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Abstract
In this paper, we address the problem of merging
multiple imprecise probabilistic beliefs represented
as Probabilistic Logic Programs (PLPs) obtained
from multiple sources. Beliefs in each PLP are
modeled as conditional events attached with prob-
ability bounds. The major task of syntax-based
merging is to obtain the most rational probability
bound for each conditional event from the original
PLPs to form a new PLP. We require the minimal
change principle to be followed so that each source
gives up its beliefs as little as possible. Some in-
stantiated merging operators are derived from our
merging framework. Furthermore, we propose a set
of postulates for merging PLPs, some of which ex-
tend the postulates for merging classical knowledge
bases, whilst others are specific to the merging of
probabilistic beliefs.

1 Introduction
The need for dealing with imprecise probabilistic beliefs is
present in many real world applications. When multiple
sources of probabilistic beliefs are available, one classic ob-
jective in statistics is to form consensus beliefs from the
sources (e.g., [Nau, 1999; Pate-Cornell, 2002; Kern-Isberner
and Rödder, 2004; Chen et al., 2005; Osherson and Vardi,
2006; Bronevich, 2007] among others).

In the literature, many methods have been proposed to ag-
gregate probability distributions where probabilistic beliefs
are modeled as multiple probability distributions [Nau, 1999;
Bronevich, 2007]. These methods are syntax-irrelevant in the
sense that the underlying set of samples is unique and static.

In this paper, we consider situations where probabilistic
beliefs are represented as probabilistic formulas in the form
of (ψ|φ)[l, u], that is, conditional events are attached with
probability bounds. Multiple belief sets may contain over-
lapped but not entirely the same set of probabilistic condi-
tional events. Probabilistic conditional events explicitly given
in an PLP suggest the focus and interests of that PLP in rela-
tion to an application. Let us consider a scenario where there
are two sources providing relevant information. Source A is
more concerned with the relationship between events φ and
ψ and models its beliefs by estimating a probability bound
for (ψ|φ). Source B is not aware of the relationship between

φ and ψ and hence does not have this relationship explicitly
modeled in its beliefs. Let PLP PA and PB be elicited from
sources A and B respectively. A rational way to merge PA

and PB is to generate a PLP in which the bound for (ψ|φ)
is closer to the bound of (ψ|φ) stated in PA than that im-
plicitly inferred from PB . This observation suggests that first
a rational merging procedure could be syntax-based in order
to preserve any explicitly stated probabilistic beliefs, and sec-
ond appropriate weights might be attached to sources (or even
conditional events) to emphasize their relative importance.

Some syntax-based merging methods were proposed in
[Kern-Isberner and Rödder, 2004; Batsell et al., 2002; Osher-
son and Vardi, 2006] to extract a probability distribution from
multiple probabilistic beliefs. However, our main objective
of merging multiple PLPs is to obtain a new PLP which has a
set of probability distributions as its probabilistic models, so
that the impreciseness of the original PLPs can be preserved.
Therefore, these methods do not satisfy our requirements.

When beliefs from different sources contradict with each
other, each source should give up some of its beliefs in or-
der to get consensus beliefs. Intuitively, we expect that each
source gives up its beliefs as little as possible, and this is
known as the minimal change principle. Another essential re-
quirement is the mean-value principle, which states that the
resultant probability bound for any conditional event shall not
fall beyond the bounds given by the original sources. Con-
strained by these principles, in this paper we propose a frame-
work to merge imprecise probabilistic beliefs syntactically.
Within the framework, we define quantitatively how to mea-
sure the amount of beliefs that a source has given up (with
respect to a merged result) and what constitute a minimal
change (with respect to a set of sources). By instantiating
the definitions for measuring the amount that a source shall
give up on its beliefs, and for measuring the minimal change,
we derive several concrete merging operators that possess dif-
ferent interesting characteristics. To formally regulate the
behavior of merging PLPs, we propose a number of postu-
lates in the framework, some of these extend the postulates
for merging classical beliefs [Konieczny et al., 2004] whilst
others are peculiar to the merging of probabilistic beliefs. It
is proved that our instantiated operators satisfy most of these
postulates.

The rest of this paper is organized as follows. After a brief
review of PLPs in Section 2, we introduce our syntax-based



merging framework in Section 3. Then, we provide postulates
for merging PLPs in Section 4. Some instantiated operators
are defined in Section 5. After comparing our work with re-
lated work, we conclude this paper in Section 6.

