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Abstract

Security is a critical concern around the world.
Since resources for security are always limited, lots
of interest have arisen in using game theory to han-
dle security resource allocation problems. How-
ever, most of the existing work does not address ad-
equately how a defender chooses his optimal strat-
egy in a game with absent, inaccurate, uncertain,
and even ambiguous strategy profiles’ payoffs. To
address this issue, we propose a general frame-
work of security games under ambiguities based on
Dempster-Shafer theory and the ambiguity aversion
principle of minimax regret. Then, we reveal some
properties of this framework. Also, we present two
methods to reduce the influence of complete igno-
rance. Our investigation shows that this new frame-
work is better in handling security resource alloca-
tion problems under ambiguities.

1 Introduction

Nowadays, protecting people and critical assets against po-
tential attacks has become a critical problem for public secu-
rity around the world [Tambe, 2011]. It is impossible to pro-
vide surveillance on all the targets of security. Thus, it is an
increasing concern about how to allocate security resources.
Essentially, addressing this concern requires a strategy of al-
locating security sources (e.g., security team or defender)
based on the understanding of how terrorists (the attacker)
usually plan and act according to their knowledge of secu-
rity capabilities. In the literature, most of the existing work
deals with this problem in Stackelberg’s game framework
(a specific kind of game in game theory) [Pita et al., 2009;
Tambe, 2011]. That is, a defender commits to a strategy first
and an attacker makes his decision based on the defender’s
commitment. The typical solution concept in these games
is Strong Stackelberg Equilibrium (SSE), which concentrates
on determining the defender’s optimal mixed strategy based
on two assumptions: (i) the attacker knows this strategy and
responds optimally; and (ii) both players have point-valued
payoffs for each pure strategy profile (a complete list of pure
strategies, one for each player in the game).

However, in real life, a human attacker usually acts on par-
tial information of a defender’s strategies and the attacker’s

rationality is bounded [Tambe, 2011; Yang et al., 2012].
Moreover, Korzhyk et al. [2011] suggests that the Nash
Equilibrium (NE) strategy should be applied instead of SSE
when a defender is unclear about an attacker’s knowledge of
surveillance. Furthermore, the assumption of point-valued
payoffs is also unrealistic because the payoff of each pure
strategy profile, which is based on experts analysis, historical
data, and airport managers’ judgements, is often ambiguous
because of time pressure, lack of data, random events, reli-
ability of information sources, and so on. In particular, the
payoff of a pure strategy profile often has to face two types of
ambiguity: (i) the value of a payoff is ambiguous: (a) absent,
(b) interval-valued, and (c) of multiple possibilities; (ii) the
strategy profile that relates to a given payoff is ambiguous.

Let us consider a scenario in an airport area, which covers
the following five targets: Shopping Area (SA), Prayer Room
(PR), Special Location (SL), VIP Lounges (VL), and Hotel
(H). Now an airport manager tries to assign a security team
to cover one of these five targets, and an attacker will choose
one to assault. So, there are two consequences for the interac-
tion: the security team succeeds in protecting a target or the
attacker succeeds in assaulting a target. And the payoffs of
an interaction for the defender might be ambiguous. (i) The
value of payoff is ambiguous: (a) absent: because the spe-
cial location in an airport is unique, it is hard to estimate the
value, such as the Butterfly Garden in Singapore Changi Air-
port; (b) interval-valued: the payoff of protecting a shopping
area mainly depends on the amounts of customers, which is
indeterministic in a period; and (c) ambiguity lottery: for in-
stance, the prayer room, after knowing that the assessment
expert is a religionist, the airport manager would not com-
pletely trust the expert’s suggestion, e.g., a reliability of 80%.
Thus, the manager is uncertain about the payoff of Prayer
Room with 20%. (ii) The pure strategy profile that relates
to a given payoff is ambiguous: suppose the more people a
location may have, the higher the payoff. Since the hotel usu-
ally is close to the VIP lounge, it may be easier to estimate
roughly a combined total number of people in both places,
but it is difficult to estimate a total number of people in each
place. So, sometimes the manager does not know the payoff
of these two targets separately. Given these two types of am-
biguity, our task in this paper is to determine the defender’s
optimal strategy.

More specifically, based on Dempster-Shafer (D-S) theory
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[Shafer, 1976], we first use the ambiguity aversion principle
of minimax regret [Ma et al., 2013] to obtain the preference
degree of a given player for the subsets of pure strategy pro-
files. Then, we consider the distance of each subset of pro-
files’ preference degree to the worst preference degree to set
the relative payoffs of this player. Thus, according to whether
some payoffs are absent, we introduce two methods to cal-
culate mass values, which indicate the possibilities of a sub-
set of pure strategy profiles containing the best outcome for
the given player. Moreover, we deploy the idea behind the
ambiguity aversion principle of minimax regret to obtain the
player’s belief degree of a belief interval for each pure strat-
egy profile. Finally, from the belief degrees of each player,
we can derive the defender’s optimal strategy directly.

