./3 q is obtained by using the transition
rules at least i times, while p ./4 q is obtained by using the transition rules at least j
times, then p ./3 q should have a higher priority than p ./4 q whenever i < j. That is,
the more times the transition rules are applied to obtain a proposition, the less reliable
the proposition is.

Example 4 (Example 2 Revisited) In Example 2, we have commented that in Esc, the
existence of p ' p and q ' q can be used to exclude the induced propositions p À p
and q À q. This is exactly what priority levels can do. As the priorities of p ' p and
q ' q are higher than those of p À p and q À q (as they are obtained by the transition
rules). When we consider the QC relation between p and p (resp., q and q), p ' p
(resp., q ' q) will be considered as more reliable. Therefore the existence of p ' p
and q ' q suppresses p À p and q À q.

The above discussion, to some extent, tells that the least number of times that the
transition rules are used for inducing a proposition can be taken as the priority level
of the proposition. Any existing proposition has the highest priority level 0, while a
proposition obtained by using the transition rules at least i times has priority level i. In
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Example 4, the proposition p ' p has priority level 0, and p À p has priority level 1, if
we want to obtain p À q or q À p, as the least number of times to use transition rules
is 2, the priority levels of p À q and q À p are 2.

It should be noted that the use of reflection rule and symmetry rule do not affect
the priority level of a proposition. This is because they are necessarily true. Intuitively,
it holds universally that p ' p, and if p ' q then q ' p must be true. Semantically, p
and p itself will definitely be in the same grade, and if p is in the same grade as q, then
definitely q is in the same grade as p. Thus the reflection and symmetry rule will not
lead to any possible error (i.e., any possible upgrading or degrading). The transition
rules, however, are fault prone, thus the more times the transition rules are used, the
less reliability they are. That is why the least number of times of using the transition
rules can be taken as the priority level of a proposition being induced.

We formalize the above discussion as the following.

Definition 7 A transition induction process on a QCB Q1 constructs a QCB Q2 as
follows.

1. Set Q2 = ∅.

2. For each pair of propositions p1 ./1 q1 and p2 ./2 q2 in Q1, if these two propo-
sitions can induce a third proposition p3 ./3 q3 following a transition rule and
p3 ./3 q3 6∈ Q1, then let Q2 = Q2 ∪ {p3 ./3 q3}.

We hope that the constructed QCB Q2 to be simeq closed, then we do not need
another extending process. Fortunately it is.

Proposition 2 The QCB Q constructed by Definition 7 is simeq closed.

From a given QCP E (in fact its corresponding QCB
⋃

E), if we repeatedly ap-
ply the transition induction process, we obtain the following prioritized simeq closed
QCBs.

Let Q0 be
⋃

E, and Qi be the constructed QCB from (
⋃n−1

i=0 Qi) based on Defini-
tion 7, 1 ≤ i ≤ n. Let E(n) = (Q0, . . . , Qn) denote the list of QCBs constructed from
E up to n times induction of transition rules, then E(n) is called a prioritized QC base,
and propositions in Qi is more important than that in Qj if i < j. The propositions in
E(n) is ∪iQi.

Now we give the formal definition of priority level for each proposition.

Definition 8 Let E(n) = (Q0, . . . , Qn) be a prioritized QC base. A proposition p ./ q

has priority level i iff p ./ q ∈ Qi and p ./ q 6∈ ⋃i−1
j=0 Qj . If p ./ q 6∈ ⋃n

j=0 Qj , then
we define the priority level of p ./ q as +∞. Here ./∈ {À, >,'}.

For convenience, for proposition p ./ q with priority level i, we simply denote
(p ./ q, i) ∈ E(n).

Proposition 3 For any two symbols, two propositions p ' q and q ' p always have
the same priority level with respect to E(n).
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Example 5 Let E = {{p > q}, {q > p}, {p ' p, q ' q}}, we have E(n) =
(Q0, Q1, Q2, . . . , Qn) such that Q0 = {p > q, q > p, p ' p, q ' q}, Q1 = {p À
p, q À q}, Q2 = {p À q, q À p}, and for i ≥ 3, Qi = ∅.

Among these propositions, we have in particular (p ' p, 0), (p À p, 1) ∈ E(n)
and (p À q, 2) ∈ E(n).

Because the transition rules should be applied with caution, we may only want to
consider induced propositions with priority levels no larger than a given threshold t.
With the restriction of priority level threshold t, we consider the accessibility relation
between two symbols.