2 Probabilistic Logic Programs
We consider conditional probabilistic logic programming in
this paper [Lukasiewicz, 1998; 2001; 2007]. Let Φ be a fi-
nite set of predicate symbols and constant symbols, and V be
a set of variables. An event or formula can be defined from
Φ ∪ V and connectives ¬,∧,∨ as usual. We use Greek let-
ters φ, ψ, ϕ for events. An assignment σ maps each variable
to a constant from Φ. The Herbrand semantics can also be
canonically defined. We use I to stand for a possible world.
Notation I |=σ φ means I is a model of φ under σ, and we
denote I |= φ if I |=σ φ for any assignment σ. A conditional
event is of the form ψ|φ with events ψ and φ. A probabilis-
tic formula is of the form (ψ|φ)[l, u] which means that the
lower and upper probability bounds for conditional event ψ|φ
are l and u, where l, u ∈ [0, 1]. In this paper, for simplicity
we say [l, u] the probability bound for (ψ|φ). A conditional
probabilistic logic program (PLP) P is a set of probabilistic
formulas.

A probabilistic interpretation Pr is a probability distri-
bution on IΦ, where IΦ is the set of all possible worlds.
The probability of an event φ in Pr under σ is defined as
Prσ(φ) =

∑
I∈IΦ,I|=σφ Pr(I). If Prσ(φ) > 0, we de-

fine Prσ(ψ|φ) = Prσ(ψ ∧ φ)/Prσ(φ). We define Pr |=σ

(ψ|φ)[l, u], iff Prσ(φ) = 0 or Prσ(ψ|φ) ∈ [l, u]. Pr
is a probabilistic model of (ψ|φ)[l, u], denoted by Pr |=
(ψ|φ)[l, u] iff Pr |=σ (ψ|φ)[l, u] for all σ. Pr is a proba-
bilistic model of a PLP P , denoted by Pr |= P , iff Pr is a
probabilistic model of all µ ∈ P . A PLP P is satisfiable or
consistent iff a model of P exists. We define P |= (ψ|φ)[l, u],
iff all probabilistic models of P are also probabilistic mod-
els of (ψ|φ)[l, u]. We define P |=tight (ψ|φ)[l, u], iff P |=
(ψ|φ)[l, u], P 6|= (ψ|φ)[l, u′], P 6|= (ψ|φ)[l′, u] for all l′ > l
and u′ < u. Note that, if P |= (φ|>)[0, 0], then it is canoni-
cally defined as P |=tight (ψ|φ)[1, 0], where [1, 0] stands for
an empty set. We define P ≡ P ′ iff Pr |= P ⇔ Pr |= P ′.

3 A Merging Framework for PLPs
3.1 Problem description
A probabilistic profile, denoted as E , is a multi-set of PLPs,
i.e. E = {P1, . . . , Pn}, where P1, . . . , Pn are PLPs. For
simplicity, we require that each Pi is satisfiable and we define
Γ(Pi) = {(ψ|φ) | ∃l, u, (ψ|φ)[l, u] ∈ Pi}. Γ(Pi) is the set
containing all the conditional events (ψ|φ) that are of interests
to the source providing Pi. For a probabilistic profile E , we
have Γ(E) =

⋃n
i=1 Γ(Pi). We call E1 and E2 are equivalent,

denoted by E1 ≡ E2, iff there exists a bijection between E1

and E2 such that each PLP is equivalent to its image. In this
paper, we use t to denote the multi-set union.

In theory, it is possible for a single conditional event
to have two probabilistic bounds. For example, let P =
{(q(X)|p(X))[0, 0.1], (q(X)|p(X))[0.9, 1]}, then P is sat-
isfiable and P |=tight (p(X)|>)[0, 0]. If we have P ′ =
{(p(X)|>)[0, 0]}, then P ≡ P ′. However, in practice, a sin-
gle knowledge base rarely contains two different probability

bounds for the same conditional event. This condition is for-
mally defined as follows.
Definition 1 A PLP P is called canonical iff for any condi-
tional event (ψ|φ) in Γ(P ),
• (ψ|φ)[l, u] ∈ P ⇒ l ≤ u;

• (ψ|φ)[l1, u1] ∈ P, (ψ|φ)[l2, u2] ∈ P ⇒ l1 = l2, u1 = u2.

In our merging framework defined here, we require that
each original PLP Pi is canonical without losing generality
since every PLP Pi has a canonical PLP equivalent to it.