This paper advances the state of the art on the topic of se-
curity resources allocation in the following aspects. (i) We
identify two types of ambiguity in security resources alloca-
tion: ambiguous payoffs and ambiguous strategy profile. (ii)
We propose an ambiguity aversion framework to determine
the optimal strategy for a defender in security games under
ambiguities. (iii) Our framework can consider the correct-
ness of point-value security game models under ambiguities.
(iv) We show the relationship between the payoffs boundary
and the risk attitude of a player in security games under ambi-
guities. And (v) we present two methods to reduce complete
ignorance in security games under ambiguities.

The rest of this paper is organized as follows. Section 2 re-
caps D-S theory and relevant definitions. Section 3 formally
defines security games under ambiguities. Section 4 develops
an ambiguity aversion framework to handle security games
under ambiguities. Sections 5 discusses some properties of
our framework. Section 6 handles the influence of complete
ignorance. Section 7 discusses the related work. Finally, Sec-
tion 8 concludes the paper with future work.

2 Preliminaries

This section recaps a decision method based on D-S theory
[Shafer, 1976], which extends the probability theory as fol-
low.
Definition 1. Let Θ be a set of exhaustive and mutually ex-
clusive elements, called a frame of discernment (or simply a
frame). Function m : 2Θ → [0, 1] is a mass function if m(∅)
=0 and

∑
A⊆Θ m(A)=1. With respect to m, belief function

(Bel) and plausibility function (Pl) are defined as follows:

Bel(A) =
∑

B⊆A

m(B), (1)

Pl(A) =
∑

B∩A�=φ

m(B). (2)

The following is a normalized version of the generalized
Hartley measure for nonspecificity [Dubois and Prade, 1985].
Definition 2. Let m be a mass function over a frame of dis-
cernment Θ and |A| be the cardinality of set A. Then the am-
biguity degree of m, denoted as δ : m → [0, 1], is given by:

δ =

∑
A⊆Θ

m(A) log2 |A|

log2 |Θ| . (3)

Hence, we can define an ambiguity decision problem,
which is a 4-tuple (C, S, U,M) as follow:

• C = {c1, . . . , cn} is the set of all choices, such as all
possible actions;

• S = {s1, . . . , sm} is the set of consequences caused by
these choices;

• F = {fc | c ∈ C, ∀s ∈ S, fc(s) ∈ �}, i.e., the utility
of consequence s ∈ S that is caused by selecting choice
c ∈ C is fc(s) ∈ � (a real number set);

• M = {mc | c ∈ C}, i.e., the decision maker’s
uncertainty about the utility that choice c could cause
(due to multiple possible consequences) is represented
by mass function mc over the frame of discernment
Θ = {h1, . . . , hn}, where hi ∈ � and for any fc(s),
fc(s) ∈ Θ.

Thus, the point-valued expected utility function [Von Neu-
mann and Morgenstern, 1944] can be extended to an expected
utility interval [Strat, 1990]:
Definition 3. For choice c1 specified by mass function
mc1 over Θ = {h1, ..., hn}, its expected utility interval is
EUI(c1) = [E(c1), E(c1)], where

E(c1) =
∑

A⊆Θ

mc1(A)min{hi | hi ∈ A}, (4)

E(c1) =
∑

A⊆Θ

mc1(A)max{hi | hi ∈ A}. (5)

The following is a decision rule for expected utility inter-
vals, i.e., the ambiguity aversion principle of minimax regret,
which is presented in [Ma et al., 2013]:
Definition 4. Let m be a mass function over Θ =
{h1, ..., hn}, EUI(x) = [E(x), E(x)] be the expected utility
interval of choice x ∈ C, and δ(x) be the ambiguity degree of
mx. Then the ambiguity-aversion maximum regret of choice
ci against choice cj , denoted as �cj

ci ∈ �, is given by:

�cj
ci = ε(cj)− E(ci), (6)

where ε(cj) =E(cj)−δ(cj)(E(cj)−E(cj)). And the strict
preference ordering � over these two choices ci and cj is
defined as follow:

ci � cj ⇔ �cj
ci < �ci

cj . (7)

This ordering states that choice ci is strictly preferred than
cj , if the ambiguity-aversion maximum regret of ci is smaller
than that of cj . Also, it is easy to prove that E(c) ≤ ε(c) ≤
E(c), and ε(c) means that for the reason of ambiguity aver-
sion, the decision maker will reduce his upper expected utility
(but still not lower than E(c)) for a given choice based on the
ambiguity degree δ of mc.

Moreover, we can prove easily that with the binary relation
∼ (i.e., x ∼ y if x �� y and y �� x), we can compare any two
choices properly. Finally, in game theory, the problem of se-
lecting the optimal strategy for a given player with respect to
the strategies selected by other players can be considered as a
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decision problem for selecting the best choice under the con-
dition that the strategies (choices) of other players are given.
So, when the payoff functions in game theory are represented
by mass functions, we can find the optimal strategy by Defi-
nitions 3 and 4.

