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As a class of defects in software requirements specification, inconsistency has been widely
studied in both requirements engineering and software engineering. It has been increasingly
recognized that maintaining consistency alone often results in some other types of non-
canonical requirements, including incompleteness of a requirements specification, vague
requirements statements, and redundant requirements statements. It is therefore desirable
for inconsistency handling to take into account the related non-canonical requirements in
requirements engineering. To address this issue, we propose an intuitive generalization of
logical techniques for handling inconsistency to those that are suitable for managing non-

Non-canonical requirements
Redundancy
Incompleteness
Requirements engineering

canonical requirements, which deals with incompleteness and redundancy, in addition to
inconsistency. We first argue that measuring non-canonical requirements plays a crucial role
in handling them effectively. We then present a measure-driven logic framework for man-
aging non-canonical requirements. The framework consists of five main parts, identifying
non-canonical requirements, measuring them, generating candidate proposals for handling
them, choosing commonly acceptable proposals, and revising them according to the cho-
sen proposals. This generalization can be considered as an attempt to handle non-canonical
requirements along with logic-based inconsistency handling in requirements engineering.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A good-quality software requirements specification is crucial for the success of a software development project. How-
ever, it can often be difficult to develop such a requirements specification. Problems associated with requirements are
still potentially the major causes of software project failures, and there is a great need to facilitate software development
process [1].

Inconsistency has been considered as a main class of defects in requirements specifications [1]. A number of techniques
have been proposed to handle inconsistency in requirements engineering [2-12]. In particular, it has increasingly been
recognized that it is effective to use logics to formulate management of inconsistent requirements specifications [1]. Various
logic-based approaches to handling inconsistency in requirements specifications have recently been proposed [2,4,1,9-12].
Most of these approaches focus on how to apply non-classical reasoning techniques, such as paraconsistent reasoning and
non-monotonic reasoning, to detecting and analyzing inconsistency in requirements specifications. For example, Hunter
and Nuseibeh [2] developed labeled quasi-classic logic to represent and reason about requirements specifications in the
presence of inconsistency. Gervasi and Zowghi [1] proposed methods for reasoning about inconsistency in natural language
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requirements by combining natural language parsing techniques and non-monotonic reasoning. Easterbrook and Chechik
[4] presented a framework termed yx bel for merging inconsistent viewpoints using multi-valued logics.

However, inconsistency is not an isolated problem in requirements engineering. The process of maintaining consistency
often results in some other undesirable types of information about requirements. For example, Zowghi and Gervasi [12]
argued that there is an important causal relationship between consistency, completeness and correctness of requirements
in requirements evolution. Recently, Martinez et al. [11] took into account the interplay between inconsistency and incom-
pleteness in merging multi-perspective requirements. Previously, we termed requirements that are incomplete, redundant,
vague or inconsistent as non-canonical requirements [13].

Intuitively, a feasible proposal for inconsistency handling should take into account other non-canonical requirements
that are also involved in inconsistency. Previously, we have developed some logical tools for managing other non-canonical
requirements as well as inconsistency. For example, we have presented a logical tool for uniformly characterizing inconsis-
tency, incompleteness, vagueness, and redundancy in requirements specifications [13]. We have also proposed an approach
to detecting inconsistency, incompleteness and redundancy in requirements specifications based on Answer Set Program-
ming [14]. These methods focus on how to identify non-canonical requirements when detecting inconsistency rather than
on the problem of systematically managing non-canonical requirements.

It has increasingly been recognized that measuring inconsistency is crucial for effectively managing inconsistency in
requirements [5,15,11]. Furthermore, appropriate measurements of non-canonical requirements could provide a good basis
for making some trade-off decisions on handling non-canonical requirements. For example, software developers would
need to know whether a requirements specification would become more incomplete if some inconsistent requirements
are removed. They would also need to know whether some requirements changes for resolving inconsistency in a require-
ments specification would increase the degree of redundancy in the specification. On the other hand, the most redundant
requirements involved in inconsistency should be given priority for consideration when there are options for requirements
changes.

To address these issues, in this paper, we propose a logical framework for managing non-canonical requirements, in-
cluding inconsistent, incomplete, and redundant requirements. First, we formulate a requirements specification as a set of
logical formulas. Second, we present a framework for managing non-canonical requirements, which consists of five main
parts, identifying non-canonical requirements, measuring them, generating candidate proposals for handling them, choos-
ing commonly acceptable proposals, and revising them according to the chosen proposals. Third, we provide a family of
measures for non-canonical requirements, including measures for inconsistency, incompleteness, and redundancy. Finally,
we discuss some strategies for generating proposals for handling non-canonical requirements by using these measures.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to the logical representation of re-
quirements. We propose a general framework for managing non-canonical requirements in Section 3. Section 4 proposes
measures for non-canonical requirements. Section 5 discusses strategies for generating proposals for handling non-canonical
requirements. We compare our approach with related work in Section 6. We conclude the paper in Section 7.

2. Preliminaries

First-order logic has increasingly been considered as a promising tool for representing requirements [2,9,10]. Moreover,
restricting first-order logic to propositional logic is a useful and practical way of balancing the computational advantages of
propositional logic and its limited expressive power in requirements engineering as well as software engineering[1,9,10,16].
In this paper, we use a classical first-order language without function symbols and existential quantifiers. Classical first-order
logic is the most convenient to illustrate our approach, as will be seen in the rest of the paper.

Let & be a set of predicate symbols, » be a set of variable symbols, and ¢ a set of constant symbols. We call &/ =

{p(q1,...,qn)lp € Zand qq, ..., qn € ¥ U %} the set of atoms. Let .# be the set of classical formulas formed from a set
of atoms o7 and a set of logical connectives {V, A, =, —}.
In particular, we call p(q1, ..., qn) a ground atom if and only if q1, ..., g, are all constant symbols. Let <% be a set of

ground atoms and .%; be a set of classical formulas formed from a set of ground atoms .« and a set of logical connectives
{(V,A,—, =}

Let ¢ be the set of ground formulas and prenex universally quantified formulas formed from .7, where VX; - - - VX o0 € ¢
ifaa € #,and Xy, ..., X, are the free variables in «.

We can use formulas in ¢ to formulate requirements expressed in natural language. For example, we can represent a
requirement,“If an authorized user requests to borrow a book and the book is available, then the user can borrow the book", as

VUserVBook (auth(User) A requ(User, Book) A avai(Book) —> borr(User, Book)).

A scenario is a potential application setting of the system-to-be. For the sake of simplicity, we assume that a scenario
consists of two parts, a set of facts to model the scenario, and a set of expected responses to model the expected behavior of
the system-to-be. Moreover, facts and expected responses can be formulated by ground formulas in .%y. We use (S;, Sg) to
denote a scenario, where S; and Sg are the set of facts and the set of expected responses, respectively. Intuitively, we consider
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that scenarios that correctly describe the application domains are consistent. When there is no confusion, we abbreviate a
scenario (S;, Sg) as S. Suppose that a scenario S for the above requirement contains the following facts:

® Alice is an authorized user;
® Alice requests to borrow the Software Engineering book;
® A Software Engineering book is available.

and the following expected response:
® Alice can borrow the Software Engineering book.

We can then represent the scenario as (Sj, Sg), where

S ={auth(alice), requ(alice, Soft_eng), avai(Soft_eng)},

Sg = {borr(Alice, Soft_eng)}.

However, to check inconsistency in requirements specifications, universally quantified formulas are always instantiated
with constants in the given scenarios. For example, given the above scenario S, we use the following ground formula instead
of the universally quantified formula above:

auth(alice) A requ(alice, Soft_eng) A avai(Soft_eng) — borr(alice, Soft_eng).