Let E = {P1, . . . , Pn} be a probabilistic profile, and
P ∈ ∆(E) be a PLP in the result of merging the PLPs in
E where ∆ is a merging operator. We require that P satisfies
the following constraints.
• P is canonical.
• For any Pi ∈ E and any (ψ|φ) ∈ Γ(E), suppose that

Pi |= (ψ|φ)[li, ui], then P |= (ψ|φ)[l, u], s.t., mini li ≤
l ≤ u ≤ maxi ui. This requirement is also known as
the mean-value property which guarantees a probabilis-
tic Pareto principle from Social Choice Theory [Sen,
1986] as discussed in [Kern-Isberner and Rödder, 2004].

• Since Γ(P ) = Γ(E), the only difference between Pi and
P is the probabilistic bounds for the conditional events
in Γ(Pi). Therefore, we can measure the differences of
these probability bounds. ∆(E) should contain those
PLPs such that each of them is closest to all the PLPs
in E (w.r.t. the probability bounds). This requirement is
also known as the minimal change principle.

• We can further require that the conditional events in the
original PLPs have as similar effects as possible in the
merging to get more preferred merging results.

3.2 Strong consistency between PLPs
When two knowledge bases infer contradicting conclusions,
we consider them inconsistent. That is true in classical logic,
since for two propositional (or first order) knowledge bases
K1 and K2, K1 ∪K2 is unsatisfiable iff there exists a φ such
that K1 |= φ and K2 |= ¬φ. However, two PLPs infer con-
tradicting conclusions (e.g. infer two disjoint bounds for the
same conditional event) does not suggest that these two PLPs
are inconsistent. Let us demonstrate this with the following
example.
Example 1 Let P1 = {(q(t)|p(t))[0.4, 0.5]} and P2 =
{(q(t)|p(t))[0.51, 0.6]} be two PLPs. Informally, P1 states
that “q(t) looks unlikely to be true when p(t) is true” whilst
P2 says that “q(t) looks likely to be true when p(t) is true”.
Intuitively, P1 and P2 contradict each other. However, P1∪P2

is satisfiable, and P1 ∪ P2 |=tight (p(t)|>)[0, 0], which says
that p(t) cannot be true.
Obviously, P1 ∪P2 is not a reasonable candidate for merging
P1 and P2, since by merging, we want to extract appropriate
bounds for the conditional event (q(t)|p(t)) rather than sim-
ply state that the antecedent p(t) can not be true. In our frame-
work, for any P , if P ≡ P1 ∪ P2 and Γ(P ) = Γ(P1 ∪ P2),
then P is not canonical. Therefore, P1 ∪ P2 does not satisfy
the first constraint we outlined above, and thus can not be a
candidate of merging result. It is worth noting that the union
of PLPs may or may not be canonical.



Definition 2 Let P1, . . . , Pn be PLPs. We define the com-
pact union of P1, . . . , Pn, denoted as

⊎n
i=1 Pi, as follows⊎n

i=1 Pi = {(ψ|φ)[l, u] | (ψ|φ) ∈ ⋃n
i=1 Γ(Pi),

s.t. l = max {li | Pi |=tight (ψ|φ)[li, ui]}
and u = min {ui | Pi |=tight (ψ|φ)[li, ui]}

In the compact union, only one bound is assigned to a condi-
tional event. The compact union of a set of PLPs is semanti-
cally equivalent to the union of these PLPs.
Proposition 1 Let P1, . . . , Pn be PLPs. Then

⊎n
i=1 Pi ≡⋃n

i=1 Pi.
Now, we can construct a canonical PLP P ′ from any PLP

P by replacing each (ψ|φ)[l, u] with l > u in (P ] P ) by
(φ|>)[0, 0]. Obviously, P ′ ≡ P . Two PLPs that infer con-
tradicting conclusions should be considered inconsistent. To
achieve this, we have the following definition.

Definition 3 PLPs P1, . . . , Pn are strongly consistent iff⊎n
i=1 Pi is canonical and satisfiable (consistent).
In Example 1, P1]P2 = {(q(t)|p(t))[0.51, 0.5]}, which is

not canonical, therefore P1 and P2 are not strongly consistent.