3 Security Games under Ambiguities

This section defines security games under ambiguities.1
Based on the airport scenario in Section 1, we can con-

struct a payoff matrix of a security game as shown in Table
1, in which the defender is the row player and the attacker is
the column player. Moreover, their payoffs are listed in the
cells as “a; b”, where a for the defender’s payoff and b for
the attacker’s. Consider the second row in Table 1. When
the pure strategy profile is (PR, SA),2 which means the de-
fender fails to protect SA, the payoff of the defender is nega-
tive (e.g., [−7,−3]) and that of the attacker is positive (e.g.,
5). Since the evaluation of the shopping area is inaccurate for
the defender, an interval value is used for his payoffs (e.g.,
[−7,−3]). Similarly, when the profile is (PR, PR), the de-
fender succeeded in protecting the prayer room. As the eval-
uation of the prayer room is based on an expert’s suggestion,
m(c) = 0.8 means the reliability for the expert’s evaluation c
is 80% and m(d) = 0.2 means the expert’s suggestion is un-
reliable for the defender with 20%. Moreover, when the pro-
file is (PR, SL), null means that the defender is completely
unknown for the value he might lose if he fails to protect the
special location. Finally, the defender cannot distinguish the
payoffs of (PR, VL) and (PR, H), but just knows that the pay-
off of these two compound strategy profiles is −8. Formally,
we have:
Definition 5. A security game under ambiguities, denoted as
G, is a 6-tuple of (N,A,Ψ,Θ,M,U), where:

• N = {1, 2} is the set of players, where 1 stands for the
defender and 2 stands for the attacker.

• A = {Ai | i = 1, 2}, where Ai is the finite set of all
pure strategies of player i.3

• Ψ = {(ak, bl) | ak ∈ A1∧bl ∈ A2} is the set of all pure
strategy profiles.

• Θ={Θi | Θi=Θ+
i ∪Θ−

i , i = 1, 2}, where Θ+
i is a finite

positive number set and Θ−
i is a finite negative number

set.

• M = {mi,X | i = 1, 2, X ⊆ Ψ}, where mi,X is the
mass function over a frame of discernment Θ+

i or Θ−
i .

• U = {ui(X) | i = 1, 2, X ⊆ Ψ}, where ui(X) is the
payoff function ui : 2

Ψ → M .

Moreover, for any X ⊆ Ψ ∧ |X| > 1, if ∃ui(Y )Y⊂X ∧
mi,Y (B) > 0 ∧B ⊂ Θ+

i or B ⊂ Θ−
i , then mi,X(Θ−

i ) = 1.

1In this paper, we only consider simple security games that face
one type of attacker in order to discover more intrinsic characteris-
tics of security games under ambiguities.

2The defender’s strategy is PR (covering the Prayer Room) and
the attacker’s strategy is SA (attacking the Shopping Area).

3Assigning a security team covering a specific place can be re-
gards as a pure strategy in the security game.

Table 1: Airport security game
Here a={−8,−7}, b={−9, . . . , 0}, c={5, 6}, d={0, . . . , 9}.

SA PR SL VL | H

SA [2, 6]; −7
{m(a)=0.8,

null; 2 −8; 7
m(b)=0.2}; 3

PR [-7,-3]; 5
{m(c)=0.8,

null; 2 -8; 7
m(d)=0.2}; -5

SL [−7,−3]; 5
{m(a)=0.8,

null; −4 −8; 7
m(b)=0.2}; 3

VL [−7,−3]; 5
{m(a)=0.8,

null; 2 {(VL,VL);(H,H)}:7; −9
m(b)=0.2}; 3

H [−7,−3]; 5
{m(a)=0.8,

null; 2 {(VL,H);(H,VL)}:−8; 7
m(b)=0.2}; 3

The same as traditional game theory, for each player his
mixed strategy set is denoted as Δi, in which a probability is
assigned to each of his pure strategy. By this definition, we
can distinguish two types of ambiguity in security games. (i)
The value of a payoff is ambiguous: (a) absent: for ui(X), we
have |X| = 1 ∧ ∀ui(Y )X⊆Y , mi,Y (Θ

+
i )=1 or mi,Y (Θ

−
i )=

1; (b) interval value: for ui(X), we have mi,X(B)=1, where
B = {hi, . . . , hj} ∧ B ⊂ Θ; and (c) ambiguity lottery: for
ui(X), ∃B ⊂ Θi such that mi,X(B) > 0 ∧ |B| > 1. And
(ii) the pure strategy profile that relates to a given payoff is
ambiguous: for ui(X), we have |X| > 1 ∧ mi,X(Θ−

i ) �= 1.
Moreover, the value of payoff is not ambiguous if the payoff
is: (i) a point value: for ui(X), we have m({B})=1, where
B ⊆Θi∧|B|= 1; or (ii) risk: for ui(X), if m(B)> 0, then
B ⊆Θi∧|B|= 1. Finally, the profile that relates to a given
payoff is not ambiguous if for ui(X), we have |X|=1.