Definition 9 Let p and q be two symbols of QCP E. p and q are said to be absolutely
accessible iff there is a proposition p ./ q which has a priority level i < +∞. p and q
are said to be relatively accessible iff there is a proposition p ./ q which has a priority
level i < t where t is the threshold.

Intuitively, p and q are absolutely accessible if a proposition can be established
between them after a finite number of steps applying the induction rules. On the other
hand, p and q are relatively accessible only if a proposition can be established between
them with the number of steps applying the induction rules limited to threshold t.

4.2 Inconsistency measures
In this subsection, we consider how to measure and resolve inconsistency among propo-
sitions. We will study two kinds of inconsistencies: one is the inconsistency between
propositions like p ./1 q and p ./2 q, e.g., p À q and p ' q, which suggest some
kind of redundancy; the other is the inconsistency between propositions like p ./1 q
and q ./2 p, e.g., p > q and q > p, which express some contradiction or conflict.

For convenience, we first define the difference of two symbols p and q with respect
to a proposition.

Definition 10 Let p ./ q be a proposition in a QCB Q with ./∈ {À, >,'}. The
difference of p and q in p ./ q is defined as:

diff./(p, q) =





2 if ./=À,
1 if ./=>,
0 if ./=' .

Obviously, the above definition is related to the grading interpretation, except that
when p À q, we define diff(p, q) = 2 instead of diff(p, q) ≥ 2 for simplicity. Here we
do not directly define diff(p, q) = f(p)− f(q) because Q is not necessarily consistent
and thus the grading interpretation f does not necessarily exist.

We begin with the study of inconsistency between propositions like p ./1 q and
p ./2 q. We call this kind of inconsistency as redundancy of p w.r.t q, and denote it as
Rdu(p : q) (Hence Rdu(p : q) is not equal to Rdu(q : p)).

Recall that we use E(n) = (Q0, . . . , Qn) to denote a prioritized QCB (∪E) con-
structed from E up to n times application of transition rules. From Definition 8, we can
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get at most the following three propositions that relate symbol p with symbol q with
different priority levels, (p À q, aÀ), (p > q, a>), (p ' q, a') ∈ E(n) where a./ is
the priority level of the corresponding proposition, for ./=À, >,'.

Based on Definition 10, we define Rdu(p : q) as follows:

Rdu(p : q) = maxi∈I./(diffi(p, q))−minj∈I./(diffj(p, q)) (1)

Here I is the set of the propositions with minimal priority level, e.g. if aÀ = a' < a>,
then I = {p À q, p ' q}, and I./ is the set of comparison connectives appeared in
I . It should be noted that if aÀ = a' = a> = +∞, then I = ∅ and Rdu(p : q) is
undefined.

The semantics of Equation (1) is clear. If there are different observations with
different strengthes of preference on p to q, then the inconsistency of between p and q
comes out as the largest difference between preference strengthes.

Example 6 If (p À q, 3), (p > q, 3), (p ' q, +∞) ∈ E(n), then since 3 = 3 < +∞,
the index set I is I = {p À q, p > q} (and I./ = {À, >}). Therefore, we have

Rdu(p : q) = diffÀ(p, q)− diff>(p, q) = 2− 1 = 1.

Notice that if |I| = 1, then we have Rdu(p : q) = 0 which implies there is no
redundancy of p w.r.t. q. This result is intuitive, since if the priority level of one
proposition is smaller than that of the other two, then this proposition is more reliable
than them, e.g. aÀ < min(a>, a'), then we should conclude that p À q is more
reliable than p > q and p ' q, and it gives no redundancy or inconsistency.

Next, let us consider the inconsistency between propositions like p ./1 q and q ./2

p. We call this kind of inconsistency as conflict between p and q and denote it as
Inc(p : q).

Based on Definition 8, there will be at most three priority levels, aÀ, a>, a', for
three propositions (p À q), (p > q), and (p ' q), respectively. Similarly, there
will be at most three values bÀ, b>, b' for (q À p), (q > p), and (q ' p), respec-
tively. The priority levels will also play an important role here. In fact, only when
min(aÀ, a>, a') = min(bÀ, b>, b') < +∞, it is meaningful to measure the incon-
sistency (conflict) between p and q. If min(aÀ, a>, a') = min(bÀ, b>, b') = +∞,
the inconsistency analysis is meaningless. If min(aÀ, a>, a') 6= min(bÀ, b>, b'),
then the conflict between p and q is defined as 0 since the priority levels of these propo-
sitions already exclude the inconsistencies between propositions.