3.3 Minimal Change
Based on the constraints on merging PLPs given above, we
take merging PLPs in E as a process of constructing a canon-
ical consistent PLP P s.t. Γ(P ) = Γ(E). Then, in addition
to the extra conditional events in P from other PLP Pj , the
major difference between P and any Pi ∈ E is that the proba-
bilistic bounds for the conditional events in Γ(Pi) could be
different. A quantitative measure about the difference be-
tween these probabilistic bounds for conditional events in
Γ(Pi) can be viewed as a measure about how much belief
Pi has given up in order to reach an agreement with other
PLPs in E . Ideally, each PLP wants to give up its beliefs as
little as possible.

For any l and u, if 0 ≤ l ≤ u ≤ 1 then we call [l, u] a
sub-interval of [0, 1].

Definition 4 Let [l, u], [l′, u′] be two sub-intervals of [0, 1].
We define the change from interval [l, u] to interval [l′, u′],
denoted by Ch([l, u], [l′, u′]), as

Ch([l, u], [l′, u′]) = |l − l′|+ |u− u′|.
Definition 5 Let [l, u], [l′, u′] be two sub-intervals of [0, 1].
We define the weak change from interval [l, u] to interval
[l′, u′], denoted by wCh([l, u], [l′, u′]), as

wCh([l, u], [l′, u′]) = max(l − l′, 0) + max(u′ − u, 0)

Obviously, Ch is symmetric while wCh is asymmetric.
Based on the change of bounds, we can define the change

and weak change from one PLP to another.
Definition 6 Let P1 and P2 be two canonical PLPs s.t.
Γ(P1) ⊆ Γ(P2). We define the change (resp. weak change)
from P1 to P2, denoted as d(P1, P2), as

d(P1, P2) = Σ({d([l1, u1], [l2, u2])|
(ψ|φ) ∈ Γ(P1), (ψ|φ)[l1, u1] ∈ P1,
and (ψ|φ)[l2, u2] ∈ P2})

where d is Ch(resp. wCh).
Ch(P1, P2) is greater than 0 iff some bounds are indeed
changed, while wCh(P1, P2) is greater than 0 iff some bounds
are loosened.

Example 2 Let us consider a situation about whether taking
drug a will reduce the probability of a patient’s (with a cer-
tain disease m) mortality. One Doctor thinks that a large
proportion of the patient population with this disease will
have a highly reduced probability of mortality, whilst another
Doctor thinks a patient also with condition d is unlikely to be
benefited from this drug. Obviously, patients having disease
m and also with condition d form a subclass of patients with
disease m.

Let rMor(X) denote “reducing mortality of X” and
dis(X, d) denote “X having disease of d”, and let

µ1 = (rMor(X)|drug(X, a) ∧ dis(X, m))
µ2 = (dis(X, d)|dis(X, m))
µ3 = (rMor(X)|drug(X, a) ∧ dis(X, m) ∧ dis(X, d))

Then, the beliefs from the two doctors can be represented by
the two PLPs below:

P1 = {µ1[0.98, 1.0], µ2[0.1, 1.0]}
P2 = {µ2[0.10, 1.0], µ3[0.0, 0.1]}

Let P and P ′ be two PLPs s.t.
P = {µ1[0.914, 0.994], µ2[0.1, 1], µ3[0.034, 0.138]}
P ′ = {µ1[0.490, 0.955], µ2[0.1, 1], µ3[0.400, 0.550]}
We can calculate the (weak) changes from P1 and P2

to P and P ′ respectively, as shown in the following ta-
bles, e.g. Ch(P1, P ) = 0.083 and wCh(P2, P

′) = 0.45.

Ch P P ′

P1 0.072 0.535
P2 0.072 0.850

wCh P P ′

P1 0.066 0.490
P2 0.038 0.450

Definition 7 An aggregation function Ag is a total function
associating a nonnegative real number to every finite tuple of
nonnegative real numbers that satisfies:
• x ≤ y ⇒ Ag(x1, ..., x, ..., xn) ≤ Ag(x1, ..., y, ..., xn).
• Ag(x1, ..., xn) = 0 if and only if x1 = · · · = xn = 0.
• For every nonnegative real number x, Ag(x) = x.

Functions Max, Sum, and weighted sum wSum are exemplar
aggregation functions.
Definition 8 Let E be a probabilistic profile, and Ag be an
aggregation function. Suppose that P is a canonical PLP s.t.
Γ(P ) = Γ(E). We define the (weak) change from E to P ,
denoted as dAg(E , P ), as dAg(E , P ) = Ag({d(Pi, P ) | Pi ∈
E}), where d is wCh or Ch.

In Example 2, the (weak) changes from E to P and P ′ are
shown in the following table.