Clearly, for any ui(X), X ⊆ Ψ and |X| = 1, if we have
hi ∈ Θi and m({hi}) = 1, then the payoff of each pure strat-
egy profile is a point value, which means that the security
game under ambiguities is reduced to a traditional security
game. Moreover, the definition assumes that there are impre-
cise probabilities [Shafer, 1976] for the payoffs of the subsets
of profiles. This is consistent with our intuition that the possi-
ble payoff values in a given security game are often finite and
discrete. For example, if the payoffs are actually money, then
the number of payoffs is finite and their differences will not
be less than 0.01. Hence, in order to consider the payoffs of
compound profiles, the payoff function is defined on the set
of all pure strategy profiles subsets. Finally, the last sentence
in Definition 5 means the possible subsets of strategy profiles
that do not appear in the payoff matrix of a game (e.g., Table
1) have no influence on the outcome of this game.

Finally, we take the second row in Table 1 about the airport
scenario in Section 1 as an example to discuss some insights
of these two types of ambiguity. (i) The value of a payoff
is ambiguous. (a) An absent payoff means there are no ap-
propriate values to represent a situation, i.e., he only knows
the result of the pure strategy profile is successful or not.
Thus, we can distinguish two types of absent payoff: positive
absent payoff (m({Θ+

i }) = 1) and negative absent payoff
(m({Θ−

i }) = 1). In Table 1, when the profile is (PR, SL),
it satisfies this situation and m1,{(PR,SL)}({Θ−

i }) = 1. (b)
For interval-valued payoffs, the complete ignorance of player
i for the interval-valued payoff [xs, xt] of the payoff func-
tion ui(X) can be represented by mi,X({xs, . . . , xt}) = 1.
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Table 2: Airport security game
Here a={−8,−7}, b={−9, . . . , 0}, c={5, 6}, d={0, . . . , 9}.

SA PR SL VL | H

SA m({2, . . . , 6}) = 1; m′({−7}) = 1 m(a) = 0.8,m(b) = 0.2; m′({3}) = 1 m(b) = 1; m′({2}) = 1 m({−8}) = 1; m′({7}) = 1

PR m({−7, . . . ,−3}); m′({5}) = 1 m(c) = 0.8,m(d) = 0.2; m′({−5}) = 1 m(b) = 1; m′({2}) = 1 m({−8}) = 1; m′({7}) = 1

SL m({−7, . . . ,−3}) = 1; m′({5}) = 1 m(a) = 0.8,m(b) = 0.2; m′({3}) = 1 m(d) = 1; m′({−4}) = 1 m({−8}) = 1; m′({7}) = 1

VL m({−7, . . . ,−3}) = 1; m′({5}) = 1 m(a) = 0.8,m(b) = 0.2; m′({3}) = 1 m(b) = 1; m′({2}) = 1
m{(V L,V L);(H,H)}({7}) = 1;

m′
{(V L,V L);(H,H)}({−9}) = 1

H m({−7, . . . ,−3}) = 1; m′({5}) = 1 m(a) = 0.8,m(b) = 0.2; m′({3}) = 1 m(d) = 1; m′({2}) = 1
m{(V L,H);(H,V L)}({−8}) = 1;

m′
{(V L,H);(H,V L)}({7}) = 1

It means that player i only knows that the payoff that he can
gain could be any value in-between xs and xt, but cannot be
sure which value it is. Then, by Equations (4) and (5), we can
obtain the corresponding expected payoff interval as follow:

EUIi(X) = [xs × 1, xt × 1] = [xs, xt]. (8)

That is, the expected payoff interval is the same as the
interval-valued payoff itself. Thus, in Table 1, when the
pure strategy profile is (PR, SA), it satisfies this situation
and m1,{(PR,SA)}({−7, . . . ,−3}) = 1. (c) Ambiguity lot-
tery means that multiple discrete situations are possible with
(a generalization of) the probability of each situation being
known. In Table 1, when the profile is (PR, PR), it satisfies
this situation. And (ii) the pure strategy profile that relates to a
given payoff is ambiguous: it means some strategies of play-
ers are closely related and so the combined value is applied
in this situation. In Table 1, profiles (PR, VL) and (PR, H)
satisfy this situation and m1,{(PR,VL),(PR,H)}({−8}) = 1.
Thus, we can represent the payoff matrix in Table 1 by mass
functions as shown in Table 2 without changing its meaning.

4 Ambiguity Aversion Framework

This section discusses how to handle a security game under
ambiguities. To handle such a game, we first transform all
the five types of payoff values (i.e., absent, interval-valued,
ambiguity lottery, point-valued, and risk) into point values
for all subsets of pure strategy profiles. Then, we handle the
payoffs of compound strategy profiles by finding the point
value for each pure strategy profile. Finally, the defender’s
optimal strategy can be obtained by well established methods
(e.g., [Pita et al., 2009; Tambe, 2011; Yang et al., 2012]).

The basic assumptions of our framework are as follow:

A1: Each player i will consider the relative expected payoff
of the subsets of profiles.

A2: Each player will maximize his expected payoffs relative
to his subjective priorities.

A3: The worst expected outcome of negative absent payoff
is worse than any other types of payoffs.

Intuitively, A1 means that if a player believes he will not ob-
tain the expected payoff that is lower than the worst payoff in
the game, he only needs to consider how well the given strat-
egy performs compared with the worst one. A2 is a rational
player assumption. A3 means that for the reason of caution,
the players think that there exists a chance that the negative
absent payoff turns out to be the worst outcome in the game.