Generally, if ground formulas a1, a2, . . ., @, are the instantiations of the universally quantified formula o with different
facts in a scenario, we may use o1 A a3 A - - - A @y instead of « in the scenario. Thus, we concentrate on the instantiated
requirements in the rest of this paper. That is, we assume that a set of requirements with regard to a given scenario can be
formulated by a set of ground formulas in .%y. With this in mind, we can restrict the first-order logical representation of
requirements to the propositional case in reasoning about requirements.

We call a finite set of formulas in ¢ a knowledge base. In particular, we call a knowledge base a requirements specification
if each formula in the knowledge base represents a requirement. As pointed out in [17], the formulation of requirements
using formulas should be syntax sensitive, that is, any two knowledge bases that contain two different sets of formulas
are considered as two distinct requirements specifications even if the two knowledge bases are logically equivalent. For
example, {«, B} represents a set of two requirements « and 8, but {& A B} means that there is only one requirement, « A
[17]. Bear this in mind,when there is no confusion we make no distinction between a knowledge base and a requirements
specification in the rest of this paper.

Let - be the classical consequence relation, then K - K" if K - « forall o € K'.

A knowledge base K is inconsistent if there is a formula « such that K - « and K - —«. We abbreviate @ A =« as |
when there is no confusion. Thus an inconsistent knowledge base K is denoted by K - L.

Previously, we have defined inconsistency, incompleteness and redundancy in requirements with regard to a given
scenario, respectively.

Definition 2.1 (Inconsistency [13]). Let S = (S;, Sg) be a scenario and R a requirements specification for S, then R is incon-
sistent with regard to Sif RU S; -+ L.

Definition 2.2 (Incompleteness [13]). Let S = (Sj, Sg) be a scenario and R a requirements specification for S, then R is
incomplete with regard to S if 3o € Sg such that RU S; I a.

Definition 2.3 (Redundancy [13]). LetS = (S, Sg) be a scenario and R a requirements specification for S, then R is redundant
with regard to Sif 3R C Rs.t. R US; I# L and R U S; = Sg. Furthermore, we call R’ a simplification of R w.r.t. S.

Note that the incompleteness of R w.r.t. S means that R does not contain requirements about some expected behaviors
of the system-to-be in S. In contrast, the redundancy of R w.r.t. S implies that R conveys redundant information (consistent
or not) about expected behaviors of the system-to-be in R.

We use the following example to illustrate the formulation of requirements in the form of classical logic formulas.

Example 2.1. Consider the following requirements specification of a residential estate management system, which manages
the vehicle entrance of the estate.

(r1) Vehicles without authorization by the Management Board of the residential estate are not allowed to enter the
estate.
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(r2) Vehicles with authorization by the Management Board of the residential estate can enter the estate.

(r3) The system triggers the warning alarm if a vehicle without authorization enters the estate.

(r4) If the system triggers the warning alarm, the driver of the vehicle cannot activate the button for entrance.

(r5) An emergency vehicle can enter the estate, and no authorization by the Management Board of the residential estate
is required.

(r6) Vehicles without authorization except emergency ones cannot enter the estate.

(r7) Drivers ofvehicles without authorization except emergency ones cannot activate the button for entrance.

First, we translate these requirements into logic formulas. Suppose that we use

e predicate Aut (x) to denote that x is authorized by the Management Board of the residential estate, where x is a vehicle;
e predicate Ent(x) to denote that x enters the residential estate;

e predicate Ala(x) to denote that the system triggers the warning alarm if x enters the estate;

e predicate Act(x, y) to denote that x’s driver activates button vy;

e predicate Eme(x) to denote that x is an emergency vehicle;

® constant entr to denote the button for entrance.

Each requirement statement can be represented by a formula:

r1) (Vx)(—aut(x) — —Ent(x)),

(r1)
(r2) (Vx)(aut(x) — Ent(x)),

(r3) (Vx)(—aut(x) — Ala(x)),

(r4) (Vx)(ala(x) — —act(x, entr)),

(r5) (Vx)(Eme(x) — Ent(x) A —aut(x)),

(r6) (Vx)(—aut(x) A —Eme(x) — —Ent(x)),

(r7) (Vx)(—aut(x) A —Eme(x) — —Act(x, entr)).

We can then use the above set of formulas to represent the given requirements specification as:

R ={(r1), (12), (13), (r4), (r5), (16), (17)}.
Second, we verify the preliminary requirements based on some scenarios. Now we consider the first scenario S; about

fire engines. A fire engine should be considered as an emergence vehicle. Suppose that we use constant fi_en to denote a
fire engine, then S; = (S1,, S1,) may be given as follows:

S1, = {Eme(fi_en)}, Si; = {Ent(fi_en)}.
Clearly,

RU Sy, - Ent(fi_en) A —Ent(fi_en).
That is, R is inconsistent w.r.t. S;.

Consider the second scenario S; about other vehicles. Suppose that vis1 is a visitor’s car with authorization, and vis2
is a visitor’s car without authorization, then S, = (Sy,, Sp,) may be given as follows:

Sy, = {aut(visl), —aut(vis2), ~Eme(visl), —“Eme(vis2)},
Sz; = {Ent(visl), —Ent(vis2)}.

Clearly, R is redundant w.r.t. S, since
R\ {—aut(x) = —Ent(x)} USy, - Sy,.

Consider the third scenario S3 about the alarm. Suppose that vis3 is a visitor’s car without authorization. In this scenario,
we expect that its driver can activate the button for help when the warning alarm has been triggered, then S3 = (S3,, S3;)
may be given as follows:

S3; = {—aut(vis3), "Eme(vis3)}, S3; = {—Ent(vis3), Act(vis3, help)}.
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Clearly, R is incomplete w.r.t. S3, since

RU S3, I Act(vis3, help).

3. Alogical framework for managing non-canonical requirements

Roughly speaking, approaches for effectively managing non-canonical requirements should focus on revising non-
canonical requirements in addition to detecting them. However, techniques for identifying appropriate actions for revis-
ing non-canonical requirements are still to be developed. Even if we consider inconsistency handling only in requirements
engineering, it is difficult to provide a common methodology for handling all inconsistencies in requirements, since inconsis-
tency handling actions are rather context-sensitive [2,18,19]. This means that a practical approach to revising non-canonical
requirements should focus on how to identify requirements to be changed rather than on how to change them.

It has increasingly been recognized that appropriate measures for inconsistent requirements provide a good basis for
making necessary trade-off decisions on resolving inconsistencies [5,11,15]. However, as mentioned earlier, inconsistency
handling in requirements is not an isolated problem, which is often associated with incompleteness and redundancy. It is
necessary to take into account measurements for incompleteness and redundancy when handling inconsistency based on the
measurement for inconsistency. To address this issue, we propose a measure-driven framework for managing non-canonical
requirements, as shown in Fig. 1. Central to this framework is the issue on measuring non-canonical requirements, which
provides a basis for identifying appropriate proposals for resolving these non-canonical requirements. It should be noted that
this framework supports an iterative and evolutionary process for achieving a good software requirements specification. The
framework can be used when requirements analysts validate a software requirements specification with given scenarios, or
when some of the existing requirements in the specification have been changed.