Ag ChAg(E , •) wChAg(E , •)
P P ′ P P ′

Sum 0.144 1.385 0.104 0.940
Max 0.072 0.850 0.066 0.490

To preserve the minimal change principle, P ′ should not be
chosen as the merge result.
Proposition 2 Let E be a probabilistic profile, then
wCh(Pi,

⊎ E) = 0 for all Pi ∈ E .
Proposition 3 Let E be a probabilistic profile and P be a
PLP. If wCh(Pi, P ) = 0 for all Pi ∈ E , then P |= ⊎ E .
The above two propositions state that if we simply union mul-
tiple PLPs together, then we get tighter bounds, and thus the
weak changes from all source PLPs to the result are 0.



Computing weights
To address the importance of a source for contributing to the
calculation of the merged bound for a conditional event dur-
ing merging, we investigate how weights shall be attached to
sources (or even conditional events).
Definition 9 Let E = {P1, . . . , Pn} be a probabilistic pro-
file. Suppose that the set Γ(E) can be represented as
{µ1, . . . , µm}. Let W = (W l,Wu) be a pair of n ×m ma-
trices from R[0,1], s.t. ∀k,

∑
i W l[i][k] =

∑
i Wu[i][k] = 1.

For any Pi ∈ E and µk ∈ Γ(E), suppose that Pi |=tight

µk[lik, uik]. A weighted combination of P1, . . . , Pn w.r.t.
W is a PLP, denoted as

⊗W
Pi∈E Pi, s.t.

⊗W
Pi∈E Pi =

{µk[l, u] | µk ∈ Γ(E), and l =
∑

µi∈Γ(Pi)
W l[i][k] ×

lik, u =
∑

i Wu[i][k]× uik}.

For simplicity, we use
⊗W E to denote

⊗W
Pi∈E Pi.

Weights W l[i][j] and Wu[i][j] reflect the importance of the
lower bound and upper bound for conditional event µj con-
tributed by PLP Pi.

On the other hand, it is easy to prove that if a PLP P sat-
isfies the mean-value property w.r.t. E then there must exist a
W s.t. P =

⊗W E .
Example 3 (Cont. of Example 2) Assume that weights as-
signed to the three conditional events in P1 and P2 are

µ1 µ2 µ3

W l = Wu =
( 0.9325 0.5 0.0425 ) 99K P1

0.0675 0.5 0.9575 99K P2

Then, the weighted combination of P1 and P2 produces P .

4 Postulates
In classical merging, some postulates are provided
[Konieczny et al., 2004]. In this paper, we adapt the
postulates from [Konieczny et al., 2004] for merging PLPs.
The merging operator ∆ maps a probabilistic profile to a set
of PLPs. Suppose that P ∈ ∆(E), then ideally P should
satisfy the following:
IC1 P is satisfiable.
IC2 If E is strongly consistent then P |= Pi for all Pi ∈ E .
IC3 If E1 ≡ E2, then ∆(E1) ≡ ∆(E2).
IC4 If E = {P1, P2}, then ∃P ′1 ∈ ∆({P1, P2}) P ′1 ] P1 is

satisfiable iff ∃P ′2 ∈ ∆({P1, P2}) P ′2 ] P2 is satisfiable.
IC5 If E = E1 t E2, P1 ∈ ∆(E1), and P2 ∈ ∆(E2), then

P1 ] P2 |= P .
IC6 Let E = E1 t E2, P1 ∈ ∆(E1), P2 ∈ ∆(E2). If P1 ] P2

is satisfiable, then ∃P ′ ∈ ∆(E), P ′ |= P1 ] P2.
IC7 Let P1 ∈ ∆(E t {Pi}) and P2 ∈ ∆(E t {P ′i}),

where P ′i is obtained by replacing a probabilistic for-
mula (ψi|ϕi)[li, ui] in Pi with (ψi|ϕi)[l′i, u

′
i]. Then

Ch(P1, P2) ≤ Ch(Pi, P
′
i ).

IC8 If Pi |= (ψ|φ)[l, u] for all i, then P |= (ψ|φ)[l, u].
Maj For any E and P ∈ E . Suppose that P1 = · · · =

Pn = P and P ′ ∈ ∆(E t {P1, . . . , Pn}), then
limn→∞ wCh(P, P ′) = 0.

Arb For any E and P ∈ E . Suppose that P1 = · · · = Pn =
P , then ∆(E) = ∆(E t {P1, . . . , Pn}).