Determine

utility matrix

(i) Calculate

ambiguity
degree

expected
payoff interval

(ii) Obtain

(iii) Determine

pure strategy profile
belief degree of(v) Obtain Bel function

Pl function

 belief interval's
ambiguity degree

preference
degree relative payoff

point-valued

complete?
No Yes

(iv) IRRR

mass function
(vii) Construct

opponent's ranking

defender's optimal
strategy

(iv) CRRR

(vi) Obtain

(viii) Determine

Figure 1: Procedure of our ambiguity aversion method

As a consequence of these assumptions, we can deploy the
ambiguity aversion method, as shown in Figure 1, to obtain
the point value for all pure strategy profiles as follow.

(i) Calculate the expected payoff intervals and ambiguity
degree of Xr for a given player i.

As we can represent all types of payoffs by mass functions
in security games under ambiguities, we can calculate the ex-
pected payoff intervals for the defender by Equations (4) and
(5), and the ambiguity degree by Equation (3) directly.

(ii) Obtain preference degree νi(Xr) for player i.

Definition 6. Let EUIi(Xr) = [Ei(Xr), Ei(Xr)] be an
interval-valued expected payoff of profile subset Xr for
player i, and δi(Xr) be the ambiguity degree of mi,Xr

, then
the preference degree of Xr is given by:

νi(Xr)=
2Ei(Xr)+(1−δi(Xr))(Ei(Xr)−Ei(Xr))

2
. (9)

Actually, since the preference degree of νi(Xr) is a kind of
pointed value expected utility, it is reasonable to assume that
νi(Xr) ∈ [Ei(Xr), Ei(Xr)]. Thus, with this assumption, it
is easy to prove that Definition 6 is a unique one that satisfies
the properties in Definition 4. Moreover, Ma et al. [2013]
proved that the preference ordering induced by this definition
is equivalent to that in Definition 4.

In the security game as shown in Table 1, suppose Θ1 =
{−9, −8, . . . , 0, 1, . . . , 9}. According to Definition 5,
we can express all types of ambiguities in Table 1 by mass
functions. Thus, by Equation (9), the defender’s preference
degrees can be obtained as shown in Table 3.4

4Here we consider the payoff value of the defender first. Later
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Table 3: Preference degree for the defender
SA PR SL VL | H

SA 3.2 −6.74 −9 −8

PR −5.8 5.46 −9 −8

SL −5.8 −6.74 0 −8

VL −5.8 −6.74 −9 {(VL,VL);(H,H)}:7

H −5.8 −6.74 −9 {(VL,H);(H,VL)}:−8

Table 4: Point-valued relative payoffs for the defender
SA PR SL VL | H

SA 12.2 2.26 0 1

PR 3.2 14.46 0 1

SL 3.2 2.26 9 1

VL 3.2 2.26 0 {(VL,VL);(H,H)}:16

H 3.2 2.26 0 {(VL,H);(H,VL)}:1

(iii) Determine player i’s relative payoff di(Xr) between
the given preference degree and the worst one in a game.

First, the worst preference degree can be defined as follow:
Definition 7. For a security game under ambiguities, a pref-
erence degree is the worst preference degree, denoted as
νwi (Xk) (w means the worst one), of player i if and only if

∀Xr ⊂ Ψ ∧ Ui(Xr) �= ∅, νwi (Xk) ≤ νi(Xr).

Thus, we can formally define the relative payoff as follow:
Definition 8. Let νwi (Xk) be the worst preference degree of
player i, then the relative payoff, denoted as di(Xr), for the
subset of pure strategy profiles Xr is:

di(Xr) = νi(Xr)− νwi (Xk). (10)
Clearly, we have di(Xr) ≥ 0. The motivation of this step

is to transform all the payoff values into positive numbers in
order to obtain the mass values in the next step. For the airport
security game in Table 1, by Equation (10), we can obtain the
defender’s point-valued relative payoffs as shown in Table 4.

(iv) Derive the mass function from di(Xr) for player i.
Since a belief interval can be used to express the belief de-

gree and uncertainty of each pure strategy profile for a given
player, we need a method to assign a mass value to each sub-
set of pure strategy profiles. In fact, the mass value based on
di(Xr) represents the possibility that a subset of pure strat-
egy profiles contains the most favorable outcome that player
i would like to have. Thus, we present the following two the-
orems (which are the variants of the comparison rules in [Ma
et al., 2012], and so we omit their similar proofs here for the
sake of space):
Theorem 1. For a given security game with absent payoffs,
let Xr ⊂ Ψ be one of n elements such that di(Xr) �= 0 with
relative payoff aj , then the mass function over Ψ of profiles
subset Xr for player i is:

mi(Xr) =
aj∑n

k=1 ak +
√
n
, (k = 1, 2, . . . , n). (11)

Moreover, the uncertainty for the whole game for player i is

mi(Ψ) =

√
n

(
∑n

k=1 ak +
√
n)

, (k = 1, 2, . . . , n). (12)

on we will discuss the attacker’s .

