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Measuring the degree of inconsistency of a belief base is an important issue in many real-

world applications. It has been increasingly recognized that deriving syntax sensitive incon-

sistency measures for a belief base from its minimal inconsistent subsets is a natural way

forward. Most of the current proposals along this line do not take the impact of the size of

each minimal inconsistent subset into account. However, as illustrated by the well-known

Lottery Paradox, as the size of a minimal inconsistent subset increases, the degree of its in-

consistency decreases. Another lack in current studies in this area is about the role of free

formulas of a belief base in measuring the degree of inconsistency. This has not yet been

characterized well. Adding free formulas to a belief base can enlarge the set of consistent

subsets of that base. However, consistent subsets of a belief base also have an impact on the

syntax sensitive normalized measures of the degree of inconsistency, the reason for this is

that each consistent subset can be considered as a distinctive plausible perspective reflected

by that belief base, whilst eachminimal inconsistent subset projects a distinctive view of the

inconsistency. To address these two issues, we propose a normalized framework formeasur-

ing the degree of inconsistency of a belief base which unifies the impact of both consistent

subsets and minimal inconsistent subsets. We also show that this normalized framework

satisfies all the properties deemed necessary by common consent to characterize an intu-

itively satisfactory measure of the degree of inconsistency for belief bases. Finally, we use

a simple but explanatory example in requirements engineering to illustrate the application

of the normalized framework.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Interest in measuring inconsistency for belief bases has grown rapidly in recent years. This interest is driven by the

desire to understand how measures of inconsistency can be formalized (e.g., [1–3]), and by the practical needs of real-

world applications (e.g., [4–6]). A number of proposals for measuring the degree of inconsistency of a belief base have been

presented, including the maximal η-consistency [7,8], n-consistency and n-probability [9], measures based on variables or

paraconsistent models [1,10–13], measures based on minimal inconsistent subsets [14,3], and the Shapley Inconsistency

Value [2].

In particular, themeasures based onminimal inconsistent subsets are attractive for syntax sensitive conflict resolution in

some applications such as requirements engineering [3]. As amatter of fact, for conflict resolution, theminimal inconsistent
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subsets of a belief base can be considered as the purest expression of inconsistency, since an agent needs to remove only one

formula from each minimal inconsistent subset to restore consistency [15]. Following this viewpoint, several approaches

to measuring inconsistency based on minimal inconsistent subsets have been proposed. The scoring function [14] and the

MI measure [3] are the most representative methods of such approaches to measuring the degree of inconsistency. The

scoring function assigns each subset of a belief base the number of minimal inconsistent subsets of the base that would

be eliminated if the subset was removed from that belief base [14]. The degree, or relative amount of inconsistency of a

belief base is captured by scoring function values of all the non-empty subsets of that belief base together. In contrast, theMI

measure views the total number ofminimal inconsistent subsets of a belief base as ameasure of the amount of inconsistency

of that belief base [3]. The common idea of the scoring function and the MI measure is to focus on counting the number of

minimal inconsistent subsets of a belief base.

Conspicuously, these two methods do not make any explicit distinction between two minimal inconsistent subsets with

different sizes. Moreover, theMinInc property presented in [3] states that eachminimal inconsistent subset brings the same

amount of inconsistency. However, as the cardinality of a minimal inconsistent subset increases, its inconsistency becomes

more tolerable [7,3], i.e., the bigger the size of a minimal inconsistent subset, the smaller the degree of its inconsistency.

To illustrate this in an informal way, let us consider the well-known lottery paradox which motivated Knight proposing

his approach [7]. The lottery paradox presented in [16] considered an n-ticket lottery scenario, known to be fair and to

have exactly one winner. It is rational to accept that for any individual ticket i, ticket i will not win, since the probability of

ticket i being the winner cannot exceed a given, high enough threshold due to the fairness of the lottery. Then K(n) =
{¬w1, . . . , ¬wn,w1 ∨ · · · ∨ wn} is a minimal inconsistent belief base (we will define this concept carefully later) for the

lottery,where for each i,wi asserts that ticket i is thewinner. Intuitively, if there are a sufficiently largenumber of tickets in the

lottery, say 1million, the belief base K(n) is almost consistent(in our case only 1 in 1million is wrong), whereas K(n) is highly
inconsistent if there are, say, only three tickets. Therefore, considering only the total number of minimal inconsistent subsets

is not enough for precisely capturing the degree of inconsistency of a belief base. The size of each minimal inconsistent

subset should be considered.

In addition to this, the role of free formulas of a belief base (i.e., formulas not belonging to anyminimal inconsistent subset

of a belief base) in measuring the degree of inconsistency of that belief base has not yet been characterized well. According

to the viewpoint that minimal inconsistent subsets are the purest form of inconsistency, free formulas of a belief base have

nothing to do with the conflicts of that belief base because free formulas do not belong to any minimal inconsistent of that

belief base. To uphold this viewpoint, the Free Formula Independence property presented in [2,3] requires that adding a

free formula to a belief base should not change the inconsistency measure of that base.

However, the Free Formula Independence property does not capture the impact of free formulas on the degree of incon-

sistency of a belief base well for syntax-based measures as well as for model-based or variable-based measures. Roughly

speaking, model-based or variable-based inconsistency measures are often based on some paraconsistent models, which

allow us to assign an inconsistent truth value (i.e., both true and false) to variables involved in inconsistency. Then the degree

of inconsistency of a belief base is often captured by the normalized minimum number of inconsistent truth values in such

a model. A free formula not belonging to any minimal inconsistent subset cannot guarantee that it is free from confliction

with any other formulas. To illustrate this, consider K = M ∪ {¬b}, where ¬b is a free formula of K andM = {a ∧ ¬a ∧ b}
is the minimal inconsistent subset of K . Clearly, M conveys contradictory information about a alone, but K conveys contra-

dictory information about b as well as that about a. So variable b must have been involved in inconsistent values in such

paraconsistent models. In such cases, adding a free formula to a belief base increases the degree of inconsistency of that

belief base. For example, as pointed out in [17], the ILPm inconsistency measure presented in [2] allows some free formulas

of a belief base to increase the existing conflicts in minimal inconsistent subsets of that belief base. On the other hand, for a

given belief base, if we add a formula consisting of new variables that do not appear in formulas of that belief base, then the

minimum number of inconsistent truth values will not change since the enlarged belief base cannot convey contradictory

information about these new variables. But the degree of inconsistency of that base will be diluted by normalization since

the new variables enlarge the set of all variables. For example, consider ILPm again, ILPm({a∧ ¬a∧ ¬b}) = 1
2
. After adding

c ∧ d to {a ∧ ¬a ∧ ¬b}, ILPm({a ∧ ¬a ∧ ¬b, c ∧ d}) = 1
4
. In summary, in the context of model-based or variable-based

inconsistency measures, adding free formulas can either strengthen or weaken the degree of inconsistency. The impact of

free formulas of a belief base on the degree of that belief base depends on literals of free formulas. Therefore, model-based

or variable-based inconsistency measures may not provide support for the Free Formula Independence property.

Even ifweconsider syntax-basedor syntaxsensitiveproposals formeasuring thedegreeof inconsistency, theFreeFormula

Independence property presents problems. It is again not an undisputed property to characterizemeasures for the degree of

inconsistency of belief bases. Intuitively, in syntax sensitive application domains, as the number of free formulas of a belief

base increases the degree of its inconsistencywill be diluted if its set of minimal inconsistent subsets remains the same. This

discussion, nevertheless, is still in harmony with the viewpoint that minimal inconsistent subsets are the purest form of

inconsistency. This can be explained by pointing out that each minimal inconsistent subset projects a distinctive viewpoint

of the inconsistency, whilst each consistent subset projects a different but completely consistent viewpoint of the same base.

It is again intuitive that how inconsistent a belief base is should depend on how much distinctive inconsistent viewpoints

account for all the distinctive (inconsistent or plausible) viewpoints reflected by that belief base. Therefore, the degree

of inconsistency of a belief base should be influenced by both the consistent subsets as well as the minimal inconsistent
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subsets. In this sense, adding a free formula will certainly enlarge the set of consistent subsets. Correspondingly, adding

or removing free formulas from a belief base may decrease or increase the degree of inconsistency of that belief base. This

intuition is also partially supported by most of the inconsistency measures based on variables. To illustrate, let us consider

the inconsistency measure ILPm presented in [2], which is the normalized minimum number of inconsistent truth values in

the LPm models [18]. For any belief base K , ILPm(K ∪ {α}) < ILPm(K) if α is a free formula of K ∪ {α} and α does contain

only variables that do not appear in formulas of K .

To address these issues, in this paper, we first present a framework for measuring the degree of inconsistency for belief

bases, integrating the impact of both consistent and minimal inconsistent subsets. We then discuss the intuitive properties

that such measures should satisfy. Our study shows that a measure instantiated by our framework gives more intuitive

measurements for the degree of inconsistency for belief bases than other measures.

The rest of this paper is organized as follows: In the next section, we give some necessary notations about minimal

inconsistent subsets of a belief base. In Section 3 we briefly recall some closely related work. In Section 4, we define a

framework for measuring the degree of inconsistency for a belief base based on both minimal inconsistent subsets and

consistent subsets. In Section 5, we propose a set of properties to characterize measures of the degree of inconsistency for

belief bases. Then we give some instantiated measures in Section 6. In Section 7, we present a case study to illustrate the

application of our approach in the domain of requirements engineering. In Section 8, we compare our measures with some

closely related work. Finally, we conclude this paper in Section 9.

2. Preliminaries

Throughout this paper, we use a finite propositional language. Let P be a finite set of propositional symbols and L
a propositional language built from P under connectives {¬, ∧, ∨, →}. We use a, b, c, . . . to denote the propositional

variables , and α, β, γ, · · · to denote the propositional formulas.

A belief base K is a finite set of propositional formulas.We useKL to denote the set of belief bases definable from formulas

of the language L. A belief base K is inconsistent if there is a formula α such that K � α and K � ¬α, where� is the classical

consequence relation. We abbreviate α ∧ ¬α as ⊥ if there is no confusion. Then an inconsistent belief base K is denoted by

K � ⊥. Moreover, an inconsistent belief base K is called aminimal inconsistent set (orminimal inconsistent belief base) if none

of its proper subsets is inconsistent. If K ′ ⊆ K and K ′ is a minimal inconsistent set, then we call K ′ a minimal inconsistent

subset of K . We use MI(K) to denote a set of the minimal inconsistent subsets of K , i.e.,

MI(K) = {K ′ ⊆ K|K ′ � ⊥ and K ′′ 
� ⊥ for all K ′′ ⊂ K ′}.
Theminimal inconsistent subsets can be considered as the purest form of inconsistency for syntax sensitive conflicts resolu-

tion, since one has just to remove one formula fromeachminimal inconsistent subset in such cases tomake it consistent [15].