In these postulates, IC1-IC6, and Maj are essentially
equivalent to those provided in [Konieczny et al., 2004] with
trivial integrity constraint > and Arb is to that provided in
[Meyer, 2001]. IC7 says that a slightly change of the sources
will not affect the result too much, and the change of the re-
sults will always be smaller than the change of the sources.
IC8, also known as consensus postulate, means that the com-
mon beliefs of the original PLPs should be preserved after
merging.

5 Merging Operators
5.1 Merging by dilation of the probability bounds
A straightforward method to merge multiple PLPs is to
weaken all of them until they become strongly consistent and
then generate their compact union to get a new PLP.
Definition 10 Let P be a canonical PLP. A PLP P ′ is called
a dilation of P iff P |= P ′ and Γ(P ) = Γ(P ′).
A dilation of a PLP is obtained by loosing the probability
bounds for some conditional events in the original PLP.
Definition 11 Let E be a probabilistic profile, we define di-
lation merging operators, denoted by ∆(wCh,Ag)(E) where
Ag is an aggregation function, as P ∈ ∆(wCh,Ag)(E) iff
P = arg minP {wChAg(E , P ) | P is satisfiable and P =⊗W (E) for some pair of weight matrices W}.
Proposition 4 Let E = {P1, . . . , Pn} be a probabilistic
profile, and P ∈ ∆(wCh,Max)(E). Then there exits E ′ =
{P ′1, . . . , P ′n}, s.t. P ′i is a dilation of Pi, and P ≡ ⊎ E ′.

The above proposition indicates that the merging result can
also be obtained by first weakening the beliefs of every Pi

such that these weakened PLPs are strongly consistent with
others, and the merging result is the compact union of the
weakened PLPs.
Example 4 Let P1 and P2 be two PLPs as given in Ex-
ample 2. We have ∆(wCh,Max) as a singleton set. Sup-
pose that ∆(wCh,Max) = {P ′′}, then we have P ′′ =
{µ1[0.916, 0.916], µ2[0.1, 1], µ3[0.164, 0.164]}.
Proposition 5 Let E = {P1, P2} be a probabilistic profile,
and P ∈ ∆(wCh,Max)(E), then wCh(P1, P ) = wCh(P2, P ).

5.2 Merging by Keeping Impreciseness
Decreasing impreciseness VS. keeping impreciseness
Merging by dilation may drastically decrease the impre-
ciseness of beliefs in that the bounds for some conditional
events are much tighter than their bounds stated in the orig-
inal PLPs. However, sometimes we still want the merg-
ing result be imprecise to maintain the reliability. For in-
stance, let P1 and P2 be as given in Example 1. By dila-
tion merging, we get ∆(wCh,Max)({P1, P2}) = {P} where
P = {(q(t)|p(t))[0.505, 0.505]}. Probability 0.505 is chosen
because it is the only value that is closest to both of the up-
per bound for (q(t)|p(t)) given in P1 and the lower bound for
(q(t)|p(t)) given in P2. However, when the imprecise bounds
given in P1 and P2 suggest that both of them agree that impre-
cise probability bounds are more suitable for the conditional
event due to lack of information, the bound [0.505, 0.505] is
too tight as the merging result. This motivates us to propose
the following operator to keep impreciseness.



The merging operator
In general, we do not require that W l = Wu. In fact, in the
dilation operator, the corresponding weights do not satisfy the
above condition.

However, there are some intuition to require W l = Wu if
we regard the lower and the upper bound are equally impor-
tant (or equally possible) for any conditional event in a PLP.

When requiring W l = Wu, it is more nature to use Ch
to measure the difference of a probabilistic profile to a PLP,
since in Ch, the differences of the lower bounds and up-
per bounds are equally treated. Therefore, for the operators
∆(Ch,Ag), we require that W l = Wu:
Definition 12 Let E be a probabilistic profile, we define
merging operators ∆(Ch,Ag)(E) as P ∈ ∆(Ch,Ag)(E) iff
P = arg minP {ChAg(E , P ) | P is satisfiable and P =⊗W E for some pair W = (W l,Wu) and W l = Wu},
where Ag is an aggregation function.

Example 5 Let P1 and P2 be as given in Example 1. By
merging, we get that ∆(Ch,Max)({P1, P2}) = {P} where P =
{(ψ|φ)[0.451, 0.550]}.
Example 6 Let PLP P1 and P2 be as given in Example 2.
Then ∆(Ch,Max)({P1, P2}) is a singleton set, which contains
the only one PLP P as given in Example 2.
Comparing to Example 4, in the above example, the belief
about the probability of µ3 is imprecise. The upper bound
0.134 for µ3 is lower than 0.164 given in Example 4, this is
because the lower bound 0 for µ3 in P2 has more effect in this
operator.