Table 5: Mass function for the defender
m({(SA,SA)})=0.15, m({(SA,PR)})=0.03, m({(SA,VL),(SA,H)})=0.01,

m({(PR,SA)})=0.04, m({(PR,PR)})=0.18, m({(PR,VL),(PR,H)})=0.01,

m({(SL,SA)})=0.04, m({(SL,PR)})=0.03, m({(SL,VL),(SL,H)})=0.01,

m({(VL,SA)})=0.04, m({(VL,PR)})=0.03, m({(H,VL),(VL,H)})=0.01,

m({(H,SA)})=0.04, m({(H,PR)})=0.03, m({(VL,VL),(H,H)})=0.19,

m({(SL,SL)})=0.11, and m(Ψ)=0.05.

Table 6: Belief interval [Bel, P l] for defender
SA PR SL VL H

SA [0.15,0.2] [0.03,0.08] [0,0.05] [0,0.06] [0,0.06]

PR [0.04,0.09] [0.18,0.23] [0,0.05] [0,0.06] [0,0.06]

SL [0.04,0.09] [0.03,0.08] [0.11,0.16] [0,0.06] [0,0.06]

VL [0.04,0.09] [0.03,0.08] [0,0.05] [0,0.24] [0,0.06]

H [0.04,0.09] [0.03,0.08] [0,0.05] [0,0.06] [0,0.24]

Theorem 2. For a given security game without any absent
payoff, let Xr ⊂ Ψ be one of n elements such that di(Xr) �=
0 with relative payoff aj , then the mass function over Ψ of
profiles subset Xr for player i is:

mi(Xr) =
aj∑n
k=1 ak

, (k = 1, 2, . . . , n). (13)

Intuitively, in a game without absent payoffs, there is some
evidence for all the payoff evaluations. So, the value of the
worst preference degree is based on some evidence. How-
ever, for an absent payoff where a player has absolutely no
idea about the value, it means that the result of the worst pref-
erence degree is completely obtained by the subjective judge-
ment about the boundary of the payoff values. So, the player
has some kind of uncertainty about the result of the absent
payoff (whether it turns out to be worse than the lower bound
of the values). Hence, the player has to express his uncer-
tainty in this situation to depict his preference of the strate-
gies. So, we deploy Theorems 1 and 2 to derive the mass
function.

For the airport security game in Table 1, by Theorems 1
and 2, we can obtain the mass function for the defender in
Table 5 from the relative payoffs as shown in Table 4.

(v) Obtain the belief interval by Definition 1 for player i.
For the airport security game in Table 1, we can obtain

the belief interval for the defender as shown in Table 6 by
Definition 1 from the mass function shown in Table 5.

(vi) Obtain the point-valued belief degree based on the be-
lief interval for player i.
Definition 9. Let mi(Xr) be the mass value of the profiles
subset Xr for player i and mi(Ψ) be the mass value of Ψ,
which both induce belief function Beli(y) and plausibility
function Pli(y) over Ψ. Let δi(y) be the ambiguity degree
of the belief interval (y = {(aj , a−j)} ⊂ Xt), then its point-
valued belief degree is given by

ηi(y)=
2Beli(y)+(1−δi(y))(Pli(y)−Beli(y))

2
, (14)

where

δi(y) =

∑
y
⋂

B �=∅
mi(B) log2 |B|

log2 |Ψ| . (15)
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Table 7: Norm form for airport security game
SA PR SL VL H

SA 0.17; 0.01 0.05; 0.05 0.02; 0.05 0.03; 0.04 0.03; 0.04

PR 0.06; 0.06 0.2; 0.018 0.02; 0.05 0.03; 0.04 0.03; 0.04

SL 0.06; 0.06 0.05; 0.05 0.13; 0.02 0.03; 0.04 0.03; 0.04

VL 0.06; 0.06 0.05; 0.05 0.02; 0.05 0.11; 0 0.03; 0.04

H 0.06; 0.06 0.05; 0.05 0.02; 0.05 0.03; 0.04 0.11; 0

(vii) Construct the point-valued belief degree of player i’s
adversaries by repeating steps (i) to (vi).

For the airport security game in Table 1, repeat steps (i)
to (vi) for the attacker. Then by Definition 9 and the belief
interval for the defender shown in Table 6, we can obtain the
traditional security game as shown in Table 7.5

(viii) Use some well established methods in security games
to determine the optimal mixed strategy of the defender.

For the airport security game in Table 1, by Table 7 and
the idea in [Korzhyk et al., 2011], we can obtain the optimal
mixed strategy of the defender is ( 5

13/SA, 4
13/PR, 4

13/SL).

5 Properties

This section reveals two properties of our framework. One
is about the correctness of point-value game models under
ambiguities and the other is about the risk attitude of the de-
fender.