The framework takes as input a software requirements specification to be validated with some given scenarios. Its output
is a consistent and complete simplification of the requirements specification with regard to given scenarios. The framework
consists of five activities for managing non-canonical requirements:

e [dentifying non-canonical requirements. This activity is concentrated on detecting non-canonical requirements with
regard to the given scenarios. Most of the current logical approaches to identifying non-canonical requirements are

Software Requirements Specification

e e 17— — - Output

Identifying Non-canonical Requirements

Non-canonical Requirements

Measuring Non-canonical Requirements

Measurements of Non-canonical Requirements

Generating Candidate Proposals

]

Candidate Proposals for Handling Non—canoni@

Choosing Proposals

cceptable Proposals for Handling Non-canonical Requirements

Revising Non-canonical Requirements

() Artifact
] Activity

Fig. 1. A Framework for Managing Non-canonical Requirements
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focused only on inconsistency checking by reasoning with requirements. In our previous paper [14], we proposed a
logical approach to identifying non-canonical requirements using the Answer Set Programming technique. We argued
that the declarative nature of Answer Set Programming and its support for non-monotonicity make it suitable for
formulating the problem of identifying non-canonical requirements [14]. Informally speaking, given a scenario, the
problem of finding the behaviors of the system-to-be in the scenario can be reformulated into a problem of Answer Set
Programming, which considers the expected response of the scenario as an intended answer. By comparing the answers
computed by Answer Set Programming and the intended answer, inconsistency, incompleteness, and redundancy can
be identified using appropriate strategies [14].

e Measuring non-canonical requirements. It has increasingly been recognized that an appropriate measure for inconsis-
tent requirements may provide a good basis for making necessary trade-off decisions. Some approaches to measuring
inconsistent requirements have been proposed [15,20]. In comparison, relatively few approaches to measuring incom-
plete and redundant requirements have been proposed. However, it is potentially important to measure non-canonical
requirements in order to handle them. For example, developers would need to know how redundant a requirements
specification is, in particular, the blame on each requirement for the redundancy in the requirements specification, be-
fore they can make a decision on how to simplify it. Developers would also often need to monitor whether the revised
specification is less redundant (resp. less incomplete or less inconsistent) than the original one. In the next section, we
propose a family of measures for non-canonical requirements.

® Generating candidate proposals for handling non-canonical requirements. When non-canonical requirements are identi-
fied, appropriate actions for revising them would need to be proposed. However, it has been widely recognized that
proposing appropriate actions for handling non-canonical requirements, such as inconsistent requirements, is an im-
portant challenge in requirements engineering, since handling non-canonical requirements is a rather context-sensitive
process, which always involves a process of interaction and competition among the corresponding stakeholders [9]. It is
difficult to provide a common methodology for revising all the non-canonical requirements in requirements engineer-
ing. Consequently, a feasible general framework for handling non-canonical requirements should focus on identifying
requirements that should be changed rather than how these requirements should be revised. Intuitively, identifying
requirements that are involved in inconsistency (resp. redundancy) in a requirements specification should be changed
depends on measuring non-canonical requirements, especially, on measuring the blame on each requirement involved.
We will provide an approach to generating candidate proposals for handling non-canonical requirements later, which
is driven by the measures of non-canonical requirements.

® Choosing commonly acceptable proposals for handling non-canonical requirements. This activity is designed to identify
acceptable proposals for handling non-canonical requirements from candidate proposals, based on preference rela-
tions over the candidate proposals given by the stakeholders involved in non-canonical requirements. In requirements
engineering practice, the stakeholders may provide different proposals for handling non-canonical requirements from
their own perspective. Each stakeholder also assesses different proposals from her/his own perspective and gives pref-
erences on them according to her/his expectations. Developers would then need to identify proposals for handling
non-canonical requirements that are commonly acceptable using appropriate group decision making mechanisms,
such as negotiation [9] and combinatorial voting [21].

® Revising non-canonical requirements according to commonly acceptable proposals. This activity is designed to revise
the original requirements specification into a well structured requirements specification. It represents the action of
revising the original requirements specification based on the selected proposals by stakeholders. Note that the revision
according to the commonly acceptable proposals may lead to subsequent iteration of this process.

Note that we have only described the main activities in this process, some other activities for enhancing communica-
tion with stakeholders, such as translating requirements into formal logic formulas and translating logic-formulas-based
proposals into natural language sentences are omitted.

4. Measuring non-canonical requirements
4.1. Measuring inconsistent requirements

We focus on two kinds of measures for inconsistent requirements, i.e., the measure for inconsistency in a whole set of
requirements and the measure for the blame on each requirement for inconsistency in a set of requirements. An increasing
number of measures for inconsistency in a whole knowledge base have been proposed in many applications. In contrast, there
are relatively few measures for the blame on each formula for inconsistency in a knowledge base. The Shapley inconsistency
value presented in [22] is one of the most representative measures for the blame on each formula for inconsistency in
a knowledge base, which allows a given assessment of inconsistency for a whole knowledge base to be distributed to
each formula by using a coalition game model - Shapley value. In particular, Hunter and Konieczny [17] argued that it is
natural to measure inconsistency in a knowledge base through minimal inconsistent subsets if we consider the minimal
inconsistent subsets of a knowledge base as the purest form of inconsistency in the knowledge base, and they proposed the MI
inconsistency measure (i.e., the number of minimal inconsistent subsets) to measure the inconsistency in a knowledge base.
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Furthermore, they proposed the Minlnc inconsistency value, a special Shapley inconsistency value based on only minimal
inconsistent subsets of a knowledge base, to measure the blame on each formula for inconsistency in the knowledge base [17].
Previously, we revised these measures and presented weighted Ml inconsistency measure and weighted MinInc inconsistency
value to assess the degree of inconsistency in a knowledge base and the blame on each formula for inconsistency in the
knowledge base, respectively [20].

An inconsistent knowledge base K is called a minimal inconsistent set (or minimal inconsistent knowledge base) if none of
its proper subsets is inconsistent. If K’ € K and K’ is a minimal inconsistent set, then we call K’ a minimal inconsistent subset
of K. We use MI(K) to denote the set of minimal inconsistent subsets of K, i.e.,

MI(K) = {K' CK|K' - L andforall K" C k', K" t# 1}.

Minimal inconsistent subsets can be considered as the purest form of inconsistency for syntax sensitive conflict resolution,
since one only needs to remove one formula from each minimal inconsistent subset in such cases [23]. From this perspective,
minimal inconsistent subsets have been considered as one of the intuitive constructions for developing an inconsistency
measure [17].

A formula in K is called a free formula if it does not belong to any minimal inconsistent subset of K [22]. That is, the free
formulas in K have nothing to do with the minimal inconsistent subsets of K. We use FREE(K) to denote the set of free
formulasin K, i.e.,

FREE(K) = {« € K| forall M € MI(K), & & M}.

Definition 4.1 (Weighted MI inconsistency measure [20]). Let K be a knowledge base. Then the weighted MI inconsistency
measure for K, denoted as lyy (K), is defined as follows ! :

1

MeMI(K)

Essentially, the weighted MI inconsistency measure for a knowledge base K is the sum of inconsistency measures for
all the minimal inconsistent subsets of K, while the inconsistency in a minimal inconsistent subset M is captured by |1\17|

Note that lyy(M) = ﬁ for the minimal inconsistent knowledge base M captures the intuition that the more formulas in a

knowledge base are needed to cause inconsistency in it, the less inconsistent it is [24].

Definition 4.2 (Weighted MinInc inconsistency value [20]). Let K be a knowledge base. Then the weighted MinInc inconsis-
tency value for K, denoted as MIVyy, is defined as follows:

lw (M) _ Z 1

Yo € K, MIVw(K, a) = > ™ e

MeMI(K)s.t.aeM MeMI(K)s.t.aeM

The weighted Minlnc inconsistency value captures the blame on a formula for inconsistency in a knowledge base. The
basicidea of the weighted MinInc inconsistency value is that inconsistency in a minimal inconsistent subset is equally shared
among all the formulas in it, i.e., each formula in the minimal inconsistent subset has the same blame for inconsistency in
it. Furthermore, the blame on a formula for inconsistency in a knowledge base is the sum of the blames on the formula
for inconsistencies in all the minimal inconsistent subsets that the formula belongs to. Actually, as shown in [20], both
the weighted MI inconsistency measure and the weighted MinInc inconsistency value possess the intuitive properties
of inconsistency measures. For example, the weighted MI inconsistency measure satisfies the following three intuitive
properties presented in [22]:

e (Consistency: ly(K) = 0 if and only if K is consistent.
e Monotony w.r.t. MI: ly (K7) < lw (Ky) if MI(Ky) € MI(K3).
e Free formula independence: If « is a free formula of K U {«}, then Iy, (K U {a}) = Iy (K).