5.3 Preferred Candidates
However, PLPs that satisfy Definition 12 are not unique in
general, as shown by the following example.
Example 7 Let P1 = {(p|>)[1, 1], (q|>)[1, 1]} and P2 =
{(p ∧ q|>)[0, 0]}. Then P1 and P2 are unsatisfiable. Let P
and P ′ be given as

P = {(p|>)[0.75, 1], (q|>)[0.75, 1], (p ∧ q)[0.5, 1]}
P ′ = {(p|>)[0.8, 1], (q|>)[0.7, 1], (p ∧ q)[0.5, 1]}

We have that P, P ′ ∈ ∆(Ch,Max)({P1, P2}).
In this example, P is more reasonable than P ′, since in P ,

p and q are symmetrically defined, just as that they are sym-
metrically defined in P1 and P2. In other words, the weights
for (p|>) and (q|>) w.r.t. P1 and P2 are equivalent when
obtaining P and inequivalent when obtaining P ′. Intuitively,
we should choose the PLPs from the merging results such that
the weights for the conditional events in the original PLPs are
as close as possible.

Let S = 〈s1, . . . , sn〉 be a finite sequence of real numbers
in descending order. We define E as a lexicographic order
among descending ordered sequences, i.e. S1 E S2 iff
• |S1| ≤ |S2| and s1i = s2i for all i ≤ |S1|, or
• ∃i s.t. s1i < s2i and ∀j < i, s1j = s2j .

Let S be a finite multi-set of real numbers, we define sq(S)
as a descending ordered sequence of the elements from S ,
then we can define a partial order 4 as S1 4 S2 iff sq(S1) E
sq(S2). For instance, if S1 = {0.8, 0.9, 0.8, 0.6} and S2 =
{0.8, 0.9, 0.7, 0.7}, then S2 4 S1.

Let P and P ′ be PLPs s.t. Γ(P1) = Γ(P ). We define
Cd(P ′, P ) as Cd(P ′, P ) = {d([l′, u′], [l, u]) | µ[l′, u′] ∈
P ′ and µ[l, u] ∈ P}, where d is wCh or Ch.

Set Cd(P ′, P ) contains the (weak) change values from the
bounds given in an original PLP (P ′) to those given in a can-
didate (P ) of merging result for the conditional events in P ′.

Definition 13 Let E = {P1, . . . , Pn} be a probabilistic pro-
file. Define ∆(d,Max)

4 (E) as a set of PLPs s.t.
P ∈ ∆(d,Max)

4 (E) iff ∀P ′ ∈ ∆(d,Max)(E), @Pi ∈ E , and
Cd(Pi, P ) 4 Cd(Pi, P

′)
where d is wCh or Ch.

The above definition applies the min-max principle to re-
quire that the maximum (weak) change from the probabilistic
formulas in the original PLPs be minimized.
Example 8 (Cont. of Example 7) Now, we have that
∆(Ch,Max)

4 (E) = {P}. So, the less reasonable PLP P ′ is
eliminated from the candidates of merging results.

Similarly, for operators ∆(d,Sum), we can obtain ∆(d,Sum)
4

by requiring the (weak) changes from the original PLPs to the
merging result be as close as possible, but we omit the details
due to space limitation.

5.4 Properties
Proposition 6 Let Ag be an aggregation function.
∆(wCh,Ag) satisfies postulates IC1, IC2, and IC4-IC8;
∆(Ch,Ag) satisfies postulates IC1, IC4, IC5, IC7, and IC8;
∆(wCh,Ag)

4 satisfies postulates IC1, IC2 and IC4-IC8;

∆(Ch,Ag)
4 satisfies postulates IC1, IC4, IC5, IC7, and IC8.

Since postulate IC3 means that the merging operator is
syntax-irrelevant and our framework is syntax-based, our op-
erators can not satisfy IC3. We can extend our framework
so that two semantically equivalent but syntactically differ-
ent conditional events (denoted like (ψ1|φ1) ≡ (ψ2|φ2)) can
be taken as the same conditional event. As a consequence,
our merging framework is beyond syntax-based in which how
conditional events are expressed is irrelevant.
Proposition 7 Our merging operators ∆(d,Sum) and
∆(d,Sum)

4 satisfy postulate Maj, while operators ∆(d,Max) and

∆(d,Max)
4 satisfy postulate Arb, where d is wCh or Ch.