As we pointed out in Section 1, most existing researches
of security games assume that all players have point-valued
payoffs for each pure strategy profile. However, in real-life
security allocation problems, since the experts or data ana-
lysts have to estimate a complex security system that involves
a large number of uncontrollable and unpredictable factors, it
is very reasonable to assume that there exist some deviations
for the point-valued estimations of payoffs. So, the manager
will ask the question: under which condition, the defender’s
optimal strategy obtained from the point-valued payoffs is the
same if the estimation has a range of deviation? Since the de-
fender’s optimal strategy is determined by the set of SSE or
NE, we can answer this question by the following theorem:

Theorem 3. Let asl be the payoffs of each pure strategy pro-
file sl in a traditional security game G=(N,A,Ψ,Θ,M,U)
for player i, [bsl , csl ] (bsl ·csl > 0∧asl ∈ [bsl , csl ]) be the in-
terval payoffs of each profile in G′ = (N,A,Ψ,Θ′,M ′, U ′),
if for any two payoffs ask , asr in G, we have ask − bsk =
asr− bsr , csk− bsk =csr− bsr , and |Θ′+|= |Θ′−|, then these
two games G and G′ have the same set of SSE (and NE).

Proof. As we use the belief degree in Definition 9 to deter-
mine the optimal strategy for the defender in our framework,
according to [Weibull, 1996] and the concept of SSE [Ko-
rzhyk et al., 2011], we only need to prove that asl and the
belief degree, ηi(sl), of [bsl , csl ] satisfy an equation ηi(sl) =
kasl + l, where k > 0∧ k, l ∈ � (� is a set of real numbers).
It can be easily proved in our framework. So, games G and
G′ have the same set of NE and SSE.

5Due to page limit, we do not present each step of the attacker’s
payoffs value in this paper.

Now, we turn to the second property about the player’s risk
attitude. Actually, the preference degree in Definition 6 can
be presented by νi(Xr) = αEi(Xr)+(1−α)Ei(Xr), where
α = (1+δi(Xr))

2 . Similarly to Hurwicz’s criterion [Jaffray
and Jeleva, 2007], this definition ascribes a value, which is a
weighted sum of its worst and best expected payoffs of the
subset of pure strategy profiles Xr. Thus, α can be inter-
preted as a degree of pessimism. That is, a risk seeking (opti-
mism) player will assign a lower value to α than a risk averse
(pessimism) player for the same expected payoffs intervals.
So, a risk seeking player will obtain a higher preference de-
gree than a risk averse player for the same expected payoff
intervals. Hence, by Definition 2, we find that the ambiguity
degree is determined by mass function m and frame Θ. Fur-
thermore, as the mass function will not change for a given set
of pure strategy profiles and the boundary of Θ is based on the
manger’s subjective judgement, we can show that a player’s
risk attitude can be influenced by the boundary of Θ:

Theorem 4. Let m be a mass function on frame Θi =
{h1, . . . , hn}, νi(X) be the preference degree that obtained
from m, m′ be a mass function on Θ′

i = {k1, . . . , km}. If
Θ′

i⊃Θi and m′(X)=m(X), X⊂Θi then ν′i(X)>νi(X).

Proof. Because m′(X) = m(X), X⊂Θi, and Θ′
i ⊃ Θi, by

Definition 2, we have δ′i(Xr) < δi(Xr). Hence, by m′(X) =
m(X) and Equations (4) and (5), we have EUIi = EUI ′i .
Thus, by Equation (9), we have ν′i(X) > νi(X).

Intuitively, Theorem 4 means that for an expected payoff
interval, the more risk seeking the defender is, the wider the
range he will consider for the possible payoffs values of the
whole game. For example, when considering value of the real
estates, the manager may not worry too much about an error
within a range of one thousand dollars for the price of a house,
since one thousand is a very small value for a house. The
defender will then be more risk seeking to determine the point
value estimation for a house. However, when considering the
daily revenue of shops, the manager might be more cautious
to consider an error within the range of one thousand. So, this
theorem means that the manager should not over-estimate the
possible payoff values in a security game under ambiguities
if he wants to be cautious when estimating the value of each
pure strategy profile. Simply, the players’ risk attitude will
influence the point-valued belief degree and eventually the
solution of a security game under ambiguities.

6 Reduce Influence of Complete Ignorance

In a security game, it is very important to reduce the effect
of complete ignorance for the strategy profile selection. For
example, in an airport, if the defender is unsure about the
value of the security targets and chooses a wrong strategy for
patrolling, then the attacker will take advantage and make a
successful assault, which is unacceptable for public security.
Moreover, in our framework, the complete ignorance for the
strategy profile selection of player i is determined by mi(Ψ),
where Ψ is the set of all pure strategy profiles. We now pro-
vide two methods to reduce the complete ignorance in a se-
curity game as shown in the following theorem:

276



Theorem 5. In security game G = (N,A,Ψ,Θ,M,U), let
di(Xr) be the relative payoffs of game G, mi(Ψ) be the un-
certainty of the whole game (complete ignorance) that defined
in Theorem 1. Then:

(i) For game G′ = (N,A,Ψ,Θ,M ′, U ′), if d′i(Xr) >
di(Xr), and ∀di(Xs) = 0, d′i(Xs) = di(Xs), then
m′

i(Ψ) < mi(Ψ).
(ii) For game G′′=(N,A∪B,Ψ∪Φ,Θ,M∪M ′′, U∪U ′′),

if G = (N,A,Ψ,Θ,M,U), di(Xr) ∈ [t, 2t], where
t >

∑
di(Xr)
2n , then m′′

i (Ψ ∪ Φ) < mi(Ψ).