In contrast, each consistent subset of a belief base may be considered as one of the plausible views of that belief base. This

also accords with the viewpoint of the presence of inconsistency as a result of information pollution by wrong data such

as [19], which insists on consistent subsets are meaningful, despite the pollution. We use CN(K) to denote the set of the

consistent subsets of K , i.e.,

CN(K) = {∅ ⊂ K ′ ⊆ K|K ′ 
� ⊥}.
We call a formula of K a free formula of K if this formula does not belong to anyminimal inconsistent subset of K [2]. That

is, the free formulas of K have nothing to do with the minimal inconsistent subsets of K . We use FREE(K) to denote the set

of free formulas of K , i.e.,

FREE(K) = {α ∈ K|α 
∈ M for all M ∈ MI(K)}.
As illustrated by the following lemma, adding free formulas to a belief base can enlarge the set of consistent subsets of

that belief base.

Lemma 2.1. Let K be a belief base and α a formula not belonging to K. If α is a free formula of K ∪ {α}, then
CN(K ∪ {α}) = CN(K) ∪ {{α}} ∪ {M ∪ {α}|M ∈ CN(K)}.

Proof. Let K ′ ∈ CN(K ∪ {α}), then α 
∈ K ′ or α ∈ K ′.

• If α 
∈ K ′, then K ′ ⊆ K and K ′ 
� ⊥. So K ′ ∈ CN(K).
• If α ∈ K ′, then K ′ = {α} or {α} ⊂ K ′. Further, if {α} ⊂ K ′, then ∅ ⊂ K ′ \ {α} ⊆ K and K ′ \ {α} 
� ⊥. So,

K ′ \ {α} ∈ CN(K). �
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Example 2.1. Consider K1 = {a, b, ¬b}. Then
MI(K1) = {{b, ¬b}},
CN(K1) = {{a}, {b}, {¬b}, {a, b}, {a, ¬b}}.
FREE(K1) = {a}.

3. Related work

In this section,wegive abrief introduction to current inconsistencymeasures illustrating the roles ofminimal inconsistent

subsets and free formulas, as well as properties to characterize inconsistency measures, respectively.

3.1. The scoring function

Thescoring functionpresented in [14]maybeconsideredasanearly representativemeasureof thedegreeof inconsistency

of a belief base defined fromminimal inconsistent subsets of that belief base. Roughly speaking, the idea of scoring functions

for a belief base focuses on measuring the contribution made by each subset of that belief base to the inconsistency. For a

belief base K , a scoring function S is defined from 2K (the power set of K) to the natural numbers so that for any subset of K ,

denoted K ′, S(K ′) gives the number of minimal inconsistent subsets of K that would be eliminated if subset K ′ was removed

from K . That is,

S(K ′) = |MI(K)| − |MI(K − K ′)| for all K ′ ⊆ K.

As such, belief bases with the same size can be compared using their scoring functions so that an ordering relation, which

meansmore inconsistent than, over these belief bases canbedefined [14]. Assume thatK1 andK2 are of the samecardinality, S1
and S2 are the scoring functions for K1 and K2 respectively, then S1 ≤ S2 holds if and only if there is a bijection f : 2K1 �→ 2K2

such that the following condition can be satisfied:

S1(K
′) ≤ S2(f (K

′)) for all K ′ ⊆ K1.

We say K2 is more inconsistent than K1 if and only if S1 ≤ S2.

Example 3.1. Consider K1 = {a, b, ¬b} and K2 = {a ∧ ¬a, b, ¬b}. Then MI(K1) = {{b, ¬b}} and MI(K2) = {{a ∧
¬a}, {b, ¬b}}. So,

S1(K1) = 1, S1({a, b}) = 1, S1({b, ¬b}) = 1, S1({a, ¬b}) = 1,

S1({b}) = 1, S1({¬b}) = 1, S1({a}) = 0, S1(∅) = 0,

S2(K2) = 2, S2({a ∧ ¬a, b}) = 2, S2({a ∧ ¬a, ¬b}) = 2, S2({b, ¬b}) = 1,

S2({b}) = 1, S2({¬b}) = 1, S2({a ∧ ¬a}) = 1, S2(∅) = 0.

Evidently, S1 < S2. Therefore, we may say K2 is more inconsistent than K1.

Note that the scoring function uses 2|K| values rather than a single value to capture the degree of inconsistency of a

belief base. Moreover, the ordering relation more consistent than is defined only between any two belief bases with the

same size. This makes it difficult to apply the scoring function based approaches to comparing two arbitrary inconsistent

belief bases. For example, as in the lottery paradox, we cannot derive that {¬w1, ¬w2,w1 ∨ w2} is more inconsistent than

{¬w1, ¬w2, . . . , ¬wn,w1 ∨ w2 ∨ · · · ∨ wn}( where n is large enough) by using their scoring functions, although this

comparison is intuitive.

We must point out that the scoring function implicitly supports the intuition that as the number of free formulas in-

creases, the degree of inconsistency of a belief base becomes smaller. To illustrate, consider K3 = {¬w1, ¬w2,w1 ∨ w2} ∪
{w3, . . . ,wn} and K4 = {¬w1, ¬w2, . . . , ¬wn,w1 ∨ · · · ∨ wn}. Suppose that n is much larger than 2, then intuitively

{¬w1, ¬w2,w1 ∨ w2} is more inconsistent than K4, as illustrated by the lottery paradox. On the other hand, note that

{w3, . . . ,wn} is the set of free formulas of K3. Let S3 and S4 be the scoring functions for K3 and K4, respectively, then clearly

S3 < S4. So,K4 ismore inconsistent thanK3. Therefore,wemayconclude that {¬w1, ¬w2,w1∨w2} ismore inconsistent thanK3.

3.2. The MI inconsistency measure

The MI inconsistency measure and the family of the MinInc inconsistency values presented in [3] are the most recent

representative measures defined from minimal inconsistent subsets. The MI inconsistency measure aims to measure the

amount of inconsistency of a belief base in terms of minimal inconsistent subsets of that belief base, and the family of the

MinInc inconsistency values focus onmeasuring the inconsistency value of each formula belonging to an inconsistent belief
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base through minimal inconsistent subsets. Given a belief base K , the MI inconsistency measure for K , denoted IMI(K), is
defined as the number of minimal inconsistent subsets of K , i.e.,

IMI(K) = |MI(K)|.
Obviously, according to MI inconsistency measure, the number of minimal inconsistent subsets of a belief base can be used

to capture the inconsistency of that belief base. However, neither the MI inconsistency measure nor the normalized MI

inconsistency measure
(

IMI(K)

2|K| or
IMI(K)

2|K|−1

)
makes a distinction in the degree of inconsistency between any two belief bases

with the same size and the same number of minimal inconsistent subsets. To illustrate this, consider K3 and K4 again.

Evidently, IMI(K3) = IMI(K4) = 1. This is in contrast to the comparison result given by the scoring function approach above.

3.3. Maximal η-consistency

The MI inconsistency measure does not consider the sizes of different minimal inconsistent subsets in the degree of

inconsistency. However, as illustrated by the lottery paradox, the degree of inconsistency of a minimal inconsistent set

becomes smaller or more tolerable as the size of a minimal inconsistent set increases [7]. The method of maximal η-
consistencypresented in [7]providesdirect support for this intuition. Roughly speaking, thismethod isbasedonaprobability

function P over L presented in [20,21], which satisfies:

• if |� α, then P(α) = 1,
• if |� ¬(α ∧ β), then P(α ∨ β) = P(α) + P(β).

Then a belief base K is η-consistent (0 ≤ η ≤ 1) if there is a probability function P such that P(α) ≥ η for all α ∈
K . Furthermore, K is maximally η-consistent if η is maximal. Evidently, maximal 1-consistency corresponds to complete

consistency, and maximal 0-consistency corresponds to the explicit presence of a contradiction, i.e., the explicit presence of

a contradictory formula in a belief base [7]. Intuitively, we may use 1− η to capture the inconsistency of K if K is maximally

η-consistent.

In particular, it has also been shown in [7] that aminimal inconsistent belief baseM is maximally
( |M|−1

|M|
)
-consistent [7].

Recall the n-ticket lottery paradox again, K(n) = {¬w1, . . . , ¬wn,w1 ∨ · · · ∨ wn} is maximally n
n+1

-consistent, which

explains why K(n) is highly inconsistent if there are few tickets in the lottery, whilst K(n) is nearly consistent if there are

millions of tickets.

Compared to the scoring function and the MI inconsistency measure, maximal η-consistency considers the size of a

minimal inconsistent belief base explicitly. On the other hand, a lower bound of η for an inconsistent belief base K that

contains no contradiction is
|K ′|−1

|K| , where K ′ is a smallest minimal inconsistent subset of K [7]. This implies that the lower

bound of η for K depends on the size of K as well as the size of the smallest minimal inconsistent subsets of K . So, the lower

bound of η will decrease if we enlarge a belief base by adding free formulas. In this sense, the maximal η-consistency also

partially supports the intuition that as the number of free formulas increases the degree of inconsistency of a belief base

becomes smaller.

A close work to the maximal η-consistency is the n-consistency and n-probability presented in [9]. As pointed out in [9],

the semantic notion of n-probability is similar to η-consistency. Roughly speaking, n-consistency focuses on counting the

number of formulas needed for deriving a contradiction. A theory T is strictly n-consistent if each subset of I of cardinality

n is consistent and at least one subset of cardinality n + 1 is inconsistent. So, a minimal inconsistent subset of cardinality n

is strictly (n − 1)-consistent. This implies that the n-consistency also provides support for taking the size of each minimal

inconsistent subset into account.