Roughly speaking, the consistency property requires that a desirable inconsistency measure assigns zero only to a con-
sistent knowledge base [22]. The satisfaction of this property ensures that lyy is indeed an inconsistency measure because
it can distinguish inconsistent knowledge bases from consistent ones [25]. As a special variant of the Monotony property
presented in [22], the monotony w.r.t. MI property states that the degree of inconsistency in a knowledge base increases as

2 fa), ifA # 0,
! For the sake of simplicity, we abbreviate { acA as > f(a).
0, else. acA
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the number of its minimal inconsistent subsets increases [20]. The Free Formula Independence property states that adding
to or deleting from a knowledge a free formula does not change the inconsistency measure for it, since free formulas have
nothing to do with the minimal inconsistent subsets of it [22].

The weighted MinInc inconsistency value satisfies the following three intuitive properties:

e [nnocence: Yo € K,YM € MI(K), MIVyw(M, @) = 0ifa & M.
e Fairness: Ya € K,YM € MI(K), MIV\w (M, o) = ﬁIW(M) ifao € M.
e Cumulation: MIVy (K, o) = X yemiay MIVw (M, o).

The innocence property states that any formula that is not in a minimal inconsistent subset should not bear any respon-
sibility for the inconsistency in the minimal inconsistent subset [20]. The property of Fairness requires that the blame on
each minimal inconsistent subset is shared equally among all the formulas in the minimal inconsistent subset [20]. The
cumulation property states that the blame on a formula for the inconsistency in a knowledge base equals to the sum of the
blames on this formula for the inconsistencies in all the minimal inconsistent subsets that this formula belongs to [20]. Note
that properties of innocence and cumulation together imply that the blame on any free formula in a knowledge base for
inconsistency is zero, i.e., any free formula needs not to bear any blame for the inconsistency in the base.

Based on the two measures, we can further define the degree of inconsistency in a requirements specification with regard
to a given scenario.

Definition 4.3 (Degree of inconsistency). Let S = (S;, Sg) be a scenario and R a requirements specification for S. Then the
degree of inconsistency in R w.r.t. S, denoted I(R|S), is defined as

I(RIS) = IW(RUS)).

Definition 4.4 (Blame on a requirement for inconsistency). Let S = (S, Sg) be a scenario and R a requirements specification
for S. Then the blame on a requirement « in R for inconsistency w.r.t. S, denoted BI(R, «|S), is defined as

BI(R, «|S) = MIVwW(RU S}, @).

Note that the degree of inconsistency in R w.r.t. S is referred to as the degree of inconsistency in R U S;. Correspondingly,
the blame on a requirements in R for inconsistency w.r.t. S is the blame on the requirement for the inconsistency in R U S;.
The properties of the weighted Minlnc inconsistency value mentioned above render that BI(R, «|S) intuitively captures the
blame on each requirement for inconsistency in R w.r.t. S.

We use the following examples to illustrate the two measures defined above.

Example 4.1. GivenS = (S, Sg), where S; = {a, b, c} and S = {d, e, f}.LetR={a — d,bAc— —d,and — e,c —>
f, —d — —f} be the requirements for S. Clearly,

RUS FdA—-d, RUSEFfA-f.
Then R is inconsistent w.r.t. S. The set of minimal inconsistent subsets of R U S; is given as follows:
MI(RUS)) ={{a,a — d,b,c,bAc— —d},{b,c,bACc— —d,—~d — —f,c — f}}.

So
I(RIS) = 2
2

The blame on each requirement in R for inconsistencies in R w.r.t. S is given as follows:

1
BI(R.a — dls) = BIR. ~d — —f|5) = BIR.c — f5) = __.

2
BI(R,b A ¢c — —d|S) = —,

25
BI(R,and — e|S) =0.

Note thata Ad — eisafree formula in RUS; and has nothing to do with the inconsistency in RUS;. Evidently, BI(R, and —
e|S) = 0 captures this fact. In contrast, b A ¢ — —d is the common formula of the two minimal inconsistent subsets, and
then it should bear more blame for the inconsistency in R U S;. Actually, 22—5 > 21—5 describes exactly this intuition.
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Example 4.2. Consider Example 2.1 again. R is inconsistent w.r.t. S, and MI(R U S1) = {M;}, where
M; = {(Vx)(—aut(x) > —Ent(x)), (Vx)(Eme(x) — Ent(x) A —Aut(x)), Eme(fi_en)}.

SO
3'

The blame on each requirement in R for inconsistencies in R w.r.t. S is given as follows:

1
BI(R, (Vx)(—aut(x) — —Ent(x))[S1) = §,

1
BI(R, (Vx)(Eme(x) — Ent(x) A —Aut(x))|S1) = g’

BI(R, (Vx)(aut(x) — Ent(x))|S1) = BI(R, (Vx)(—aut(x) — ala(x))|S;) =0,
BI(R, (Vx)(ala(x) — —Act(x, entr))|S1) =0,
BI(R, (Vx)(—aut(x) A —Eme(x) — —Ent(x))|S1) = 0,

BI(R, (Vx)(—aut(x) A =Eme(x) — —Act(x, entr))|S;) = 0.

4.2. Measuring incomplete requirements

To revise incomplete requirements, developers often need to know how incomplete a requirements specification is with
regard to a given scenario. Let us recall the definition of incompleteness. A requirements specification R is incomplete with
regard to a given scenario S if some expected behaviors in the scenario cannot be derived from the requirements specification.
Intuitively, measures for the degree of incompleteness in a requirements specification w.r.t. a given scenario should at least
distinguish it from the case in which all the expected behaviors in the scenario can be derived from the requirements
specification, i.e, R U S; = Sg. On the other hand,note that if RU S; - L for S, then R U S; - Sg because of trivial reasoning
in the presence of inconsistency. However, in this case, R U S; = Sg does not necessarily mean that R is complete with
regard to S. We therefore need to distinguish inconsistent requirements from truly complete requirements with regard to a
given scenario. To address this issue,we first define the drastic measure for the degree of incompleteness in a requirements
specification with regard to a given scenario.

Definition 4.5 (Drastic measure). Let S = (S;, Sg) be a scenario and R a requirements specification for S. Then the drastic
measure for the degree of incompleteness in R w.r.t. S, denoted as C4(R|S), is defined as

—1, RUS - L,
CaRIS)y=1 0, RUS ¥ L,RUS;F S,
1, Jo € Sgs.t.RUS I a.

Note that the drastic measure Cq allows us only to distinguish among inconsistent, complete and incomplete requirements
specifications with regard to a given scenario. It cannot be used to distinguish between different incomplete requirements
specifications with regard to a given scenario.

However, for it to be more intuitive and more distinctive, the measure for the degree of incompleteness should take into
account the following aspects:

e [t can distinguish consistent requirements specifications from inconsistent ones w.r.t. a given scenario. As mentioned
above, it is meaningless to measure how incomplete an inconsistent requirements specification is with the given
scenario because of trivial reasoning in the presence of inconsistency. We need only a designated value to differentiate
inconsistent requirements specifications from consistent ones for a given scenario.

® For all consistent requirements specifications w.r.t. a given scenario, an intuitive measure for the degree of incomplete-
ness should distinguish truly complete requirements specifications from incomplete ones for the scenario.