It is worth noting that in propositional logic, no merging op-
erators can simultaneously satisfy IC2, IC4, IC6 and Arb.

6 Related Work and Conclusion
Related work In the literature, many methods were
proposed to merge or aggregate probability distributions
[Clemen and Winkler, 1993; Jacobs, 1995; Pate-Cornell,
2002; Chen et al., 2005]. In these methods, each source rep-
resents its beliefs by a single probability distribution, and the
merging result is also a probability distribution. Therefore,
these methods can be classified as model-based. There are
some methods [Nau, 1999; Bronevich, 2007] that can ag-
gregate imprecise probabilities (the lower or upper bounds
for a conditional event), but these methods are also syntax-
irrelevant, in the sense that they require the original beliefs



to be expressed on the same set of (conditional) events. In
[Clemen and Winkler, 1993; Jacobs, 1995; Chen et al., 2005;
Nau, 1999; Bronevich, 2007], aggregation functions are used
to calculate the probabilities of the events, and the (weighted)
sum function is a common choice. In contrast, our framework
starts with a set of PLPs, and each PLP has a set of prob-
ability distributions associated with it. Second, our method
is syntax-based; explicitly stated conditional events in the
original PLPs are treated as of most relevant beliefs of the
sources and our merging framework preserves these beliefs
as much as possible. On the technical aspect, the probability
bounds from the merged result are also the aggregation of the
bounds from the original PLPs. Different from the methods
mentioned in this paragraph, the weights for the conditional
events reflect the relevant importance of conditional events to
in the original PLPs.

In [Batsell et al., 2002; Osherson and Vardi, 2006], a
syntax-based method was proposed for aggregating proba-
bilistic beliefs, where each source gives a set of probabilistic
formulas. In their method, all statements from the sources are
put together (union) to form a (possibly inconsistent) set and
the aggregation procedure is to find a probability distribution
that is closest to all the statements in the set. Their method
did not explicitly consider the change from a source to the
merging result. On the contrary, our method uses the changes
to guide the merging procedure.

In [Kern-Isberner and Rödder, 2004], a method based on
the maximum entropy principle is proposed. In their method,
a single probability distribution is obtained as the merging
result even when the sources are imprecise. On the contrary,
in our framework, imprecise PLPs are returned as the result
of merging.

In addition, we provided postulates for merging probabilis-
tic beliefs and proved our instantiated operators satisfy most
of them. Our postulates generalize the postulates for merg-
ing classical knowledge bases provided in [Konieczny et al.,
2004], and satisfy properties that should be considered in the
view of probability theory. For example, IC8 is the conse-
quence of mean-value property.

On the other hand, IC8 can be reduced to propositional
logic:

IC8’ Let K1, . . . , Kn be propositional knowledge bases, and
Ki |= φ for all i ∈ [1, n], then the merging result
∆(K1, . . . ,Kn) |= φ.

However, not all propositional merging operators satisfy
IC8’. For example. Let operators ∆dD,Sum,Sum

IC and
∆dD,Sum,Max

IC be as given in [Konieczny et al., 2004]. Let
IC = >, K1 = {p, p → q}, and K2 = {p, p → ¬q}, then
∆dD,Sum,Sum

IC (K1, K2) |= p but ∆dD,Sum,Max
IC (K1,K2) 6|= p.

In [Kern-Isberner and Rödder, 2004], a simple probabilis-
tic Pareto principle was proposed stating that the merging re-
sult should assign probability value x to (B|A) for merging
K1 = · · · = Kn = {(B|A)[x]}. Actually, it is essentially a
special case of postulate IC2 when all original PLPs are the
same, and all of our operators satisfy this probabilistic Pareto
principle even for those which do not generally satisfy IC2.
In addition, we do not require the original PLPs to contain
only one probabilistic formula.

Conclusion In this paper, we proposed a syntax-based
framework for merging PLPs. Explicit conditional events in
original PLPs suggest in what aspect an original PLP is rele-
vant to the scenario, and a merging procedure should respect
this and therefore should be syntax-based. From our frame-
work, concrete merging operators can be defined and they
possess different interesting properties.

We also provided postulates for merging imprecise prob-
abilistic beliefs, and our postulates extend the postulates for
merging propositional knowledge bases.
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