3.4. Inconsistency measures based on variables

We consider amore general but representative inconsistencymeasure based on variables presented in [2], denoted ILPm ,

which is defined from LPm models of a belief base within Priest’s logic of paradox [18]. Roughly speaking, Priest’s logic of

paradox (LP for short) aimed to provide three-valued models for classically inconsistent sets of formulas by using the set

{T, F, B} of truth values, in which the third truth value B is considered intuitively as both true and false and taken as a

designated value together with T. An interpretationω for LPm models maps each propositional variable to one of the three

truth values T, F, B such that

• ω(¬α) = B if and only if ω(α) = B,
• ω(¬α) = T if and only if ω(α) = F,
• ω(¬α) = F if and only if ω(α) = T,
• ω(α ∧ β) = min≤t{ω(α), ω(β)},
• ω(α ∨ β) = max≤t{ω(α), ω(β)},
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where F <t B <t T. Then the set of models of a formula α is defined as ModLP(α) = {ω|ω(α) ∈ {T, B}}. The
inconsistency measure ILPm is the normalized minimum number of inconsistent truth values in models of K [2], i.e.,

ILPm(K) = minω∈ModLP(K)(|ω!|)
|P| ,

where ω! = {x ∈ Var(K)|ω(x) = B}.
As pointed out in [17], adding a free formula to a belief base may change the degree of its inconsistency. To illustrate this,

consider K = {a ∧ ¬a ∧ ¬b}. Then ILPm(K ∪ {c}) = 1
3

< ILPm(K) = 1
2

< ILPm(K ∪ {b}) = 1. This signifies that free

formulas are not necessarily free or independent from inconsistency in such variable-based inconsistency measures.

3.5. Properties to characterize inconsistency measures

On the other hand, the question of how to characterize a desirable inconsistencymeasure, especially in terms of minimal

inconsistent subsets, is still under development, even though Consistency, Monotony, Free Formula Independence, Domi-

nance, and Normalization have been presented in [2,3] as fundamental properties of a basic inconsistency measure for a

whole belief base. For instance in [2], a basic inconsistencymeasure for belief bases, denoted I, needs to satisfy the following

five properties:

• Consistency : I(K) = 0 if and only if K is consistent.
• Monotony: I(K ∪ K ′) ≥ I(K).
• Free Formula Independence: If α ∈ FREE(K ∪ {α}), then I(K ∪ {α}) = I(K).
• Dominance: If α � β and α 
� ⊥, then I(K ∪ {α}) ≥ I(K ∪ {β}).
• Normalization: 0 ≤ I(K) ≤ 1.

The property of Consistency requires that an intuitive inconsistency measure should assign null to a consistent belief

base. This can be considered as one of the most natural constraints to a desirable inconsistency measure for belief bases.

The property of Normalization is not mandatory. It is added only for simplification purpose [2]. Roughly speaking, the

Normalization property provides the lower bound 0 and the upper bound 1 for a normalized inconsistency measure. Gen-

erally, the bounds of an inconsistency measure should be given clear meanings in the context of application domains. For

example, as mentioned above, in the context of maximal η-consistency, maximal 1-consistency corresponds to complete

consistency, and maximal 0-consistency corresponds to the explicit presence of a contradiction, i.e., the explicit presence of

a contradictory formula in a belief base [7]. Note that the Consistency property explains the meaning of the lower bound 0.

We also need a new property to clarify explicitly the meaning of the upper bound 1.

As explained in [2], the Dominance property states that logically stronger formulas should bring (potentially) more

conflicts. Precisely speaking, logically stronger formulas may bring (potentially) more absolute amount of inconsistency in

the context of variable-based or model-based inconsistencymeasurements. In other words, logically stronger formulas may

bring more variables assigned to inconsistent truth values. However, we cannot ensure that logically stronger formulas

always bring no information other than conflicts. This implies that logically stronger formulas cannot ensure more relative

amount of inconsistency or higher degree of inconsistency in the context of variable-based ormodel-based characterization

of inconsistency. In this sense, the Dominance property is inappropriate to characterizing variable-based or model-based

measures for the degree of inconsistency. To illustrate this, consider {¬a, a} and {¬a, a ∧ b}. Obviously, a ∧ b is logically

stronger than a. Besides conveying the contradictory information about a (together with ¬a), a ∧ b conveys meaningful

information about b. Intuitively, {¬a, a ∧ b} is less inconsistent than {¬a, a} in the context of variable-based or model-

based characterization of inconsistency. Actually, variable-based or model-based inconsistency measures accord with this

intuition andmay not provide support for the Dominance property. To illustrate this, consider K ∪ {b} = {a∧ ¬a, ¬b, b, c}
and K ∪ {b ∧ d} = {a ∧ ¬a, ¬b, b ∧ d, c}. Then ILPm(K ∪ {b ∧ d}) = 1

2
< ILPm(K ∪ {b}) = 2

3
.

On the other hand, within the context of syntax sensitive characterization of inconsistency, the Dominance property is

also inappropriate for characterizing inconsistencymeasuresbasedonminimal inconsistent subsets. Inconsistencymeasures

based on minimal inconsistent subsets consider minimal inconsistent subsets as the purest forms of inconsistencies. This

viewpoint states that the inconsistency of a belief base is conveyed by only the set of all the minimal inconsistent subsets of

that belief base.Note thatwithin the context of syntax sensitive characterizationof inconsistency, each formulabelonging toa

belief base has specialmeanings and is viewed as a smallest unit. Therefore, to characterize the inconsistency for a belief base,

the number of minimal inconsistent subsets and the size of each minimal inconsistent subset rather than the variables that

constitute the formulas involved in the inconsistency need to be considered. However, the minimal inconsistent subset is of

syntax sensitivity.We cannot ensure that logically stronger formulas result in a stronger set of minimal inconsistent subsets.

This makes the Dominance property inappropriate within the context of syntax sensitive characterization of inconsistency

based on minimal inconsistent subsets. To illustrate this, consider two minimal inconsistent belief bases K = {a ∧ ¬b, ¬a}
and K ′ = {a ∧ ¬b, ¬a ∧ b}. Within the context of variable-based or model-based characterization of inconsistency, it is

intuitive to consider that K ′ has more conflicts, since K ′ conveys contradictory information about b as well as that about
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a, whilst K conveys only contradictory information about a. But this type of intuition does not necessarily hold within the

context of characterization of inconsistency based onminimal inconsistent subsets, becausewe consider each formula rather

than variables appearing in the formula as the smallest unit. In such a syntax sensitive context, either K or K ′ conveys one
conflict between two self-consistent formulas. Then it is intuitive to consider that K has the same amount inconsistency as

that of K ′, although¬a∧ b is logically stronger than¬a. Note that the proposal of maximal η-consistency also supports this

intuition, since either K or K ′ is maximally 1
2
-consistent.

Generally, conflicts involving β implied by some minimal inconsistent subsets of K ∪ {β} will be represented by some

minimal inconsistent subsets with the same size as, or smaller than, of K ∪ {α}, if α is logically stronger than β . Allowing

for the syntax sensitivity of minimal inconsistent subsets, it is difficult to establish a meaningful correspondence between

MI(K ∪{α}) andMI(K ∪{β}), except that ∀M ∈ MI(K ∪{β}), if β ∈ M, then ∃M′ ⊆ M ∪{α}− {β} s.t.M′ ∈ MI(K ∪{α}).
In this sense, to satisfy the Dominance property, themeasure for a belief base that has oneminimal inconsistent subset with

a smaller size needs to be greater than the measure for a belief base that has at least one minimal inconsistent subsets with

a larger size. To illustrate this, consider K(n) = {a1, a1 ∧ a2, . . . , a1 ∧ an, ¬b}. Then
MI(K(n) ∪ {¬a1 ∨ b}) = {M1, . . . ,Mn},

where

M1 = {a1, ¬a1 ∨ b, ¬b},
M2 = {a1 ∧ a2, ¬a1 ∨ b, ¬b},

...

Mn = {a1 ∧ an, ¬a1 ∨ b, ¬b}.
Let αn be a1 ∧ a2 ∧ · · · ∧ an ∧ (¬a1 ∨ b), then

MI(K(n) ∪ {αn}) = {{a1 ∧ a2 ∧ · · · ∧ an ∧ (¬a1 ∨ b), ¬b}}.
Touphold theDominanceproperty, theevaluationassigned toa setof one2-sizeminimal inconsistent subsetMI(K(n)∪{αn})
should be no less than that assigned to a set of n 3-size minimal inconsistent subsets MI(K(n) ∪ {¬a1 ∨ b}) for any n > 0.

However, it seems to be difficult to satisfy this constraint if we use numerical measurements. A possible way to handle this

issue is to assign a sovereign importance to minimal inconsistent subsets of smaller size. For example, within the context of

maximal η-consistency, it has been pointed out in [7] that
|M|−1

|K| can be considered as a lower bound of η for an inconsistent

knowledge base K containing no contradiction, where M is the smallest minimal inconsistent subset. However, this may

result in that minimal inconsistent subsets of larger size play no explicit role in measuring the degree of inconsistency.

Intuitively, if a measure for inconsistency is based on integration of all the minimal inconsistent subsets, it is difficult to

provide support for the Dominance property. Indeed, as the most representative measures, both the scoring function and

the MI inconsistency measure do not satisfy the Dominance property. To illustrate this, consider the following example.

Example 3.2 (Counterexample about theDominance Property). ConsiderK = {a, a∧c, ¬b}. Suppose thatα = a∧c∧(¬a∨b)
and β = ¬a ∨ b. Then α � β and α 
� ⊥. The minimal inconsistent subsets of K ∪ {α} and K ∪ {β} are given as follows,

respectively.

MI(K ∪ {α}) = {{a ∧ c ∧ (¬a ∨ b), ¬b}},
MI(K ∪ {β}) = {{a, ¬a ∨ b, ¬b}, {a ∧ c, ¬a ∨ b, ¬b}}.

Clearly,

IMI(K ∪ {α}) = 1 < 2 = IMI(K ∪ {β}).
On the other hand, let Sα and Sβ be the scoring functions for K ∪ {α} and K ∪ {β}, respectively. Then

Sα < Sβ.

Contrary to the expectation about the MI inconsistency measure in [3,17], this example also shows that the measure IMI is
not a basic inconsistency measure.

The Free Formula Independence property emphasizes that free formulas of a belief base have nothing to do with in-

consistency of that belief base, since free formulas do not belong to any minimal inconsistent subset of that belief base.