® An intuitive measure for the degree of incompleteness should assign the same value to all truly complete require-
ments specifications w.r.t. a given scenario. That is, it cannot be used to differentiate truly complete requirements
specifications from each other. It is necessary to ensure that an individual measure is indeed a measure for
incompleteness.
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® The measure for the degree of incompleteness should take into account the expected behaviors of the system-to-
be that could not be derived from a requirements specification in a given scenario. Intuitively, given a scenario S,
the incompleteness of a requirement specification R w.r.t. the scenario depends on the number of missing require-
ments w.r.t. S, which is captured implicitly by the expected behaviors of the system-to-be that could not be derived
from the requirements specification in the scenario. Moreover, the more expected behaviors that could not be de-
rived from a requirements specification in the scenario, the more incomplete the requirements specification w.r.t. the
scenario is.

To address these issues, we take into account the expected responses that could not be derived from a requirements
specification in a scenario to measure the degree of incompleteness of the requirements specification. Moreover, we call
such expected responses the set of missing expected responses.

Definition 4.6 (Missing expected responses). Let S = (S;, Sg) be a scenario and R a consistent requirements specification for
S. Then the set of missing expected responses induced by R in S, denoted as ME(R|S), is defined as the expected responses
that could not be derived from R in S, i.e.,

MER|S) = {& € S| RUS; - ).

We use the normalized number of the missing expected responses induced by a requirements specification in a scenario
to measure the degree in incompleteness of the requirements specification w.r.t. the scenario.

Definition 4.7 (Degree of incompleteness). Let S = (S;, Sg) be a scenario and R a requirements specification for S. Then the
degree of incompleteness in R w.r.t. S, denoted as C(R|S), is defined as

-1, RUS F 1,

IMERIS)|
PP RUS L.

C(RIS) =

As the drastic measure, —1 is considered as the designated value for inconsistent requirements specifications, i.e., it
satisfies the following property of inconsistency:

e Inconsistency: C(R|S) = —1 if and only if R is inconsistent w.r.t. S.
Moreover, the measure for the degree of incompleteness satisfies the following property of completeness:
e Completeness: C(R|S) = 0 if and only if R is consistent and complete w.r.t. S.

This property ensures that C is indeed an incompleteness measure, because it could not distinguish between different
consistent and complete requirements specifications w.r.t. a given scenario but could measure incomplete ones.

Compared to the drastic measure, the measure C(R|S) provides a finer-grained description of incompleteness in a re-
quirements specification R w.r.t. the given scenario S. Given a scenario, the higher the number of missing expected responses
induced by a requirements specification, the more incomplete the requirements specification is, i.e.,

® Monotony w.r.t. ME: for any two consistent requirements specifications R and R’ for S, C(R|S) < C(R'|S) if [ME(R|S)| <
IME(R'[S)].

Example 4.3. GivenS = (S;, Sg), where S; = {a, b} and Sg = {c, d, e, f}. Let Rp = {a — ¢, c A b — d}, then
RoUS; £ e, andRy US; H f.

So
Ca(RolS) = 1.

Suppose that after revision, a new requirements specification Ry is given as follows: Ry = {a — c,c Ab — d,c A d — e}.
Then

Ry US| A f.
So

Ca(Re]S) = 1.
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Note that the two drastic measures Cq(Rg|S) and C4(R1|S) only say that the two corresponding requirements specifi-

cations are incomplete with regard to S. Intuitively, Ry is less incomplete than Ry with regard to S. However, the weighted
measure can make this distinction, since

1 1

C(R11S) = = < C(Rp|S) = —.

(R119) 2 (RolS) 5
Example 4.4. Consider Example 2.1 again. R is incomplete w.r.t. S3 = (S3,, S3;) where

S3, = {—Aut(vis3), “Eme(vis3)}, S3; = {—Ent(vis3), Act(vis3, help)}.

And

[{act(visl, help)}] 1
C(R|S3) = = —.
(RIS3) 5o 5

4.3. Measuring redundant requirements

An appropriate proposal for measuring redundant requirements should focus on measuring the degree of redundancy in a
requirements specification w.r.t. a scenario as well as the blame on each requirement for the redundancy. Roughly speaking,
a measure for the degree of redundancy in a requirements specification describes how redundant the whole requirements
specification is w.r.t. a scenario, whilst the blame on each requirement for the redundancy captures the contribution made
by each requirement to the redundancy in the specification.

Intuitively, to assess the amount of redundant information in a requirements specification w.r.t. a scenario, we need to
first identify simplifications of the specification that exactly convey necessary and sufficient information about the scenario.
We start the measure for the degree of redundancy in a requirements specification from the minimal simplifications of a
requirements specification.

Definition 4.8 (Minimal simplifications [13]). LetS = (S;, Sg) be a scenario and R a requirements specification for S. A subset
R’ of R is called a minimal simplification of R w.r.t. S if

(1) R is a simplification of R wW.r.t. S.
(2) no proper subset of R’ is a simplification of R w.r.t. S.

In particular, we use MS(R|S) to denote the set of minimal simplifications of R w.r.t. S.

Essentially, each minimal simplification of a redundant requirements specification conveys adequate requirements infor-
mation w.r.t. a given scenario. Any requirement not belonging to a minimal simplification can be considered as potentially
redundant because we can derive all the expected responses from the minimal simplification in the scenario. That is, each
minimal simplification of a requirements specification provides a perspective to separate the specification into two parts,
i.e., a minimal set of requirements conveying adequate information and potential redundancy. Moreover, the smaller the
size of a minimal simplification, the bigger the number of potential redundant requirements is. To address this issue, we
build a measure for the degree of redundancy for a redundant requirements specification upon the ratio of the number of
requirements to the smallest number of requirements that convey adequate information. Evidently, such measures capture
how far a redundant requirements specification is beyond the most adequate requirements specification. On the other hand,
for a non-redundant requirements specification, its incompleteness essentially describes how far the requirements specifi-
cation is from an expected adequate (i.e., truly complete but not redundant) requirements specification. So, we may build
redundancy measures for a non-redundant requirements specification upon its incompleteness assessment.

Definition 4.9 (Degree of redundancy). Let S = (S;, Sg) be a scenario and R a requirements specification for S. Then the
degree of redundancy in R w.r.t. S, denoted as D, (R|S), is defined as

max { [5 R € MS(RIS)| , MS(RIS) # #,

D,(RIS) = { 1 — C(RJS), MS(R|S) = @, and C(R|S) > O,
-1, MS(R|S) = @, and C(R|S) = —1.

Roughly speaking, —1 is still considered as a designated value for inconsistent but non-redundant requirements speci-
fications w.r.t. a given scenario. Moreover, for redundant R w.r.t. S, D, (R|S) aims to capture the most redundant perspective
of Rw.r.t. S, that is, D, (R|S) focuses on the case of the smallest minimal simplification. In addition, we consider 1 — C(R|S)
as the degree of redundancy for consistent but incomplete requirements specification R w.r.t. S.
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Inconsistent but not Adequate requirements

redundant requirements IMComplete YIqUiI‘ementS l Redundarlt requirements
L. ° - Dr(R|S)
D/(R|S) = -1 D/ (R|S) = Dr(R|S) =1

Fig. 2. From Inconsistency to Redundancy

As shown by the following proposition, D, (R|S) may be considered as an intuitive measure for the degree of redundancy.
Proposition4.1. LetS = (S;, Sg) be ascenario and R a requirements specification for S. Then D, satisfies the following properties:

e Monotony: If R is redundant w.r.t. S, then D,(R|S) < D,(RUR'|S) foranyR'.

e Redundancy: D,(R|S) > 1ifRis redundant w.r.t. S.

o Adequacy: D,(R|S) = 1ifandonly ifRUS; I/ 1, RUS;  Sg, and VR' C R, R U S; I Sg.

e [ncompleteness: 0 < D,(R|S) < 1ifR is consistent but incomplete with regard to S.
Proof. We only provide a proof for Monotony. Proofs for the other three properties are evident.