Now, we concentrate on the situation where min(aÀ, a>, a') = min(bÀ, b>, b') <
+∞, where a./ is for p ./ q and b./ is for q ./ p. We define the conflict between p and
q as follows.

Inc(p : q) = mini∈I1
./

(diffi(p, q)) + minj∈I2
./

(diffj(q, p)) (2)

Here I1
./ (resp. I2

./) is the set of comparison connectives for propositions with the
minimal priority level among (p À q), (p > q), and (p ' q) (resp. (q À p), (q > p),
and (q ' p)).

The semantics of Equation (2) is rather intuitive. If one observation gives that p is
preferred to q while another observation provides q is preferred to p, then obviously it
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leads to inconsistency. The degree of inconsistency (conflict) can be measured as a dis-
tance between the two observations. Equation (2) captures this intuition and provides
a minimal distance between the two observations, in terms of two propositions.

Example 7 If (p À q, 3), (p > q, 3), (p ' q, +∞), (q À p, 3), (q > p, 5), (q '
p, +∞) ∈ E(n), then I1

./ = {À, >} and I2
./ = {À}. Therefore, we get

Inc(p : q) = diff>(p, q) + diffÀ(q, p) = 1 + 2 = 3.

From Proposition 3, we know that a' = b', thus if they are the minimal ones
among a./ and b./ where ./∈ {À, >,'}, then from Equation (2), we have

Inc(p : q) = diff'(p, q) + diff'(p, q) = 0 + 0 = 0

which implies there is no inconsistency (conflict) between p and q. This result is intu-
itive and consistent with common sense reasoning, since if a' = b' have the minimal
priority level, then it implies that p ' q and q ' p are more reliable than any other
propositions relating to p and q. Furthermore, p ' q and q ' p are obviously consis-
tent.

Proposition 4 Given a QCB Q, let p and q be two symbols and Inc(p : q) is defined,
then we have Inc(p : q) = 0 or Inc(p : q) ≥ 2.

5 Merging Multiple QC Bases
In this section, we discuss the merging of multiple QCBs.

We consider three kinds of merging operators. The first two kinds are syntax-based,
of which the first kind of operators intends to obtain a consistent result and the second
kind only pays attention to pair-wise comparison relations no matter whether the over-
all merged result is consistent. This might give the impression that pair-wise merging
seems rather counterintuitive at the first glance, but as the QC relations are not precise
relations themselves and in many settings, only the pair-wise comparison results are
considered, e.g., when querying the comparison relation between two drugs. There-
fore, pair-wise based merging is useful. In addition, human’s beliefs are themselves
not always consistent. Thus, pair-wise based merging deserves an investigation. The
third kind of merging operators follows a similar way of model based merging used for
merging knowledge bases [17]. It makes use of grading interpretations and takes the
grading interpretation of the largest consistent subset of QCBs as the grading interpre-
tation of the merged result.

5.1 Consistency-based merging
In this subsection, we investigate merging operators that produce a consistent result.

Definition 11 A sub-consistent QCP is a QCP E such that for each Q ∈ E, Q is
consistent based on Definition 4.
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Definition 12 A consistent QC-merging operator ∆ is a function from the set of all
QCPs to the set of all sub-consistent QCPs.

Recall that from a QCP E, a list of prioritized QCBs E(n) = (Q0, . . . , Qn) can
be constructed. Let Cons(E) denote the set of consistent subsets of E(n) such that
∀S = (S0, . . . , Sn) ∈ Cons(E),

⋃
S =

⋃n
i=0 Si is consistent.

In [9], some merging operators are mentioned for merging prioritized knowledge
(observation) bases. Here we propose some similar operators for merging prioritized
QCBs, i.e., E(n)s.

If Â is a strict order (i.e. a transitive and asymmetric binary relation) on a set X ,
then for any Y ⊆ X we denote by Max(Â, Y ) the set of undominated elements of Y
with respect to Â [9], i.e.,

Max(Â, Y ) = {y ∈ Y | 6 ∃z ∈ Y, s.t., z Â y}.
Definition 13 (discrimin, [4], [23], [3]) For S, S

′ ∈ Cons(E), define S
′ Âdiscrimin

S iff ∃k such that

1.
⋃k

j=0 Qj

⋂
S
′ ⊃ ⋃k

j=0 Qj

⋂
S, and

2. for all i < k,
⋃i

j=0 Qj

⋂
S
′
=

⋃i
j=0 Qj

⋂
S.