Clearly this complies with the viewpoint that minimal inconsistent subsets are the purest form of inconsistency. But from

the perspective of model-based or variable- based measuring for inconsistency, free formulas are not necessarily free from
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inconsistency, as illustrated by the example of {a ∧ ¬a ∧ b, ¬b}. So, Free Formula Independence is inappropriate for char-

acterizing the model-based inconsistency measures. For example, it has been shown that a more general but representative

variable-basedmeasure ILPm does not satisfy the Free Formula Independenceproperty, since some free formulamay increase

the inconsistency value of a belief base [17].

As discussed earlier, for syntax sensitive proposals for measuring inconsistency for belief bases, each singleton set con-

sisting of an individual free formula of a belief base is also considered as one of consistent plausible views of that belief base.

In this sense, {a ∧ ¬a ∧ b, ¬b} is different from {a ∧ ¬a ∧ b ∧ ¬b} in a syntax sensitive application domain, because the

former has a plausible view of {¬b}, whereas the latter has no plausible view. Of course, adding free formulas to a belief

base can enlarge the set of consistent subsets. But this cannot bring new minimal inconsistent subsets. Intuitively, adding

or deleting free formulas may dilute or strengthen the degree of inconsistency. For example, as argued above, the scoring

function implicitly supports this intuition in some sense. Furthermore, if adding a free formula of a belief base may weaken

the degree of inconsistency of that belief base, then the Monotony property also does not hold.

To address the inappropriateness of the properties of Free Formula Independence, Dominance, andMonotony,wepropose

some new properties appropriate to characterizing the syntax-based inconsistency measure below.

4. A general framework for measuring the degree of inconsistency

From the perspective of syntax sensitive proposals for measuring inconsistency, each subset of a belief base provide a

(partial) view of that belief base. Intuitively, each consistent subset conveys a distinctive plausible view of that belief base.

Then it can be considered as one of basic views reflected by that belief base. On the other hand, the main idea of measuring

inconsistency based on minimal inconsistent subsets is that minimal inconsistent subsets can be considered as the purest

form of inconsistency from a syntax sensitive perspective, i.e., the inconsistency of a belief base is conveyed by onlyminimal

inconsistent subsets of that belief base. From this perspective, eachminimal inconsistent subset provides a distinctive atomic

view of inconsistency in that belief base. So it can also be considered as one of basic views reflected by that belief base.

In contrast, any inconsistent but not minimal inconsistent subset conveys some consistent information as well as con-

tradictory information. But with regard to contradictory information, any inconsistent but not minimal inconsistent subset

provides no extra inconsistency other than that conveyed by its minimal inconsistent subsets. In this sense, any individual

inconsistent but not minimal inconsistent subset of a belief base does not provide any new perspective of inconsistency in

that belief base, except the perspectives of inconsistency reflected by the minimal inconsistent subsets of that inconsistent

subset. According to this viewpoint, any inconsistent but not minimal inconsistent subset cannot be considered as a distinc-

tive perspective of pure inconsistency. On the other hand, such an inconsistent subset brings no extra plausible views other

than that conveyed by its consistent subsets. That is, it cannot also provide any new plausible view beyond basic consistent

views reflected by that belief base. In summary, such an inconsistent subset conveys basic consistent views as well as basic

inconsistent views. It can be considered as a mixed perspective generated by combining some consistent views and atomic

inconsistent views. In this sense, onlyminimal inconsistent subsets and consistent subsets of a belief base can be considered

as basic views reflected by that belief base. To illustrate this, consider K = {a, ¬a, c ∧ ¬c, d} and K ′ = {a, ¬a, d}. Within

the context of inconsistency measurements based on minimal inconsistent subsets, the inconsistency of K is characterized

by MI(K) = {{a, ¬a}, {c ∧ ¬c}}. As an inconsistent subset of K , the inconsistency of K ′ is captured by {a, ¬a}, one of the

minimal inconsistent subsets of K . In other words, within the context of measuring inconsistency based on minimal incon-

sistent subsets, K ′ brings no new information other than the inconsistency conveyed by {a, ¬a}. Intuitively, K ′ conveys one
distinct perspective of inconsistency, {a, ¬a}, as well as consistent distinct perspectives, {a}, {¬a}, {d}, {a, d}, and {¬a, d}.

Intuitively, how inconsistent a belief base is depends on the ratio of the inconsistent views to all the basic views reflected

by that belief base. Hence, a syntax-basedmeasure for the degree of inconsistency for a belief base in our framework should

be based on the consistent subsets as well as minimal inconsistent subsets.

In order to integrate the impact of the size of a minimal inconsistent set on its degree of inconsistency and the impact of

consistent subsets, we first give several auxiliary definitions.

Definition 4.1 (k-size Minimal Inconsistent Subsets). LetMI(K) be the set of minimal inconsistent subsets of K , then for each

k (1 ≤ k ≤ |K|), we define MI(k)(K) (possibly empty) as the set of k-size minimal inconsistent subsets of K , i.e.,

MI(k)(K) = {Γ ∈ MI(K)||Γ | = k}.
Definition 4.2 (k-size Consistent Subsets). Let CN(K) be the set of consistent subsets of K , then for each k (1 ≤ k ≤ |K|),
we define CN(k)(K) (possibly empty) as the set of k-size consistent subsets of K , i.e.,

CN(k)(K) = {Γ ∈ CN(K)||Γ | = k}.
In particular, we use vcard(MI(K)) to denote the vector

(|MI(1)(K)|, · · · , |MI(|K|)(K)|).
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Note that vcard(MI(K)) provides a more fine-grained characterization of the inconsistency of K than we have with the MI

inconsistency measure. It considers the size of each minimal inconsistent subset of a belief base as well as the number of

minimal inconsistent subsets with each size.

Example 4.1. Consider K5 = {a ∧ ¬a, b, ¬b, c}. Then

MI(1)(K5) = {{a ∧ ¬a}}, MI(2)(K5) = {{b, ¬b}}, MI(3)(K5) = MI(4)(K5) = ∅.

CN(1)(K5) = {{b}, {¬b}, {c}}, CN(2)(K5) = {{b, c}, {¬b, c}},
CN(3)(K5) = CN(4)(K5) = ∅.

Note that K5 has oneminimal inconsistent singleton subset and one 2-sizeminimal inconsistent subset. This can be reflected

by vcard(MI(K5)) = (1, 1, 0, 0). That is, in contrast to |MI(K)|, vcard(MI(K)) allows us to look inside the set of minimal

inconsistent subsets of K .

Example 4.2. Consider K5 = {a ∧ ¬a, b, ¬b, c} again. Suppose that we add b ∧ c to K5, i.e., K
′
5 = K5 ∪ {b ∧ c}. Then

MI(1)(K ′
5) = MI(1)(K5), MI(2)(K ′

5) = MI(2)(K5) ∪ {{b ∧ c, ¬b}},
MI(3)(K ′

5) = MI(4)(K ′
5) = MI(5)(K ′

5) = ∅.

CN(1)(K ′
5) = CN(1)(K5) ∪ {{b ∧ c}},

CN(2)(K ′
5) = CN(2)(K5) ∪ {{b, b ∧ c}, {c, b ∧ c}},

CN(3)(K ′
5) = {b, b ∧ c, c}, CN(4)(K ′

5) = CN(5)(K ′
5) = ∅.

This indicates that adding some formulasmay enlarge the set of minimal inconsistent subsets as well as the set of consistent

subsets.

Definition 4.3 (The Conflict Ratios Vector). Let K be a belief base, then the conflict ratios vector of K , denoted CR(K), is
defined as

CR(K) = (R1(K), . . . , R|K|(K)),

where for each i (1 ≤ i ≤ |K|),

Ri(K) =
⎧⎪⎨
⎪⎩

|MI(i)(K)|
|MI(i)(K)|+|CN(i)(K)| , if |MI(i)(K)| + |CN(i)(K)| > 0;
0, if |MI(i)(K)| + |CN(i)(K)| = 0.

Note that for each i (1 ≤ i ≤ |K|),Ri(K) is the ratio of the number of the i-sizeminimal inconsistent subsets to the sumof

the number of the i-size minimal inconsistent subsets and the number of the i-size consistent subsets. Informally speaking,

it may be considered as a normalized measure of k-size conflicts of K .

We use the following examples to illustrate the behavior of the conflict ratios vector.

Example 4.3 (Continued). Consider K5 and K ′
5 again. Then

CR(K5) =
(
1

4
,
1

3
, 0, 0

)
, CR(K ′

5) =
(
1

5
,
1

3
, 0, 0

)
.

Note that 1
5

< 1
4
. So this shows that adding b ∧ c to K5 brings more consistent information than inconsistent information,

although it enlarges both the set of minimal inconsistent subset and the set of consistent subsets. It also implies that the

conflict ratios vector does not support the Monotony property.

Example 4.4. Consider K6 = {a ∧ ¬a}. K6 is a minimal inconsistent singleton belief base. There is no consistent view

reflected by K6. In this case the conflict ratios vector is CR(K6) = (1).

Example 4.5. Consider K7 = {a, ¬a}. Note that K7 is a minimal inconsistent belief base, and each 1-size subset of K7 is

consistent. Then the conflict ratios vector is CR(K7) = (0, 1).
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Example 4.6. Consider K8 = {a, ¬a, b}. Note that b is a free formula of K8.Moreover, K8 has one 2-sizeminimal inconsistent

subset and two 2-size consistent subsets. Hence the conflict ratios vector is CR(K8) = (0, 1
3
, 0). Compared to the conflict

ratios vector of K7, adding the free formula b weakens the degree of 2-size confliction of K7, since
1
3

< 1.

The last four examples illustrate that the conflict ratios vector is syntax sensitive.

Example 4.7. Consider K9 = {a ∧ ¬a ∧ b, ¬b}. Note that K9 has one minimal inconsistent singleton subset and one

consistent singleton subset. Then the conflict ratios vector is CR(K9) = ( 1
2
, 0).

Example 4.8. Consider K10 = {a ∧ ¬a ∧ b ∧ ¬b}. This is a minimal inconsistent singleton belief base. Then the conflict

ratios vector is CR(K10) = (1).

Example 4.9. Consider K11 = {a ∧ ¬a, b ∧ ¬b}. Note that K11 has no consistent subset. Then the conflict ratios vector is

CR(K11) = (1, 0).

Example 4.10. Consider K12 = {a, ¬a, b, ¬b}. Note that K12 has two 2-size minimal inconsistent subsets and four 2-size

consistent subsets. Here the conflict ratios vector is CR(K12) = (0, 1
3
, 0, 0).