e Monotony. Let R be a redundant requirements specification w.r.t. S. Then MS(R|S) # ¢ and MS(R|S) € MS(RUR'|S)

for any R’. So,

R
D, (R|S) = max MlR” € MS(R|S)}

RUFR
< max | | IR” € MS(R|S)

IR
_ IRUR|, , /
<max | = R € MSRUR|S)

=D,(RURS). O

Intuitively, the monotony property states that as a redundant requirements set w.r.t. a given scenario expands, the degree
of redundancy in it cannot decrease. The redundancy property states that the degree of redundancy in R w.r.t. S should be
strictly greater than 1 if R is redundant w.r.t. S. Essentially, it implies that there is at least one perspective to separate R into
two nonempty parts, i.e., a minimal simplification and a set of potentially redundant requirements. In contrast, the adequacy
property states that R with the degree of redundancy 1 w.r.t. S is exactly an adequate requirements specification for S, i.e., it
is consistent and complete, but not redundant w.r.t. S. The incompleteness property states that the degree of redundancy in
R w.r.t. S is a non-negative value less than 1 if R is consistent but incomplete w.r.t. S.

Informally speaking, incompleteness is due to insufficient information about requirements. By contrast, both redun-
dancy and inconsistency result from too much information. However, redundancy requires that at least one proper subset of
a requirements specification conveys adequate information about the given scenario, i.e., a redundant requirements spec-
ifications w.r.t. a scenario conveys adequate information about the given scenario as well as other extra information. But
this does not necessarily hold for inconsistency, because inconsistency focuses only on contradiction in a requirements
specification rather than the adequacy of the specification w.r.t. a scenario. Furthermore, if a requirements specification
is inconsistent but not redundant, it is also meaningless to assess the incompleteness because of trivial reasoning in the
presence of inconsistency. Actually, the last three properties support that D, distinguishes between redundant require-
ments (D,(R|S) > 1), adequate requirements (i.e., consistent, complete but non-redundant requirements, D,(R|S) = 1),
incomplete requirements (0 < D,(R|S) < 1), and inconsistent but non-redundant requirements (D,(R|S) = —1) for a
given scenario within the context of redundancy. This is illustrated in Fig. 2. In some sense, this distinction shows how the
dimensions of inconsistency, incompleteness and redundancy are brought together in a linear scale. However, inconsistency,
incompleteness, and redundancy are essentially heterogeneous. We have to point out that there are fewer possibilities for
algebraic manipulations concerning this linear scale, except making the distinction as described above.

Example 4.5. GivenS = (S, Sg), where S; = {a, b} and S = {c, d}.LetR ={a — ¢,cAb — d,aAb — (—cV d)}, then
MS(R|S) = {R1, Rz},
whereR;y ={a— c,cAb—d},Ry ={a— c,anb— (—cVd)}.So,

R R 3
D((RIS) = maxl", H] = —.
IR1|" |Rz] 2
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Example 4.6. Consider Example 4.3 again.
1 3
0 < D/ (RolS) = 3 < Dy (R{]S) = " < 1.

This result is intuitive, since we know that both R; and Ry are incomplete w.r.t. S, but Ry is less incomplete than Ry w.r.t. S.

Definition 4.10 (Maximal potential redundancy). Let S = (S;, Sg) be a scenario and R a requirements specification for S. A
subset R” of R is called a maximal potential redundancy of R w.r.t. S if R \ R" is a minimal simplification of R w.r.t. S.

We use MR(R|S) to denote the set of maximal potential redundancies of R w.r.t. S. In particular, we use MRyax (R|S) to
denote the set of the largest maximal potential redundancies of R w.r.t. S, that is,

MRuax(R|S) = {R'|[R" € MR(R|S), and VR” € MR(R|S), IR"| < |R'|}.

Note that if R is one of the largest maximal potential redundancies of R w.r.t. S, then R \ R’ must be the smallest minimal
simplification of R w.r.t. S.

Example 4.7. Consider Example 4.5 again. Both R} = {a Ab — (—c Vv d)} and R, = {c A b — d} are the largest maximal
potential redundancies of R w.r.t. S.

As mentioned above, each minimal simplification of a requirements specification provides a possible perspective to
separate the requirements specification into two parts, i.e., the minimal simplification and the corresponding maximal
potential redundancy. Moreover, each maximal potential redundancy may be considered as one of the perspectives to
capture redundant information in the requirements specification w.r.t. a scenario. Intuitively, from the perspective of a given
maximal potential redundancy, the degree of redundancy in a requirements specification should be equally shared by each
requirement belonging to the maximal potential redundancy. Similar to the degree of redundancy, we focus on the blame
on a requirement for the largest maximal potential redundancies (i.e., the most redundant perspectives of a requirements
specification) that the requirement belongs to.

Definition 4.11 (Blame on a requirement for redundancy). Let S = (S;, S¢) be a scenario and R a requirements specification
for S. The blame on a requirement « in R for redundancy in R w.r.t. S, denoted BR(R, «|S), is defined as

1 IR| / / IRl __ { IRI }
7 X Ty L o T — N
R X ey R staeRand gy = max o R

BR(R, ¢|S) =
0, else.

Intuitively, BR(R, «|S) captures the contribution of « to the most redundant perspective in R w.r.t. S in which « is
involved.
Evidently, we can get the following proposition from Definition 4.11.

Proposition 4.2. Let S = (S;, Sg) be a scenario and R a requirements specification for S. BR(R, «|S) satisfies the following
properties:

e Independence: BR(R, «|S) = O ifand only ifa & R for each " € MR(R|S).
e Fairness: If 3o, B € Rs.t. VR € MR(R|S), « € R'iff B € R, then

BR(R, «|S) = BR(R, BIS).

e Distribution: For D,(R|S) > 1, > BR(R, a|S) = D,(R|S) ifR" € MRyux(R|S).

aerR

Proof. The properties of Independence and Fairness are evident. We only provide a proof for Distribution.

e Distribution. Let R be a requirements specification for S such that D,(R|S) > 1. Then MS(R|S) # ¢ and

Dr(RIS) = max[ o

IR" € MS(RlS)]

R
= max Lm”’ € MR(R|S) t .
[R\ R
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Let " € MRyax(R|S), then

R R
IR = max LW’ € MR(RIS) | .
IR\ R'| IR\ R”|

So, D,(R|S) = MJ\LIL'

On the other hand, Vo € R/,

R 1
BR(R, ¢|S) = max IRI X
R'eMR(R|S)s.t.ceR” | |[R\ R”| [R"|

R 1
= X —.
[R\R|  [R]
Obviously,
IR|
> BRR,«ls) = =D,®RlS). O
/ IR\ R|
a€R

Intuitively, the property of independence states that a requirement that does not belong to any maximal potential re-
dundancy of R takes no responsibility for redundancy in R, i.e., such a requirement that is free from redundancy should be
assigned zero. The property of fairness states that two formulas that belong to the same maximal potential redundancy
should bear the same blame for the redundancy of the maximal potential redundancy. The property of distribution states
that the blame for the redundancy in a redundant R w.r.t. S may be shared among all the requirements that belong to one
of the largest maximal potential redundancies in R. It coincides with the intention of D,(R|S) to capture the most redun-
dant perspective of R w.r.t. S. In this sense, Proposition 4.2 shows that BR(R, «|S) intuitively captures the blame on each
requirement for the redundancy.

Example 4.8. Consider Example 4.5 again. Then

3
BR(R,a A b — (—cVvd)I|S) =BR(R,c Ab— d|S) = 2
BR(R,a — ¢|S) = 0.

This result is intuitive, since a — ¢ does not belong to any maximal potential redundancy of R w.r.t. S.