Then ∆discrimin(E) =
{ ⋃

S, S ∈ Max(Âdiscrimin, Cons(E))
}

Definition 14 (leximin, [3], [15]) For S, S
′ ∈ Cons(E), define S

′ Âleximin S iff ∃k
such that

1. |⋃k
j=0 Qj

⋂
S
′ | > |⋃k

j=0 Qj

⋂
S|, and

2. for all i < k, |⋃i
j=0 Qj

⋂
S
′ | = |⋃i

j=0 Qj

⋂
S|.

Then ∆leximin(E) =
{ ⋃

S, S ∈ Max(Âleximin, Cons(E))
}

The results of ∆discrimin(E) and ∆leximin(E) are in fact QCPs. In addition, for
simplicity and convenience, we hereafter always remove the propositions like p ' p,
etc, from the result QCPs.

Example 8 Let E = {{p > q}, {r > p}, {q ' r, r ' q}, {p ' p, q ' q, r ' r}},
then E(n) = (Q0, . . . , Qn) where Q0 = {p > q, r > p, q ' r, r ' q, p ' p, q '
q, r ' r}, Q1 = {p > r, r À q, q > p}, Q2 = {p À p, r À r, q À q, q À r, r À
p, p À q}, and Q3 = {p À r, q À p} and for any i > 3, Qi = ∅.

Using the discrimin merging operator, we get: Max(Âdiscrimin, Cons(E)) =
{S1, S2, S3} where S1 = ({p > q, q ' r, r ' q}, {p > r}), S2 = ({r > p, q ' r, r '
q}, {q > p}), and S3 = ({p > q, r > p}, {r À q}). Thus, ∆discrimin(E) = {{p >
q, q ' r, r ' q, p > r}, {r > p, q ' r, r ' q, q > p}, {p > q, r > p, r À q}}.

Using the leximin merging operator, similarly we get: ∆leximin(E) = {{p >
q, q ' r, r ' q, p > r}, {r > p, q ' r, r ' q, q > p}}.
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A merged result using either ∆discrimin(E) or ∆leximin(E) may contain more
than one consistent subset. That is, the consistent-based merging in fact extracts the
largest consistent subsets of QCPs. This approach hence lists all the possible alterna-
tives of the QC relations between drugs. Therefore, it provides an all-sided view on
those drugs and is particularly suitable for proving information to medical scientists
for further investigation.

It should be pointed out that since all Qis are simeq closed, i.e. the two propositions
p ' q and q ' p either both are appeared in Qi or none of them are, and a grading
interpretation will always satisfy/dissatisfy p ' q and q ' p simultaneously. So when
we use the leximin operator, it would be more meaningful that propositions p ' q and
q ' p together should only be counted once (not twice). Doing so, the leximin operator
will obtain the same result as the discrimin operator in the above example (this is not
true in general).

The following simple example show why p ' q and q ' p together should only be
counted once in the leximin operator.

Example 9 Let one agent believe that p ' q and another agent believe that p > q,
then it is reasonable to consider that these two propositions compete and each one do
not prevail another. But when we use the leximin operator on the simeq closed version
of E = {{p ' q, q ' p}, {p > q}, {p ' p, q ' q}}, we will get ∆leximin(E) = {p '
q, q ' p, p ' p, q ' q} which shows p > q is neglected. Obviously it is not intuitive,
and it is because the cardinality of {p ' q, q ' p} is 2 while the cardinality of {p > q}
is 1. So if we want to solve this problem, p ' q and q ' p should only be counted once.

5.2 Pair-wise based merging
Definition 15 A pair-wise QC-merging operator ∆ is a function from the set of all
QCPs to the set of QCBs.

For a given QCP E and the induced prioritized E(n), we consider all the QC rela-
tions between each pair of symbols p and q appearing in E. Of course, p and q should
be absolutely accessible based on Definition 9 or relatively accessible if the threshold
is given.

Suppose a pair of symbols p and q are accessible, if the inconsistency between
p and q (see Equation (2)) is large, i.e., different observations differ strongly on the
preferences of p and q, then cautiously, we will not produce any QC relation between
p and q.

Formally, suppose p and q are accessible, with the help of Proposition 4, we define
the pair-wise based merging operator as the output of the following algorithm (Recall
a./ is the priority level of p ./ q and b./ is that for q ./ p).