The conflict ratios vector of a belief base considers the number of minimal inconsistent subsets and consistent subsets

as well as the size of each consistent or minimal inconsistent subset of that base. It may be used to characterize the degree

of inconsistency for belief bases. In particular, as shown by the following proposition, the conflict ratios vector can describe

succinctly the consistent belief base, the minimal inconsistent belief base, and the belief base without consistent subsets,

respectively.

Proposition 4.1. Let K be a belief base and let CR(K) be the conflict ratios vector of K.

(1) CR(K) = �0 if and only if K is consistent, where �0 is the zero vector.

(2) Ri(K) = 0 for each i < |K| and R|K|(K) = 1 if and only if K is a minimal inconsistent belief base.

(3) Ri(K) = 0 for each i > 1 and R1(K) = 1 if and only if none of non-empty subsets of K is consistent.

(4) R1(K) = 1 implies that Ri(K) = 0 for each i (2 ≤ i ≤ |K|).
Proof. Let K be a belief base and CR(K) the conflict ratios vector of K .

(1) CR(K) = �0 ⇐⇒ for each k (1 ≤ k ≤ |K|), |MI(i)(K)| = 0 ⇐⇒ MI(K) = ∅ ⇐⇒ K is consistent.

(2) Ri(K) = 0 for each i < |K| and R|K|(K) = 1 ⇐⇒ MI(K) = MI(|K|)(K) = {K} ⇐⇒ K is a minimal inconsistent

belief base.

(3) Ri(K) = 0 for each i > 1 and R1(K) = 1 ⇐⇒ MI(K) = MI(1)(K) = {{α}|α ∈ K} ⇐⇒ ∀α ∈ K, α � ⊥, i.e., none

of non-empty subsets of K is consistent.

(4) If R1(K) = 1, then ∀α ∈ K, {α} � ⊥. Therefore, |MI(i)(K)| = 0 for each i (2 ≤ i ≤ |K|). According to the definition

of conflict ratios vector, Ri(K) = 0 for each i (2 ≤ i ≤ |K|). �

Clearly, according to this proposition, if K is inconsistent, then there exists an i such that 1 ≤ i ≤ |K| and Ri(K) > 0.

Moreover, the conflict ratios vector of a belief base gives an overview of (normalized) conflicts with each size of that base.

In this sense, the degree of inconsistency of a belief base K is captured by the value of each element of CR(K) together with

the location of that element in CR(K). Then a normalized measure for the degree of inconsistency for K based on minimal

inconsistent subsets should be an integrated function of the conflict ratios vector.

To provide a more general framework for measuring the degree of inconsistency of a belief base by using its minimal

inconsistent subsets and consistent subsets, we define a measure function as follows:

Definition 4.4 (Measure Functions). A measure function is a total function fn associating a real number to every finite tuple

of real numbers in [0, 1] and satisfying the following conditions:

(C1) 0 ≤ fn(x1, . . . , xn) ≤ 1.

(C2) fn(x1, . . . , xn) = 1 if and only if x1 = 1.

(C3) fn(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0.

(C4) fn(x1, . . . , x, . . . , xn) ≤ fn(x1, . . . , y, . . . , xn) if x ≤ y.

(C5) limn→+∞ fn(0, . . . , 0, 1) = 0.

(C6) fn(0, · · · , 0, 1) > fn+1(0, . . . , 0, 1).
(C7) fn(x1, . . . , xn) = fn+1(x1, . . . , xn, 0).
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Syntactically, ameasure function is similar to the aggregation function defined in [22] in terms of a single value associated

with a set of values, although they have different semantic interpretations. Roughly speaking, (C1) states that the measure

function is a normalized function. (C2) and (C3) provide necessary and sufficient conditions on the lower bound 0 and the

upperbound1of themeasure function, respectively. (C4) requires that themeasure functionshouldbemonotonicwith regard

to each variable. (C5) and (C6) provide constraints about the special function values fn(0, . . . , 0, 1) and fm(0, . . . , 0, 1). As
illustrated by Proposition 4.1, n-tuple conflict ratios vector (0, . . . , 0, 1) corresponds to an n-sizeminimal inconsistent belief

base. So, (C5) and (C6) may be considered as constraints on the degree of inconsistency of the minimal inconsistent belief

base. Finally, (C7) provides a relation between the n-ary measure function and the (n + 1)-ary measure function.

Based on measure functions, we now define measures of the degree of inconsistency for belief bases as follows.

Definition 4.5 (Measures of the Degree of Inconsistency). Let K be a belief base and f|K| a |K|-ary measure function. Then a

measure of the degree of inconsistency for K induced by f|K|, denoted IncDf(K), is defined as

IncDf(K) = f|K|(CR(K)),

where CR(K) is the conflict ratios vector of K .

The choice of f|K| results in various instances of IncDf . Moreover, as illustrated later, conditions (C1)–(C7) render the

measures of the degree of inconsistency IncDf more intuitive.

5. Logical properties

Informally speaking, a rational set of properties to characterize inconsistency measures should focus on three aspects,

namely natural constraints of inconsistency, natural constraints of inconsistency changes, and special characteristics of

measures.

Generally, natural constraints of inconsistency describe the static nature of inconsistency, including how to distinguish

consistent belief bases from inconsistent ones, whether the inconsistency measure is bounded, and the meaning of the

bounds of the boundedmeasure. That is, natural constraints of inconsistency should include at least the following properties:

• Characterization of consistent belief bases: All the consistent belief base has the same value. Moreover, this value is

different to any value for inconsistent belief base. For example, the Consistency property presented in [2] is such a

property.
• Characterization of bounds of inconsistency measurement: For simplicity, inconsistency measures often need to be

bounded, perhaps through normalization. With respect to this, the lower bound and the upper bound should have

clear meanings or explicit explanations, respectively. For example, as mentioned above, in the context of maximal

η-consistency,maximal 1-consistency corresponds to complete consistency, andmaximal 0-consistency corresponds

to the explicit presence of a contradiction, i.e., the explicit presence of a contradictory formula in a belief base [7].

Generally, if we assume that the bigger the inconsistency value is, the more inconsistent a belief base is, then the

lower bound should be the value for consistent bases. In this sense, the Consistency property explains the meaning

of the lower bound 0 for normalized inconsistency measures. Intuitively, the upper bound should be the value for

the belief bases conveying only inconsistencies with regard to a given context of characterization of inconsistency.

For example, to accord with this intuition, for a syntax sensitive measure I, I(K) = 1 should imply that none of the

non-empty subsets of K is consistent. In contrast, for a model-based or variable-based measure I, I(K) = 1 should

imply that all the variables of formulas in K can be given only the inconsistent truth value in paraconsistent models

such as LPm models.

Natural constraints on inconsistency changes characterize how inconsistency changes due to various changes of a belief

base. For example, the properties ofMonotony, Free Formula Independence andDominance presented in [2] are such proper-

ties. Generally, we need to characterize the cases of strengthening inconsistency, weakening inconsistency, and unchanging

inconsistency.

Special characteristics of specialmeasures alwaysmakeaparticular typeofmeasuredistinctive. For example, formeasures

based on minimal inconsistent subsets, in addition to the two aspects above, we also need to take account of the special

characteristics of minimal inconsistent subsets when considering the degree of inconsistency.

With this in mind, we now propose the following properties to characterize the inconsistency based on minimal incon-

sistent subsets.

First, we consider the natural constraints of inconsistency. Recall the five properties presented to characterize a basic

inconsistency measure in [2,3], Consistency can be considered as one of the most intuitive constraints for any kind of

inconsistency measure. So we should at least adopt the properties of Consistency and Normalization presented in [2] to

characterize a normalized measure for the degree of inconsistency of a belief base. That is, let IncD be a measure for the

degree of inconsistency of a belief base, IncD should satisfy
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(P1) Normalization: 0 ≤ IncD(K) ≤ 1.

(P2) Consistency: IncD(K) = 0 if and only if K is consistent.

Aswe discussed above, we need a newproperty to explain themeaning of the upper bound 1 for the normalizedmeasure.

(P3) Contradiction: IncD(K) = 1 if and only if K has no consistent subset.

The Contradiction property requires that a desirable inconsistency measure should assign the maximum degree of in-

consistency to belief bases which have no consistent subsets. That is, if each singleton subset of a belief base is inconsistent,

then that belief base should be considered as one of the most inconsistent belief bases. In particular, it also implies that the

degree of inconsistency of any 1-size minimal inconsistent belief base (i.e. inconsistent singleton belief base) is the upper

bound, that is 1.

In contrast, as argued above, Free Formulas Independence,Dominance, andMonotony are not appropriate for characterizing

a normalizedmeasure for the degree of inconsistency. Instead, we provide properties of Free Formula Dilution and Monotony

w.r.t. Conflict Ratio below as natural constraints of inconsistency changes. Furthermore, we need to consider the special

characteristics of the degree of inconsistency of a minimal inconsistent belief base, e.g., Attenuation and Almost Consistency.

So a measure for the degree of inconsistency should also satisfy the following properties:

(P4) Free Formula Dilution: If α ∈ FREE(K ∪ {α}), then IncD(K ∪ {α}) ≤ IncD(K).
(P5) Monotony w.r.t. Conflict Ratio: If |K ′| = |K| and Ri(K) ≤ Ri(K

′) for each 1 ≤ i ≤ |K|, then IncD(K) ≤ IncD(K ′).
(P6) Attenuation: ∀M1,M2 ∈ MI(K), 1 ≥ IncD(M1) > IncD(M2) > 0 if |M1| < |M2|.
(P7) Almost Consistency: lim|M|→+∞ IncD(M) = 0 for a minimal inconsistent belief base M.

The property of Free Formula Dilution states that adding or removing a free formula from a belief base can dilute or

strengthen the degree of inconsistency of a belief base. The property ofMonotonyw.r.t. Conflict Ratio states that as the ratios

of the number of i-size minimal inconsistent subsets to the number of i-size consistent or minimal inconsistent subsets

increases, the measure of the degree of inconsistency cannot decrease. The property of Attenuation states that as the size of

a minimal inconsistent subset increases, the degree of inconsistency becomes smaller. The property of Almost Consistency

requires that as the size of aminimal inconsistent belief base increases, the degree of inconsistency tends to become 0, i.e., if

the size of aminimal inconsistent belief base is large enough, it is nearly consistent. Note that the properties of Contradiction,

Attenuation, andAlmost Consistency are independent characteristics of thedegreeof inconsistencyof aminimal inconsistent

belief base. Each provides an intuitive restriction on the degree of a minimal inconsistent belief base.