Example 4.9. Consider Example 2.1 again. R is redundant w.r.t. Sp, and

MS(R|S;) = {{(Vx)(Aut(x) — Ent(x)), (Vx)(Eme(x) — Ent(x) A —Aut(x)),

(Vx)(—aut(x) A mEme(x) — —Ent(x))}}.
So

7
Dr(RIS2) = 3-

The blame on each requirement in R for the redundancy in R w.r.t. S; is given as follows:
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BR(R, (Vx)(aut(x) — Ent(x))[Sy) = 0,

BR(R, (Vx)(Eme(x) — Ent(x) A —Aut(x))|S2) = 0,
BR(R, (Vx)(—aut(x) A —Eme(x) — —Ent(x))|S2) = 0,

7
BR(R, (Vx)(—aut(x) — —Ent(x))[S)) = —,

12
BR(R, (V) (~aut (x) — Ala(x))[Sy) = %
7
BR(R, (Vx)(—aut(x) A =Eme(x) — —Ent(x))|S2) = —,

12

BR(R, (Vx)(—aut(x) A mEme(x) — —Act(x, entr))|S,) = l

Note that all the measures presented above are syntax sensitive. That 1§, it is not necessary that any two logically equivalent
knowledge bases have the same measurement. For example, Iy, ({a, —a}) = % but Iy ({a A —a}) = 1. However, this syntax
sensitivity is meaningful for measuring non-canonical requirements. As mentioned earlier, formulating requirements is
syntax sensitive, and any two different knowledge bases (e.g., {a, —a} and {a A —a}) are considered as different sets of
requirements [17]. In this sense, {a A —a} contains only one self-contradictory requirement statement, whilst {a, —a}
contains two self-consistent requirements, i.e., a and —a, but two requirements contradict each other. So it is not surprising
that {a A —a} and {a, —a} have different measures.

5. Generating proposals for handling non-canonical requirements

As mentioned earlier, a general framework that is feasible for handling non-canonical requirements should provide an
approach to identifying which requirements should be changed rather than how to change them. Roughly speaking, a feasible
approach to generating proposals for handling non-canonical requirements can be divided into three steps:

(1) to generate preliminary proposals according to the blame on each requirement for the inconsistency;

(2) to evaluate the preliminary proposals on their impact on incompleteness in the requirements specification, and then
to revise the preliminary proposals;

(3) to evaluate the revised proposals on their impact on the redundancy in the requirements specification, and then to
adapt these proposals to simplify the requirements specifications.

In this paper, a proposal for handling non-canonical requirements consists of three parts, i.e., the set of requirements to be
revised, the set of requirements to be suspended, ? and the set of expected responses for inducing new requirements. Roughly
speaking, the set of requirements to be revised corresponds to strategies for resolving inconsistency in the requirements
specification w.r.t. a given scenario, whilst the set of requirements to be suspended corresponds to strategies for simplifying
the requirements specification w.r.t. a given scenario. In contrast, the set of expected responses for inducing new requirements
is exactly the set of expected responses that cannot be derived from the (original or revised) requirements specification in
the given scenario. It is considered as a hint on missing requirements about the scenario, and then corresponds to strategies
for resolving incompleteness of the requirements specification w.r.t. the given scenario.

Roughly speaking, given a scenario, each requirement in the minimal inconsistent subsets may be considered as potential
one to be revised, and each requirement in the maximal potential redundancies of a requirements specification may be
considered as one to be suspended. On the other hand, each expected response that cannot be derived from the unchanged
requirements may be considered as one to be included. Along this line, we define the following (valid) potential proposals
for handling non-canonical requirements.

Definition 5.1 (Potential proposals). Let S = (S;, Sg) be a scenario and R a requirements specification for S. A potential
proposal for handling non-canonical requirements in R w.r.t. S, denoted as P, is defined as a 3-tuple P = (P, Pg, Pg) such
that

(1) Po € U R,
R’ eMI(RUS))
2)ps< U R,
R'eMR(R]S)
(3) Pg € ME(R\ (Pg UPg)|S)ifR\ (Pp U Pg) is consistent w.r.t. S.

Note that in a proposal for handling non-canonical requirements P = (Pg, Pg, Pg), Po, Pg, and Pg are the set of
requirements to be revised, the set of expected responses to be included, and the set of requirements to be suspended,

2 Allowing for frequent changes in requirements engineering, developers often suspend rather than remove such requirements.

Please cite this article in press as: K. Mu et al., From inconsistency handling to non-canonical requirements management: A logical perspective,
Int. J. Approx. Reason (2012), http://dx.doi.org/10.1016/j.ijar.2012.07.006



http://dx.doi.org/10.1016/j.ijar.2012.07.006

16 K. Mu et al. / International Journal of Approximate Reasoning xxx (2012 ) Xxx—Xxxx

respectively. In particular, for an adequate requirements specification R for S, MI(R|S) = MR(R|S) = ME(R|S) = @, so
Po = Pg = Pg = 0, i.e,, there is no need to revise R. This result is intuitive.

Definition 5.2 (Valid potential proposals). LetS = (S;, Sg) be a scenario and R an inconsistent requirements specification for
S. Let P be a potential proposal for handling non-canonical requirements. Then P is valid w.r.t. S if

(1) RUPg \ (Po UPg)) US; I L.
(2) RUPg \ (P UPg)) US| = Sg.

Essentially, condition (1) ensures that the revised requirements specification should be consistent w.r.t. the given scenario,
and condition (2) requires that the revised requirements specification should be also complete w.r.t. the given scenario.

Example 5.1. Given S = (S, Sg), where S; = {a, b, c} and Sg = {d, e, f,g}.letR={a - d,bAc—>e,aAc— f,e >
f,b — —d A g, —~d — —e} be the requirements about S. Then

RUS FdA—d, RUS FeA —e.
And

MIRUS) = {{a,b,a — d,b — —~d A g}, {b,c,b > —d Ag,bAC— e, ~d — —e}}.
Obviously, P = (Pg, Pe, Pg) is a valid potential proposal w.r.t. S, where

Po ={e—f}, Po={b— —dng}, Po=/{g}

Sometimes developers also need to prioritize valid potential proposals in different ways to identify the most appropriate
proposals for handling non-canonical software requirements. Note that inconsistency handling is central to non-canonical
requirements management. So, we need to associate priority with the appropriateness of a valid potential proposal for
handling inconsistency. Intuitively, to evaluate the appropriateness of a valid potential proposal, the following aspects
should be taken into account:

® First, the requirements with higher blame on inconsistency should be given the priority to be included in the set
of requirements to be revised. Suppose that P; and P,¢, are two sets of requirements to be revised for handling
inconsistency in R w.r.t. S, then P, is more appropriate than P,, denoted by P1 < Paq, if YM € MIRR U S)),
Jda € P1o N M such that BI(R, «|S) > BI(R, B|S) for all B € P, N M. That is, for each minimal inconsistent subset,
the more appropriate proposal should include at least one requirement in the minimal inconsistent subset such that its
blame on inconsistency is higher than that of any requirements in the subset involved in the less appropriate proposal.

e Second, the smaller set of expected responses to be included is preferred. Inconsistency handling actions may lead to
incompleteness or redundancy in many cases. Note that the smaller the set of expected responses to be included, the
less incomplete the revised requirements specification due to inconsistency handling is.

® Third, the minimal simplification with smaller size is preferred. Informally speaking, each minimal simplification
conveys the same information as the original redundant requirements specification, and provides a possible way to
simplify the redundant requirements specification. Moreover, the smaller the size of a minimal simplification, the more
concise the minimal simplification is.

Definition 5.3 (More appropriateness). LetS = (S;, Sg) be a scenario and R an inconsistent requirements specification for S.
Let P; and P, be two valid potential proposals. P; is more appropriate than P, for handling non-canonical requirements in
Rw.rt.Sif

(1) P]@ < PZG,Or
(2) P1g| < [P2g|if Pio = Py, or
(3) IP1g| = |P2g| if |P1g| = |P2g| and P1o = Pyg.