Proof. We can prove (i) and (ii) together. By Theorem 1 and
∀di(Xs)=0, d′i(Xs) = di(Xs), we have

mi(Ψ)−m′
i(Ψ)=

√
n

(
∑n

j=1 aj+
√
n)

−
√
n

(
∑n

j=1 a
′
j+

√
n)

,

where aj is the value of the relative payoff di(Xr) such that
aj > 0, a′j is the value of the relative payoff d′i(Xr) such that
a′j > 0, and n is the number of element aj or a′j . Clearly, by
d′i(Xr)>di(Xr), we have a′j > aj . Thus, item (i) holds.

Moreover, in G′′, when the number of relative payoffs in
Δ is 1, we have:

√
n

(
∑n

j=1 ai+
√
n)

>

√
n

(2nt+
√
n)

>

√
n+1

(2nt+t+
√
n+ 1)

.

So, in this case, item (ii) holds. When the number of relative
payoffs in Δ is k − 1, item (ii) also holds. Then, when the
number of relative payoffs in Δ is k (assume the sum of k −
1 relative payoffs in Φ is b, the newly added one’s relative
payoff is c), we have

∑n
j=1 aj + b+ c < 2t(n+ k − 1) + 2t

because the relative payoffs in Φ belongs to [t, 2t]. Then:
√
n+ k − 1

(
∑n

j=1 ai + b+
√
n+ 1)

>

√
n+ k

(2nt+ b+ c+
√
n+ k)

.

So, when the number of relative payoffs in Δ is k, item (ii)
holds as well. Therefore, item (ii) holds no matter how many
relative payoff values in Φ.

Actually, Theorem 5 tells us that there are two methods for
reducing the effects of complete ignorance for strategy selec-
tion in a security game under ambiguities: (i) to increase the
importance degrees of some security targets (apparently, we
cannot increase that of an absent payoff one); and (ii) to con-
sider more security targets before selecting a strategy when
the importance degrees of all security targets are not too high.
These are consistent with our intuition. In fact, if the values
of some security targets are high enough, then the defender
will not hesitate to assign a random patrolling to cover those
targets. On the other hand, if all security targets are not so
important, the defender can consider more targets or make
the absent payoff target more specific. For example, when
the payoff of a shopping area is unknown, the defender can
consider carefully that the payoff of which shop is unknown
and how to evaluate other shops. In this way, he can reduce
the effect of complete ignorance for his optimal strategy se-
lection.

7 Related Work

Recently, there have been lots of interest in studying the
games under ambiguity. Eichberger and Kelsey [2011] show
that ambiguity preferences will cause players to pursue strate-
gies with high payoffs of equilibrium and ambiguity-aversion
can make the strategies with low payoffs of equilibrium less
attractive. Similarly, Giuseppe and Maria [2012] investigate
the difference among equilibria with respect to various atti-
tudes toward ambiguity, and show that different types of con-
tingent ambiguity will affect equilibrium behavior. And Bade
[2011] proposes a game-theoretic framework that studies the
effect of ambiguity aversion on equilibrium outcomes based
on the relaxation of randomized strategies. However, none of
these models provides a method to handle the two types of
ambiguity, which our model did.

The problem of modeling uncertainty has become a key
challenge in the realm of security. Kiekintveld et al. [2010]
introduce an infinite Bayesian Stackelberg game method to
model uncertain distribution of payoffs. Yang et al. [2012]
consider the bounded rationality of human adversaries and
use prospect theory [Kahneman and Tversky, 1979] and
quantal response equilibrium to obtain the defender’s opti-
mal strategy. Korzhyk et al. [2011] consider the uncertainty
of the attacker’s surveillance capability and suggest that the
defender should select the NE strategy in this situation. How-
ever, none of them has considered the ambiguities in security
games. Instead, our paper has fully considered this issue.

8 Conclusions and Future Work

This paper proposed an ambiguity aversion framework for se-
curity games under ambiguities. Moreover, we reveal two
properties of our framework about the correctness of point-
value security game models under ambiguities and player’s
risk attitude in our ambiguous games. In addition, we pro-
pose two methods to reduce the effects of complete ignorance
in security games under ambiguities. There are many pos-
sible extensions to our work. Perhaps the most interesting
one is the psychological experimental study of our ambiguity
aversion framework. Another tempting avenue for evaluat-
ing our framework is to show that under ambiguity, selecting
the defender’s optimal strategy by our framework is better
than a random point-valued game matrix. Hence, we can also
consider the effect of regret and ambiguity aversion for con-
structing the equilibrium and selecting the defender’s optimal
strategy. Finally, We will consider the event reasoning frame-
work developed in the CSIT project [Ma et al., 2009; 2010;
Miller et al., 2010] as a testbed to fully evaluate the useful-
ness of our model.
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