Note that condition (C1) corresponds to theproperty (P1) (i.e., Normalization).Moreover, fromProposition 4.1, the special

conflict ratios vectors �0, (0, . . . , 0, 1), and (1, 0, . . . , 0) correspond to the consistent belief base, the minimal inconsistent

beliefbase, and thebeliefbasewithoutconsistent subsets, respectively. (C2)and (C3)correspondto (P2)and (P3), respectively.

Also, (C5) and (C6) correspond to (P7) and (P6), respectively. More generally, the following proposition shows that IncDf is
a desirable framework for measuring the degree of inconsistency of belief bases.

Proposition 5.1. IncDf satisfies the properties of Normalization, Consistency, Contradiction, Free Formula Dilution, Monotony

w.r.t. Conflict Ratio, Attenuation, and Almost Consistency.

Proof. Let K be a belief base.

(P1) Normalization: It follows from (C1) directly.

(P2) Consistency: From Proposition 4.1, K is consistent ⇔ CR(K) = �0. According to (C3),

CR(K) = �0 ⇔ IncDf(K) = 0.

So, K is consistent ⇔ IncDf(K) = 0.

(P3) Contradiction: From Proposition 4.1, K has no consistent subsets, ⇔ R1(K) = 1 and Ri(K) = 0 for i > 1. According

to (C2),

CR(K) = (1, 0, . . . , 0) ⇔ IncDf(K) = 1.

So, K has no consistent subsets ⇔ IncDf(K) = 1.

(P4) Free Formula Dilution: If α is a free formula of K ∪ {α}, then

|MI(i)(K ∪ {α})| =
⎧⎨
⎩

|MI(i)(K)|, if 1 ≤ i ≤ |K|,
0, if i = |K| + 1.
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and for each i (1 ≤ i ≤ |K| ),
|MI(i)(K ∪ {α})| + |CN(i)(K ∪ {α})| ≥ |MI(i)(K)| + |CN(i)(K)|.

So, for each 1 ≤ i ≤ |K|,
Ri(K ∪ {α}) ≤ Ri(K),

and

R|K|+1(K ∪ {α}) = 0.

According to (C7),

f|K|+1(R1(K ∪ {α}), . . . , R|K|(K ∪ {α}), 0) = f|K|(R1(K ∪ {α}), . . . , R|K|(K ∪ {α})).
By iterated use of (C4),

f|K|(R1(K ∪ {α}), . . . , R|K|(K ∪ {α})) ≤ f|K|(R1(K), . . . , R|K|(K})),
i.e., IncDf(K ∪ {α}) ≤ IncDf(K).

(P5) Monotony w.r.t. Conflict Ratio: If |K| = |K ′| and Ri(K) ≤ Ri(K
′) for each 1 ≤ i ≤ |K|, then

f|K|(R1(K), . . . , R|K|(K})) ≤ f|K|(R1(K
′), . . . , R|K|(K ′})),

by iterated use of (C4). That is, IncDf(K) ≤ IncDf(K
′).

(P6) Attenuation: From proposition 4.1, M is a minimal inconsistent belief base iff R|M|(M) = 1 and Ri(M) = 0 for each

i < |M|. According to (C6), IncDf(M1) > IncDf(M2) if |M1| < |M2|. According to (P1) and (P2), 1 ≥ IncDf(M1) >
IncDf(M2) > 0.

(P7) Almost Consistency: This can be deduced from (C5) and the proof for Attenuation directly. �

6. Instantiating the general framework

We now provide some simple measure functions to instantiate our framework. We attempt to take advantage of some

current measures for the degree of inconsistency of minimal inconsistent belief bases such as maximal η-consistency to

derive an instantiated measure for general belief bases.

Definition 6.1. A sequence of real numbers D = {di}+∞
i=1 is called a rudimentary sequence of the degree of inconsistency if

it satisfies the following conditions:

(D1) ∀n ∈ N, dn > 0.

(D2) d1 = 1.

(D3) ∀n ∈ N, dn+1 < dn.

(D4) limn→+∞ dn = 0.

For example, both { 1
n
}+∞
n=1 and {e1−n}+∞

n=1 are such sequences of real numbers. Note that (D2), (D3), and (D4) correspond

to the properties of Contradiction, Attenuation, and Almost Consistency, respectively. Essentially, a rudimentary sequence

of the degree of inconsistency is a sequence that accords with the intuitive constraints of the measures of the degree of

inconsistency of each i-size minimal inconsistent belief base. In other words, it can be considered as a scheme to define the

measure of the degree of inconsistency for minimal inconsistent belief bases.

Definition 6.2. Let D = {di}+∞
i=1 be a rudimentary sequence of the degree of inconsistency. The n-ary function based on D,

denoted f Dn , is defined as

f Dn (x1, . . . , xn) = 1 −
n∏

i=1

(1 − xi · di) .

Lemma 6.1. Let D = {di}+∞
i=1 be a rudimentary sequence of the degree of inconsistency. Then f Dn is a measure function, i.e., it

satisfies (C1)–(C7).

Proof. Let D = {di}+∞
i=1 be a rudimentary sequence of the degree of inconsistency.
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(C1) ∀(x1, . . . , xn) ∈ [0, 1]n, 0 ≤ (1 − xi · di) ≤ 1. So,

0 ≤ f Dn (x1, . . . , xn) ≤ 1.

(C2) “�⇒:” If x1 = 1, then (1 − x1 · d1) = 0. So, f Dn (1, 0, . . . , 0) = 1.

“⇐�: ” If f Dn (x1, . . . , xn) = 1, then
∏n

i=1 (1 − xi · di) = 0. According to (D3) and (D2), for each i (2 ≤ i ≤ n),

1 − xi · di > 0 since di < d1 = 1. Therefore, x1 = 1.

(C3) f Dn (x1, . . . , xn) = 0 ⇐⇒ ∏n
i=1 (1 − xi · di) = 1 ⇐⇒ x1 = · · · = xn = 0.

(C4) if xk ≤ yk and xi = yi for each i 
= k, then
∏n

i=1 (1 − xi · di) ≥ ∏n
i=1 (1 − yi · di). So, 1 − ∏n

i=1 (1 − xi · di) ≤
1 − ∏n

i=1 (1 − yi · di), i.e.,

f Dn (x1, . . . , xn) ≤ f Dn (y1, . . . , yn).

(C5) fn(0, . . . , 0, 1) = dn. According to (D4),

f Dn (0, . . . , 0, 1) = dn → 0 if n → +∞.

(C6) fn+1(0, . . . , 0, 1) = dn+1. According to (D3),

f Dn+1(0, . . . , 0, 1) = dn+1 < dn = f Dn (0, . . . , 0, 1).

(C7) f Dn+1(x1, . . . , xn, 0) = 1 − ∏n
i=1 (1 − xi · di) · (1 − 0 · dn+1) = 1 − ∏n

i=1 (1 − xi · di). That is

f Dn+1(x1, . . . , xn, 0) = f Dn (x1, . . . , xn). �

Correspondingly, the inconsistency measure induced by f Dn can be defined as follows.

Definition 6.3. Let D = {di}+∞
i=1 be a rudimentary sequence of the degree of inconsistency. Let K be a belief base. The

measure for the degree of inconsistency of K , denoted IncDfD(K), is given as follows:

IncDfD(K) = f D|K|(CR(K)) = 1 −
|K|∏
i=1

(1 − Ri(K) · di) .

As discussed above, the degree of inconsistency of K is captured by the conflict ratios vector (R1(K), . . . , R|K|(K)). The
measure IncDfD(K) provides a scheme to integrate these ratios, in which weight di reflects the relative location of Ri(K) in

the ratios vector (R1(K), . . . , R|K|(K)) for each i in a natural way. Moreover, the corresponding function f Dn is not a simple

weighted sum function. It provides a mechanism for weighted integration under the constraint of normalization.

As a direct consequence of Proposition 5.1 and Lemma 6.1, the following corollary shows that IncDfD is an intuitive

instantiated measure of the degree of inconsistency for belief bases.

Corollary 6.1. IncDfD satisfies the properties of Normalization, Consistency, Contradiction, Free Formula Dilution, Monotony

w.r.t. Conflict Ratio, Attenuation, and Almost Consistency.

In particular, for any minimal inconsistent belief base M,

IncDfD(M) = d|M|.

This iswhywecall {di}+∞
i=1 the rudimentary sequenceof thedegreeof inconsistency. Thenwemayuse somecurrentmeasures

for the degree of inconsistency for minimal inconsistent belief bases to further instantiate IncDfD .
As discussed earlier, the degree of inconsistency of the belief base K is characterized by the value of each element of the

conflict ratios vectorCR(K) togetherwith the location of that element inCR(K). We are interested in the issue thatwhether

this characterization can be captured by this instantiatedmeasure IncDfD . To illustrate this, consider the following example.

Example 6.1. Consider K = {a, ¬a, b, c, d} and K ′ = {a, a → b, ¬b, c, d}. Then MI(K) = {{a, ¬a}} and MI(K ′) =
{{a, a → b, ¬b}}.

Note that neither IMI nor normalized IMI can make a distinction between K and K ′, since

IMI(K) = IMI(K
′) = 1

Please cite this article in press as: K. Mu et al., A syntax-based approach to measuring the degree of inconsistency for belief bases, Int. J.

Approx. Reason (2011), doi:10.1016/j.ijar.2011.04.001

http://dx.doi.org/10.1016/j.ijar.2011.04.001


K. Mu et al. / International Journal of Approximate Reasoning xxx (2011) xxx–xxx 15

and

IMI(K)

2|K| − 1
= IMI(K

′)
2|K ′| − 1

= 1

31
.

Intuitively, K ′ is different from K in the degree of inconsistency from a syntax sensitive perspective. However, the con-

flict ratios vector can make a distinction between the two belief bases, because CR(K) = (0, 1
10

, 0, 0, 0) and CR(K ′) =
(0, 0, 1

10
, 0, 0), although the two conflict ratios vectors have the common element 1

10
.

Moreover, the measure IncDfD can capture this distinction, since

IncDfD(K) = d2

10
>

d3

10
= IncDfD(K ′).

More generally, the following proposition shows this instantiated measure provides direct support for this characteriza-

tion.