Algorithm Pair-wise based Merging
Begin

Input: a simeq closed QCP E
Output: a merged result denoted as ∆pw(E)
∆pw(E) = ∅;
for each symbol pair p 6= q

if (Inc(p : q)) is not defined
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if min(aÀ, a>, a') < min(bÀ, b>, b')
if aÀ > a>

then∆pw(E) = ∆pw(E) ∪ {p À q}
else ∆pw(E) = ∆pw(E) ∪ {p > q}

else
if bÀ > b>

then∆pw(E) = ∆pw(E) ∪ {q À p}
else ∆pw(E) = ∆pw(E) ∪ {q > p}

else if Inc(p : q) = 0
if a' = min(aÀ, a>) and b' = min(bÀ, b>)
then∆pw(E) = ∆pw(E) ∪ {p ' q, q ' p}
else if a' < min(aÀ, a>) and b' < min(bÀ, b>)
then∆pw(E) = ∆pw(E) ∪ {p ' q, q ' p}
else if a' < min(aÀ, a>) and b' = bÀ
then∆pw(E) = ∆pw(E) ∪ {q > p}
else if a' = aÀ and b' < min(bÀ, b>)
then∆pw(E) = ∆pw(E) ∪ {p > q}

End
We denote the above merging operation as ∆pw.
To demonstrate the above algorithm, we discuss the following cases.

1. Inc(p : q) is defined and Inc(p : q) ≥ 2
This shows that the preference of p and q differs very strongly. Thus we cau-
tiously do not give the merged QC relation between p and q.

2. Inc(p : q) is defined and Inc(p : q) = 0
Here we have a' ≤ min(aÀ, a>) and b' ≤ min(bÀ, b>). This situation has
two subcases.

(a) If a' = min(aÀ, a>) and b' = min(bÀ, b>), then some observations
prefer p, some prefer q, and some take p and q equivalently, thus naturally
we provide the merged relation as p ' q.

(b) Either a' < min(aÀ, a>) or b' < min(bÀ, b>) holds. If they both
hold, then obviously we should let p ' q as the merged result as p ' q
is the dominated point of view. If only one of them holds, e.g., b' <
min(bÀ, b>) holds while a' = min(aÀ, a>), then if we have aÀ =
min(aÀ, a>), it implies that some observations significantly prefer p to
q(p À q) while some others treat them indifferently (p ' q). Hence we
may averagely take the QC relation between p and q as p > q, else if we
have a' = a> < aÀ, it implies that some observations prefer p to q while
some treat them indifferently, a cautious view will not give any merged QC
relation between p and q.

3. Inc(p : q) is undefined.
Without loss of generality, suppose min(aÀ, a>, a') < min(bÀ, b>, b') and
a' > min(aÀ, a>). If aÀ < a> or a< > aÀ, obviously we can conclude
p > q or p À q, respectively. If aÀ = a>, we will cautiously give the merged
relation as p > q.
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Example 10 Let E = {{p > q}, {r > q}, {q ' s, s ' q}, {q > p}, {p > r}, {r À
s}, {p ' p, q ' q, s ' s, r ' r}}, then E(n) = (Q0, . . . , Qn) where Q0 = {p >
q, r > q, q ' s, s ' q, q > p, p > r, r À s, p ' p, q ' q, s ' s, r ' r}, Q1 =
{p > s, p À p, r > s, r À p, q À q, q À r, p À q, p À s, r À q, s > p},
Q2 = {p À r, r À r, q À p, q À s, s À q, s À p, s À r} and for i ≥ 3, Qi = ∅.

Using the pair-wise merging, we get: ∆pw(E) = {p > r, r > q, q ' s, r À s}.

Pair-wise based merging is particularly suitable for the query situation. In this sit-
uation, scientists are solely interested in the comparison relation between two drugs
which can be nicely answered by pair-wise merging when these two drugs are consid-
ered as a pair.

5.3 Grading interpretation based merging
There are two main categories of approaches to merging knowledge bases, syntax-
based and model-based. The consistency-based merging and pair-wise based merging
defined above are to some extent syntax-based merging methods. In this section, we
propose a grading interpretation based merging method which can be understood as
model-based merging.