Proposition 6.1. Suppose that K1 and K2 are two n-size belief bases. Let 1 ≤ l < m ≤ n be two numbers such that

(1) Ri(K1) = Ri(K2) if i 
∈ {l,m}.
(2) Rl(K1) = Rm(K2), Rm(K1) = Rl(K2).
(3) Rl(K1) ≤ Rm(K1).

Then

IncDfD(K1) ≤ IncDfD(K2).

Proof. Let c = ∏
1≤i≤n,i 
∈{l,m} (1 − Ri(K1) · di). According to (1) and (2),

IncDfD(K1) = 1 − c(1 − Rl(K1) · dl)(1 − Rm(K1) · dm),

IncDfD(K2) = 1 − c(1 − Rm(K1) · dl)(1 − Rl(K1) · dm).

Then

IncDfD(K2) − IncDfD(K1)

= c((1 − Rl(K1) · dl)(1 − Rm(K1) · dm) − (1 − Rm(K1) · dl)(1 − Rl(K1) · dm))

= c(dl − dm)(Rm(K1) − Rl(K1)).

Obviously, c > 0, and (dl − dm) > 0, since l < m. By (3), we can get

IncDfD(K2) − IncDfD(K1) ≥ 0.

That is,

IncDfD(K1) ≤ IncDfD(K2). �

Informally speaking, this proposition shows that the instantiatedmeasure focuses on the relative location of each element

of the conflict ratios vector as well as these ratios. This accords with the characterization of inconsistency in terms of the

conflict ratios vector.

The maximal η-consistency presented in [7] describes how consistent a belief base is. Let ηi be the value of η for the

i-size minimal inconsistent subset, then we define a rudimentary sequence of the degree of inconsistency Dη = {dη
i }+∞

i=1

such that d
η
i = 1 − ηi = 1

i
.
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We then give the corresponding instantiated measure for the degree of inconsistency as follows:

Definition 6.4. Let K be a belief base. Then

IncDfDη (K) = 1 −
n∏

i=1

(
1 − Ri(K) · 1

i

)
.

Example 6.2. Consider K6 = {¬a, a}, K7 = {¬a, a, b} and K8 = {¬a, ¬b, a ∨ b} again. Note that MI(K6) = MI(K7) =
{{¬a, a}} and MI(K8) = {K8}. As discussed above, we cannot compare K6 and K7 in terms of scoring functions, since

|K6| 
= |K7|. On the other hand, if we adopt the MI inconsistency measure IMI, then

IMI(K6) = IMI(K7) = IMI(K8) = 1.

Here we cannot make a distinction among the inconsistencies of the three belief bases. Furthermore, if we consider the

normalized MI inconsistency measure, then

IMI(K6)

2|K6| − 1
= 1

3
,

IMI(K7)

2|K7| − 1
= IMI(K8)

2|K8| − 1
= 1

7
.

Againwe cannotmake a distinction between the degree of inconsistency of K7 and that of K8. However, the scoring function-

based comparison shows that K8 is more inconsistent than K7.

Now consider the measure IncDfDη , then

IncDfDη (K6) = 1

2
, IncDfDη (K7) = 1

6
, IncDfDη (K8) = 1

3
.

With this measure, we can distinguish the three belief bases from each other in the sense of the degree of inconsistency, i.e,

K6 is more inconsistent than K8, and K8 is more inconsistent than K7.

As discussed earlier, the normalized MI inconsistency measure
IMI(K)

2|K|−1
cannot make a distinction in the degree of incon-

sistency between any two belief bases with the same size and the same number of minimal inconsistent subsets. However,

if we focus on theminimal inconsistent belief bases, this normalizedmeasure for minimal inconsistent belief bases satisfies

the properties of Contradiction, Attenuation, and Almost consistency. Thenwe can also use the normalizedMI inconsistency

measures forminimal inconsistent belief bases to define a rudimentary sequence of the degree of inconsistencyDI as follows:

dI
i = IMI(M)

2|M| − 1
,

where M is a minimal inconsistent belief base and |M| = i. Since IMI(M) = 1, dI
i = 1

2i−1
. Correspondingly, we give the

instantiated measure for the degree of inconsistency as follows:

Definition 6.5. Let K be a belief base. Then

IncDfDI (K) = 1 −
n∏

i=1

(
1 − Ri(K) · 1

2i − 1

)
.

Example 6.3. Consider K9 = {a, ¬a, b, ¬b, c} and K10 = {a, ¬a, ¬a ∨ b, ¬b, c}. Then

MI(K9) = {{a, ¬a}, {b, ¬b}}, MI(K10) = {{a, ¬a}, {a, ¬a ∨ b, ¬b}}.
If we adopt the MI inconsistency measure, then

IMI(K9) = IMI(K10) = 2.

Note that |K9| = |K10|, then
IMI(K9)

2|K9| − 1
= IMI(K10)

2|K10| − 1
= 2

31
.
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Therefore both the MI inconsistency measure and the normalized MI inconsistency measure cannot make a distinction

between the two belief bases with respect to the degree of inconsistency.

In contrast, consider the measure IncDfDI , then

IncDfDI (K9) = 1

15
> IncDfDI (K10) = 13

245
.

With this measure, we can distinguish the two belief bases from each other in the sense of the degree of inconsistency, i.e,

K9 is more inconsistent than K10.

As shown by the following corollary, the two instances of IncDfD satisfy the expected properties.

Corollary 6.2. Both IncDfDη and IncDfDI satisfy the properties of Normalization, Consistency, Contradiction, Free Formula

Dilution, Monotony w.r.t. Conflict Ratio, Attenuation, and Almost Consistency.

As an instance of measure functions, f Dn induces two instantiated inconsistency measures IncDfDη and IncDfDI based

on two different but intuitive rudimentary sequences of the degree of inconsistency, respectively. Note that these two

rudimentary sequence of the degree of inconsistency come from current inconsistency measures. In this sense, the two

instantiated measures also take the best of the corresponding current measures.

7. An application in requirements engineering

Here we use an example in requirements engineering to illustrate the application of our measure of the degree of

inconsistency for belief bases.

Example 7.1. Consider a scenario for eliciting requirements for updating an existing software system. Essentially the idea

is that the requirements are refined by negotiation. We want to check if the refinements are improving from a consistency

point of view.

At first, two stakeholders express their demands from their perspectives, respectively.

(a) Stakeholder A: A representative of the sellers of the new system, provides the following demands:

(a1) The user interface of the system-to-be should be in the modern idiom (i.e., fashionable).

(a2) The system-to-be should be developed based on the newest development techniques.

(b) Stakeholder B: A representative of the users of the existing system, provides the following demands:

(b1) The system-to-be should be developed based on the techniques used in the existing system.

(b2) The user interface of the system-to-be should maintain the style of the existing system.

(b3) The system-to-be should be secure.

(c) The domain expert in requirements engineering provides the following constraint, which is a consequence of (b3)

above:

(c1) To guarantee the security of the system-to-be, openness (or ease of extension) should not be considered.

Suppose that we

• use the predicate Fash(int_f) to denote that the interface is fashionable;
• use the predicate Open(sys) to denote that the system is open;
• use the predicate New(sys) to denote that the system will be developed based on the newest techniques;
• use the predicate Secu(sys) to denote that the system is secure.

Then we use a belief base

Kr0 = {Fash(int_f),New(sys), ¬Fash(int_f),

¬New(sys), Secu(sys), Secu(sys) → ¬Open(sys)}
to represent the requirements above, these are taken respectively in the order {(a), (b), (c)}. Clearly, the following incon-

sistencies can be identified from these requirements:

Kr0 � New(sys) ∧ ¬New(sys),

Kr0 � Fash(int_f) ∧ ¬Fash(int_f).
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To resolve the inconsistencies in Kr0, some requirements need to be abandoned or to be changed. Before negotiationwith

stakeholders aimed at resolving inconsistency, the developers establish how inconsistent the set of requirements is.

The set of all the minimal inconsistent subsets of Kr0 is MI(Kr0) = {M1, M2}, where

M1 = {New(sys), ¬New(sys)}, M2 = {Fash(int_f), ¬Fash(int_f)}.
Then we get the degree of inconsistency of Kr0 as follows:

IncDfDη (Kr0) = 1

15
.

To guide the negotiation process toward resolving inconsistency, we need to know whether each round of negotiation

abates the inconsistencies in requirements. Itmakesmeasuring the degree of inconsistency in requirements after each round

of negotiation more necessary.

Suppose that before negotiation, Stakeholder A wants to know whether the degree of inconsistency in requirements

remains unchanged if he persists in extending requirement (a1) as follows:

(a1’) The user interface of the system-to-be should be in the modern idiom, and the system-to-be should be open.

In this case, we use a belief base

K ′
r0 = {Fash(int_f) ∧ Open(sys),New(sys), ¬Fash(int_f),

¬New(sys), Secu(sys), Secu(sys) → ¬Open(sys)}
to represent the possible requirements. Evidently, K ′

r0 is inconsistent and MI(K ′
r0) = {M′

1, M
′
2, M

′
3}, where

M′
1 = {New(sys), ¬New(sys)},

M′
2 = {Fash(int_f) ∧ Open(sys), ¬Fash(int_f)},

M′
3 = {Secu(sys), Secu(sys) → ¬Open(sys), Fash(int_f) ∧ Open(sys)}.

The degree of inconsistency of K ′
r0 is calculated as follows:

IncDfDη (K ′
r0) = 5

54
>

1

15
= IncDfDη (Kr0).

This implies that this possible extension may strengthen the degree of inconsistency of requirements. Stakeholder A

recognizes that he needs to make some concession.

Suppose that after a roundof negotiation, StakeholderA agrees to abandon requirement (a1), andprovides a newdemand:

(a3) The system-to-be should be open, that is, the system-to-be could be extended easily.

Then we use a new belief base

Kr1 = {Open(sys),New(sys), ¬Fash(int_f),

¬New(sys), Secu(sys), Secu(sys) → ¬Open(sys)}
to represent the requirements after negotiation. Clearly, the new set of requirements is also inconsistent:

Kr1 � New(sys) ∧ ¬New(sys),

Kr1 � Open(sys) ∧ ¬Open(sys).

The developers would like to knowwhether the new requirements are less inconsistent than the originals. The set of all the

minimal inconsistent subsets of Kr1 is MI(Kr1) = {M1, M3}, where

M1 = {New(sys), ¬New(sys)},
M3 = {Secu(sys), Secu(sys) → ¬Open(sys),Open(sys)}.
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And the degree of inconsistency of Kr1 is calculated as follows:

IncDfDη (Kr1) = 77

1440
<

1

15
= IncDfDη (Kr0).

That is, after the first round of negotiation, the requirements have become less inconsistent. This in turn signifies informally

that this negotiation made some progress.

Suppose that the developers proceed with a second negotiation, and Stakeholder B agrees to abandon requirement (b2).

Then we use the new belief base

Kr2 = {Open(sys),New(sys), ¬Fash(int_f), Secu(sys), Secu(sys) → ¬Open(sys)}
to represent the requirements after this negotiation. Clearly, the new set of requirements is also inconsistent:

Kr2 � Open(sys) ∧ ¬Open(sys).

The set of all the minimal inconsistent subsets of Kr2 is MI(Kr2) = {M3}, where

M3 = {Secu(sys), Secu(sys) → ¬Open(sys),Open(sys)}.
The degree of inconsistency of Kr2 is calculated this time as follows:

IncDfDη (Kr2) = 1

30
< IncDfDη (Kr1).

This signifies that the second round of negotiation also makes progress.

Suppose that after a third round of negotiation, Stakeholder A agrees to withdraw requirement (a3), then

Kr3 = {New(sys), ¬Fash(int_f), Secu(sys), Secu(sys) → ¬Open(sys)}
and

IncDfDη (Kr3) = 0.

This means the inconsistency in the original requirements has been resolved by negotiation.

However, if we adopt the MI inconsistency measure, then after the first negotiation,

IMI(Kr0) = IMI(Kr1) = 2.

This serves as an illustration that the MI inconsistency measure can not reflect the change of the degree of inconsistency of

requirements after requirements negotiation. As discussed earlier, the MI inconsistency measure focused on only the total

number ofminimal inconsistent subsets. This implies that theMI inconsistencymeasure cannot capture the possible change

of inconsistency due to the change of size of theminimal inconsistent subset in the cases such as the first round negotiation.

In contrast, our inconsistency measure attempts to capture the impact of consistent subsets as well as that of the size of

each minimal inconsistent subset and the number of minimal inconsistent subsets on the degree of inconsistency for belief

bases. It is sensitive to either changes of consistent subsets or changes ofminimal inconsistent subsets due to syntax changes

of a belief base such as augmenting a belief base, or removing some formulas from a belief base, or replacing some original

formulas with new formulas. So, it is more appropriate to capture changes of the degree of inconsistency in requirements

negotiation above.

8. Comparison and discussion

In this section we compare the properties and the measures for the degree of inconsistency for belief bases with some

closely related research works.

The underlying principle of measures defined in this paper is to define measures for the degree of inconsistency of a

belief base by using its minimal inconsistent subsets and consistent subsets. However, deriving an inconsistency measure

for a belief base from its minimal inconsistent subsets has been increasingly recognized as a natural way to articulate the

inconsistency of a belief base [14,3]. This is in accord with the viewpoint of minimal inconsistent subsets as the purest form
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of inconsistency [15]. Moreover, as argued in [3], such a measure is necessary for some syntax sensitive applications such as

formal reasoning about software requirements.

How to characterize a desirable inconsistency measure especially an inconsistency measure based on minimal incon-

sistent subsets is still under development in the research community. Roughly speaking, a rational set of postulates or

properties to characterize a special type of inconsistency measure needs to consider the special features for the special

type of measures as well as general constraints for any desirable inconsistency measures. Regarding the set of properties

presented in this paper, the Consistency property and the Normalization property come from the set of five properties that

are claimed to characterize a basic inconsistency measure in [2,3,17]. These two common properties can be considered as

natural and intuitive constraints about the degree of inconsistency of belief bases. On the other hand, the Normalization

property creates a demand for the Contradiction property, which explains explicitly the meaning of the upper bound 1 of

the measures of the degree of inconsistency in terms of minimal inconsistent subsets and consistent subsets. Moreover,

the properties of Contradiction, Attenuation, and Almost Consistency together provide a special characterization of the de-

gree of inconsistency for minimal inconsistent subsets. It is crucial to further characterize inconsistency measures based

on minimal inconsistent subsets. In contrast, the set of five properties presented in [2,3] lacks an explicit characterization

about the degree of inconsistency for minimal inconsistent subsets. We proposed the properties of Free Formula Dilution

andMonotony w.r.t. Conflict Ratio instead of the properties of Free Formula Independence andMonotony presented in [2,3]

to articulate changes of the degree of inconsistency due to changes of belief bases, respectively. As argued earlier, the impact

of free formulas on the degree of inconsistency cannot be captured by the Free Formula Independence property either in the

case of syntax-based measures such as the scoring function [14] or in the case of model-based measures such as ILPm [17].

Intuitively, for the inconsistencymeasures based onminimal inconsistent subsets, adding free formulas to a belief base may

dilute the degree of inconsistency of that base, since it enlarges the set of consistent subsets of that belief base. Clearly, the

Monotony property also contradicts this intuition.

Note that theContradictionproperty states that anybelief basewithout consistent subsets has the degree of inconsistency

at the upper bound. This complies with the viewpoint that each consistent subset of a belief base is viewed as a plausible

perspective of that belief base. It is really syntax sensitive. To illustrate this, consider {a∧ ¬a∧ b} and {a∧ ¬a, b}. Inc({a∧
¬a ∧ b}) = 1 > Inc({a ∧ ¬a, b}), since the latter has one plausible consistent view {b}.

Under the guidance of these properties, we presented a general framework and some instances of this framework to

measure the degree of inconsistency of a belief base by using its minimal inconsistent subsets and consistent subsets.

The scoring function presented in [14] and the MI inconsistency measure presented in [3] are most closely related to our

measures proposed in this paper. The two proposals based onminimal inconsistent subsets consider the number ofminimal

inconsistent subsets of a belief base as an essential factor to define an inconsistency measure. As mentioned earlier, the

scoring function uses 2|K| values to articulate the degree of inconsistency of K . This renders the scoring function difficult

to use when comparing any two inconsistent belief bases with different sizes. The MI inconsistency measure considers

the number of minimal inconsistent subsets as the amount of inconsistency of a belief base. However, both the scoring

function and the MI inconsistency measure do not consider the impact of the size of each minimal inconsistent belief base

on the degree of inconsistency of that belief base explicitly. So, neither the MI inconsistency measure nor the normalized

the MI inconsistency measure makes a distinction between any two belief bases with the same size and the same number

of minimal inconsistent subsets.

In contrast, there are a number of characteristics of the measures defined in this paper distinguish our measures from

the scoring function and the MI inconsistency measure. First, the general framework proposed in this paper is based on the

conflict ratios vector of a belief base rather than on the minimal inconsistent subset directly. The conflict ratios vector of a

belief base considers the size of each minimal inconsistent subset as well as the number of minimal inconsistent subsets,

but also considers the size and the number of consistent subsets. Second, the satisfaction of Contradiction, Attenuation,

and Almost Consistency implies that our general framework and the corresponding instances of measures for the degree of

inconsistency support the intuition illustrated by the lottery paradox that the degree of inconsistency decreases as the size

of a minimal inconsistent subset increases. In this sense, it accords with the strict n-consistency presented in [9] and the

maximal η-consistency presented in [7] about the degree of inconsistency of minimal inconsistent belief bases. Third, the

satisfaction of the Free Formula Dilution property signifies that the impact of free formulas on the degree of inconsistency

of a belief base can be captured by the corresponding instantiated measures. There are many different ways of instantiating

function D to define different IncD functions. This will be the main direction of our future work.

With regard to potential implementation of inconsistency measures presented in this paper, the core is to compute

minimal inconsistent subsets and consistent subsets for a belief base. One of underlying problems of the core is to check

whether a set of formulas is consistent or not, i.e., a SAT problem. This makes the core computationally hard, since SAT is NP-

complete [23], and checkingwhether a set of clauses is aminimal inconsistent subset or not is DP-complete [24]. However, as

pointed out in [3], the impressive progress in SAT solvers in recent years has promoted techniques for practically identifying

minimal inconsistent subsets of a belief base. Some algorithms such as [25] have been proposed to practically find each

minimal inconsistent subset (called Minimally Unsatisfiable Subformulas or MUS in these algorithms) of a belief base. On

the other hand, as an efficient library of SAT solvers in Java, SAT4J library 21 facilitates the first-time users of SAT ¡°black

1 https://wiki.objectweb.org/sat4j/.
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boxes¡±, who want to embed SAT technologies into their application without worrying about the details. 2 In future work,

wewill implement a prototype tool tomeasure inconsistency bymaking use of SAT4J library aswell as the existing algorithm

presented in [25].

9. Conclusion

Viewing minimal inconsistent subsets as the purest form of inconsistency, it is natural to derive syntax sensitive incon-

sistency measures for a belief base from the minimal inconsistent subsets of that belief base.

We have presented a framework for measuring the degree of inconsistency of a belief base by using its minimal incon-

sistent subsets along with its consistent subsets. It allows us to consider the impact of the size of each minimal inconsistent

subset on the degree of inconsistency as well as to well characterize the role of free formulas in measuring the degree of

inconsistency.

We have argued that the number of minimal inconsistent subsets of a belief base is insufficient to capture the degree

of inconsistency of that belief base. Moreover, the Free Formula Independence property does not well characterize the role

of free formulas in measuring the degree of inconsistency from a syntax sensitive perspective. Then Free Formula Dilution

property instead of Free Formula Independence was proposed to characterize the change of the degree of inconsistency

of a belief base due to adding or removing free formulas from that belief base. Furthermore, Contradiction, Attenuation,

and Almost Consistency were proposed as the essential properties to characterize the degree of inconsistency of each

minimal inconsistent subset.Motivatedby these intuitiveproperties,wepresentedageneral framework todefinenormalized

measures for the degree of inconsistency of a belief base from its minimal inconsistent subsets along with its consistent

subsets. We also have shown the measure defined from this general framework satisfies all the properties presented in

this paper to characterize an intuitive measure of the degree of inconsistency for belief bases. Finally, we presented two

instantiatedmeasures basedon twodifferent but intuitive rudimentary sequences of thedegreeof inconsistency. To illustrate

the practical potential usage of our measures, we presented a software engineering application.
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