Let E = {Q1, . . . , Qn} be a QCP, and let E
′

= {S1, . . . , Sn} be any consistent
QCP such that Si ⊆ Qi. Let TE be the set of all such E

′
s. We define a total pre-order

relation ≥TE
on TE as E1 ≥TE

E2 iff
∑n

i=1 |S1
i | ≥

∑n
i=1 |S2

i |, where E1, E2 ∈ TE .
The grading interpretation based merging method will choose E∗ ∈ TE such that

E∗ ≥TE E
′

for ∀E′ ∈ TE . Since E∗ is consistent, from Theorem 2, it has a unique
minimal grading interpretation f∗.

With this grading interpretation f∗, we are able to get the QC relations between
each pair of symbols with respect to Definition 3. Namely, we can define a mapping g
from the set of all f∗ to the set of QCBs. Thus we get a consistent merging result.

Formally, we define the operator as follows.

∆gi(E) = {g(f∗) : ∃E∗ ∈ max(TE ,≤TE )},
where f∗ is the unique minimal grading interpretation of E∗.

Note that this merging operator does not need a QCP E to be simeq closed because
it does not use the induction rules.

Example 11 Let E = {{p > q}, {r > q}, {q ' s, s ' q, p > q}, {q > p}, {p >
r, r > q}, {r À s}}, then we get E∗ = {{p > q}, {r > q}, {q ' s, s ' q, p >
q}, ∅, {r > q}, ∅}. f∗ is such that:

f∗(s) = f∗(q) = 0, f∗(p) = f∗(r) = 1.

Thus we have the merged QCB Q = {p > q, r > q, p > s, r > s, p ' r, r ' p, q '
s, s ' q}.

Grading interpretation based merging gives a unique and consistent result. So it is
very useful to help clinicians to make decisions over various drugs.
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In summary, consistent-based merging is a nice choice for medical scientists who
want to get a comprehensive opinion, pair-wise based merging is especially applicable
for query situations, and grading interpretation based merging is most suitable for the
clinicians making decision.

6 Case Study
There are many clinical trials on evaluating and comparing the effects of different drugs
on lowering intraocular pressure (IOP for short). Here we consider some of the research
papers reporting such trials and use the modeling and merging methods introduced in
the paper to analyze qualitative comparison knowledge appeared in these papers.

Let tr denote the effect of travoprost for IOP reduction, la for latanoprost, ti for
timolol, and bi for bimatoprost.

In [1], it states IOP reduction obtained with travoprost was significantly higher than
that obtained with latanoprost. Thus we have the first QC base as Q1 = {tr À la}.

In [14], it concludes According to data available, travoprost is more effective than
timolol in lowering IOP in patients with open-angle glaucoma or ocular hyperexten-
sion. Compared with other prostaglandin analogues, travoprost appears to be equiv-
alently to bimatoprost and latanoprost. So, we have the 2nd QC base as Q2 = {tr >
ti, tr ' bi, tr ' la}.

In [12], it summarizes Patients on travoprost therapy showed lower mean IOP lev-
els than those on latanoprost. Similarly, we get the 3rd QC base Q3 = {tr > la}.

In [7], it draws a conclusion as Patients treated with travoprost and bimatoprost
had lower IOP levels at the end of follow-up than those treated with latanoprost. Thus
we have the 4th QC base Q4 = {tr > la, bi > la}.

In [6], it states travoprost was superior to latanoprost, and we get the 5th QC base
Q5 = {tr > la}.

Based on these five QC bases, we get a QCP E = {Q1, ..., Q5}. The simeq closed
version of this QCP is E = {{tr À la}, {tr > ti, tr ' bi, tr ' la, bi ' tr, la '
tr}, {tr > la}, {tr > la, bi > la}, {tr > la}, {tr ' tr, la ' la, ti ' ti, bi ' bi}}
and E(n) = (Q(0), Q(1), Q(2), . . .) where Q(0) = {tr À la, tr > ti, tr ' bi, tr '
la, bi ' tr, la ' tr, tr > la, tr > la, bi > la, tr > la, tr ' tr, la ' la, ti ' ti, bi '
bi}, Q(1) = {tr À tr, bi À la, bi > ti, la À la, la > ti, la > la, tr > tr, bi '
la, la ' bi, bi > tr}, Q(2) = {tr > bi, tr À bi, tr À ti, bi > bi, bi À bi, bi À
tr, bi À ti, la > tr, la À tr, la À ti, la > bi, la À bi} and for i > 2, we have
Q(i) = ∅.

Using the merging operators introduced in the previous section, we have
∆discrimin = {{tr > ti, tr À la, tr ' bi, bi ' tr, bi À la, bi > ti}, {tr >

ti, tr > la, tr ' bi, bi ' tr, bi > la, bi > ti}, {tr > ti, tr ' la, la ' tr, tr ' bi, bi '
tr, bi ' la, la ' bi, bi > ti, la > ti}},

∆leximin = {{tr > ti, tr > la, tr ' bi, bi ' tr, bi > la, bi > ti}},
∆pw = {tr > ti, tr > la, tr ' bi, bi ' tr, bi > la, bi > ti, la > ti},
∆gi = {tr > ti, tr > la, tr ' bi, bi ' tr, bi > la, bi > ti, la ' ti, ti ' la}.
By examining these different merged results, we can see that the ∆discrimin pro-

duces the more sophisticated result than all the other three methods. The ∆discrimin
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points out that there may be three kinds of possible merging results, but it cannot tell
which result is more plausible. Nevertheless, ∆leximin, ∆pw and ∆gi operators give
us deterministic results, moreover, these results are similar (but not entirely the same).
Intuitively, it seems that the results of ∆leximin and ∆pw are more reasonable and ap-
plicable as the gi merging operator gives la ' ti, ti ' la which has no support from
original QC bases and the result of ∆discrimin is too complicated.

Let us take for example the comparison between tr and la. The five original QC
bases together contain three possible propositions for these two symbols. In the three
different results from ∆discrimin, each of these propositions is included in one of its re-
sulting subsets. However, proposition tr > la appears in all the results from ∆leximin,
∆pw and ∆gi which once again shows the consistency of these operators and also that
proposition tr > la seems to be a more likely merged result than the other two possible
propositions for symbols tr and la.

7 Conclusion
In this paper, we systematically studied how to model and reason with qualitative com-
parison knowledge and proposed three kinds of propositions (qualitative comparison
relations) to model such knowledge i.e. À, > and '. We formalized some basic defi-
nitions as QC language, QCB, and QCP, etc. In addition, we proposed some induction
rules for the QC relations. We also gave grading interpretations to the QC relations and
their induction rules. With the help of grading interpretation, we can define whether a
QCB or a QCP is consistent. Moreover, for inconsistent QCPs, we provided measures
of inconsistency and proposed three types of merging operators. Some merging oper-
ators are similar to the ones in prioritized knowledge base merging while others use
either a pair-wise based method or are based on the grading interpretations to perform
merging.

A report on a clinical trial usually presents quantitative knowledge as well as qual-
itative knowledge. Quantitative knowledge is typically studied by systematic reviews
or meta-analysis [19, 20, 21], etc. The main problem of analyzing quantitative knowl-
edge is that it is time-consuming and often it should be done by an expert and with
a specialized software. However, even experts cannot scale well with the increasing
rate of publication of new results, as it requires a substantial amount of painstaking
work. So frequently qualitative knowledge about detailed (quantitative) information is
used to get a summaritive conclusion of the trial study. In addition, some clinical tri-
als reports only provide qualitative knowledge without giving quantitative information
whilst there is no clinical trial report that only reports quantitative knowledge without
any qualitative summary throughout our study. Therefore, an efficient and easy-to-use
framework on analyzing qualitative knowledge is appealing.

Although we have tried to give a thorough study on this topic, there are still many
issues to be investigated in the future. One problem is that when we consider the cau-
tious use of transition rules, we in fact treat the transition rules equally. But in fact
some of the induction rules can be taken for granted and thus be used without caution.
For example, if p À q and q À r, then it can induce p À r without controversy.
Therefore the transition rules might be partitioned based on their rightness. Further-
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more, a detailed comparison with our framework with order of magnitude reasoning is
also attractive .
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erence numbers: EP/D070864/1 and EP/D074282/1.

Appendix
Proof of Proposition 1: If q ' p or q > p or q À p, then from the transition rule and
p À r, we immediately get q À r which contradicts to q > r. Therefore, according to
the totality rule, we have p > q or p À q.

Proof of Theorem 1:

Reflection p ' p.
Since f(p)− f(p) = 0, we have p ' p.

Symmetry p ' q implies q ' p.
If p ' q, then f(p)− f(q) = 0, thus f(q)− f(p) = 0, which implies q ' p.

Totality p ' q or q > p or p > q or p À q or q À p.
If f(p) − f(q) = 0, then p ' q, if |f(p) − f(q)| = 1, then p > q or q > p, if
|f(p)− f(q)| ≥ 2, then p À q or q À p.

Transition 1. p ./1 q and q ./2 r implies p À r if at least one of ./1 and ./2 is À.
If ./1=À, then we have f(p) − f(q) ≥ 2 and f(q) − f(r) ≥ 0, thus
f(p)− f(r) ≥ 2 which implies p À r. If ./2=À, the proof is similar.

2. p ./ q and q ' r implies p ./ r.
From q ' r, we have f(q)− f(r) = 0, thus f(p)− f(r) = f(p)− f(q) +
f(q)− f(r) = f(p)− f(q). Therefore p ./ q implies p ./ r.

3. p ' q and q ./ r implies p ./ r.
Similar to the above.

4. p > q and q > r implies p À r.
From p > q and q > r, we have f(p) − f(q) = 1 and f(q) − f(r) = 1,
then we have f(p)− f(r) = 2 which implies p À r.

Proof of Theorem 2: We will construct a minimal grading interpretation and show
it is the unique one. Let f∗ be a mapping from P to the set of ordinal numbers and it
satisfies the following

f∗(p) = minf∈Ff(p).

Obviously, as ∀p ∈ P , f(p) ≥ 0, we have f∗(p) ≥ 0.
First we show that f∗ ∈ F . It suffices to show the following:

1. If p ' q, then f∗(p)− f∗(q) = 0.
As p ' q, then ∀f ∈ F , we have f(p) − f(q) = 0, or f(p) = f(q), thus we
have

f∗(p) = minf∈Ff(p) = minf∈Ff(q) = f∗(q).
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2. If p > q, then f∗(p)− f∗(q) = 1.
As p > q, then ∀f ∈ F , we have f(p) = f(q) + 1, thus we have

f∗(p) = minf∈Ff(p) = minf∈Ff(q) + 1
= minf∈Ff(q) + 1 = f∗(q) + 1.

3. If p À q, then f∗(p)− f∗(q) ≥ 2.
As p À q, then ∀f ∈ F , we have f(p) ≥ f(q) + 2, thus we have

f∗(p) = minf∈Ff(p) ≥ minf∈Ff(q) + 2
= minf∈Ff(q) + 2 = f∗(q) + 2.

So f∗ is a grading interpretation, as ∀f ∈ F and ∀p ∈ P , we have f∗(p) ≤ f(p),
hence

∑
p∈P f∗(p) ≤ ∑

p∈P f(p), therefore f∗ is a minimal grading interpretation.
Let g be any minimal grading interpretation, as f∗(p) ≤ g(p) for ∀p ∈ P and∑

p∈P g(p) =
∑

p∈P f∗(p) (the definition of minimal grading interpretation), it should
be f∗(p) = g(p) for ∀p ∈ P . It shows that g is f∗, so f∗ is the unique minimal grading
interpretation.

Proof of Proposition 2: Suppose a proposition p ' q ∈ Q, we need to show that
q ' p is also in Q. From the construction process of Q, the proposition p ' q should
be induced by two propositions p ' r and r ' q using the transition induction rules.
Since Q0 is simeq closed, Q0 contains p ' r and r ' q implies Q0 also contains r ' p
and q ' r, which can induce q ' p by the transition induction rules. This finishes the
proof.

Proof of Proposition 3: If p ' q has priority level +∞, i.e. p ' q 6∈ Qi,
∀0 ≤ i ≤ n, then from Proposition 2, as Qi is simeq closed, it should be q ' p 6∈ Qi,
∀0 ≤ i ≤ n. Hence q ' p also has priority level +∞. If p ' q has priority level k,
i.e. p ' q 6∈ Qi, ∀0 ≤ i < k and p ' q ∈ Qk, then still from Proposition 2, we know
q ' p 6∈ Qi, ∀0 ≤ i < k and q ' p ∈ Qk which implies that q ' p has priority level
k.

Proof of Proposition 4: If Inc(p : q) is defined, then we have min(aÀ, a>, a') =
min(bÀ, b>, b') < +∞. If a' = min(aÀ, a>, a'), then from Proposition 3, it
should be

b' = a' = min(aÀ, a>, a') = min(bÀ, b>, b'),

therefore Inc(p : q) = 0 + 0 = 0. If b' = min(bÀ, b>, b'), similarly Inc(p : q) =
0 + 0 = 0. If neither a' = min(aÀ, a>, a') nor b' = min(bÀ, b>, b'), then we
have Inc(p : q) ≥ 1 + 1 = 2.
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