Note that condition (1) ensures that the requirements with higher blame for inconsistency should be given the priority
to be included in the more appropriate proposals, whilst conditions (2) and (3) state that the the smaller set of expected
responses to be included and the smaller minimal simplification are preferred, respectively.

We present an algorithm for generating proposals which support this intuition.

Our algorithm for generating proposals consists of three sub-algorithms, i.e., the algorithm for generating P, the algo-
rithm for generating Pg, given P, and the algorithm for generating P given P and Pg. We start with the algorithm for
generating proposals for handling inconsistency.

3 Pig = Py if P1g < Pag and Py < Py
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For each R C R, let Blyax (R") be the set of requirements of R” with the highest degree of blame for inconsistency in R,
ie,

Blmax(R) = {a|a € R, andVB € R, BI(R, BIS) < BI(R, «|S)}.

Let Q be a set of subsets of R, then we abbreviate |J K’ as | Q.
K'eQ
An algorithm for generating proposals Ps for handling inconsistency based on the degree of blame is given in
Algorithm 1.

Algorithm 1. GENERATE_PROPOSALS_FOR_INCONRE(S, R)
Input: A Scenario S and the related requirements specification R
Output: A set of proposals 1

1 HQ <~

2 Mpg < {4}

3T<«0

4 Q <« MIRRUS)

5 while Q # ¢/

6 do H@T+1 <~

7 for each P, € Iy

8 Q < MIRUS) \ {M|M € MI(RUS;), M N Py # ¥}
9 for each @ € Blyax(RN'UQ)
10 Po < Po U {a}

11 Noryr < Horgq U {Po}
12 T<«<T+1

13 Mg < Moy

14 return [

Roughly speaking, this algorithm focuses on finding proposals that consist of some requirements with the highest blame
on inconsistency for each minimal inconsistent subset of a requirements specification in a scenario. Lines 8-10 ensure that
the requirement chosen for each Py in each round is one of the requirements with the highest blame on inconsistency
in all the minimal inconsistent subsets that cannot be eliminated by revising all the requirements that have been chosen
for P.

Proposition 5.1. Let [ be the output of Algorithm 1 given R and S. Then VP € I, P < Péa for any valid proposal P/O for
handing inconsistency in R w.r.t. S.

Proof. Suppose that P, < P(; does not hold, then 3M € MI(R U Sp), such that Yoo € P, N M, 38 € P'c N M satisfies
BI(R, «|S) < BI(R, BI|S). In particular, consider oy € Blyax(Po N M). Obviously, 38 € P'c N M such that

BI(R, @0|S) < BI(R, BIS). (%)

On the other hand, let Py, = {y|y € Po \ {ao}, BI(R, 0|S) < BI(R, y|S)}. Furthermore, let Q = MI(RU ;) \ {M|M €
MIRUS)), M N Py, # @}, then ag € Blyax (RN U Q). So, VB € M,

BI(R, ao[S) = BI(R, BIS),

which contradicts (). [

Given a set of potential proposals for handling inconsistency in a requirements specification with regard to a given sce-
nario, intuitively, the proposals that result in less incompleteness w.r.t. the given scenario are the ones with more preference.
Let CMpmin(TTp) be the set of the most preferred proposals in I1g), i.e.,

CMmin(Me) = {Po € Mp|VP, € Mo, C(R\ Po)IS) = C((R\ Py)IS)}.

Essentially, CMpn(T1p) is exactly the set of the proposals in 1 that result in the lowest incompleteness in the revised
requirements specification.

We propose an algorithm for generating proposals for handling incompleteness given a set of proposals for inconsistency
handling, as described in Algorithm 2.
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Algorithm 2. GENERATE_PROPOSALS_FOR_INCOMRE(S, R, 1)
Input: A Scenario S, the related requirements specification R, and a set of proposals for inconsistency handling I
Output: A set of proposals [Tpg

1 HOEB <~

2 Ho <~

3 Iy < CMmin(TTe)

4 for each P € I

5 if C((R\ Pp)|S) = OthenPg =

6 elsePg = {a|a € Sk, (R\ Pp) US| o}
7 Pog = (Po, Pg)

8 Mg < MHog U {Pos}

9 return [1pg

Informally speaking, this algorithm aims to extend each of the most preferred proposals for handling inconsistency to
a proposal for handling incompleteness due to inconsistency handling as well as inconsistency in R. The loop (Lines 4-8)
ensures that Pg is exactly the set of expected responses that cannot be derived from R \ P in S if Py is one of the most
preferred proposals.

Recall the approaches to measuring redundancy, in which we focus on how to capture the most redundant perspective of
arequirement specification w.r.t. a given scenario. Correspondingly, we need to identify the requirements with the maximal
blame for the redundancy, i.e., the largest maximal potential redundancies. We propose an algorithm for identifying the
most preferred proposals for handling redundancy given I1xg, as described in Algorithm 3.

Algorithm 3. GENERATE_PROPOSALS_FOR_REDUNDRE(S, R, 1)

Input: A Scenario S, the related requirements specification R, and a set of proposals for inconsistency and incompleteness
handling Mg

Output: A set of proposals [pge

1 Hoeae < @

2 for each Pog € Ipg

3 if D,(RUPg \ Po|S) > 1then

4 for each R € MRyax(RU Pg — Pg|S)
5 Pg = R

6 Poge = (Po. Pg, Po)

7 Hogs < Heas U {Poss!
8 elsePg =0

9 Poge = (Po, Pe, Po)

10 Noas < Hoge U {Poss!
11 return [1oge

Based on the three base algorithms, we present an algorithm for generating the most appropriate proposals for handling
non-canonical requirements as follows:

Algorithm 4. GENERATE_PROPOSALS_FOR_NONCANRE(S, R)
Input: A Scenario S and the related requirements R
Output: A set of proposals I1

1<« ¢

2 Il < GENERATE_PROPOSALS_FOR_INCONRE(S, R)

3 Ilpg < GENERATE_PROPOSALS_FOR_INCOMRE(S, R, [1g)

4 Mpgpe < GENERATE_PROPOSALS_FOR_REDUNDRE(S, R, [ng)
511 <« H@@e

6 return I1

Now we use the following example to illustrate these algorithms.
Example 5.2. Consider Example 2.1 again. Consider a scenario S = (S, Sg), where

S; = {Eme(visl), Aut(vis2), mEme(vis2), mAut(vis3), “Eme(vis3)},

Sg = {Ent(visl), Ent(vis2), mEnt(vis3), Ala(vis3), mAct(vis3, entr), Act(vis3, help)}.

Please cite this article in press as: K. Mu et al., From inconsistency handling to non-canonical requirements management: A logical perspective,
Int. J. Approx. Reason (2012), http://dx.doi.org/10.1016/j.ijar.2012.07.006



http://dx.doi.org/10.1016/j.ijar.2012.07.006

K. Mu et al. / International Journal of Approximate Reasoning xxx (2012) Xxx-Xxx 19
Evidently,
RUS; F Ent(visl) A mEnt(visl).
MIR U Sp) = {{(Vx)(—aut(x) = —Ent(x)), (Vx)(Eme(x) — Ent(x) A —Aut(x)), Eme(vis1)}}.
Then
BI((Vx)(—aut(x) — —Ent(x))|S) = BI((Vx)(Eme(x) — Ent(x) A —Aut(x))|S) = %

According to Algorithm 1, we can get

o = {P1o, P26},

where

P1o = {(Vx)(—Aut(x) = —Ent(x))},

Py = {(Vx)(Eme(x) — Ent(x) A —aut(x))}.

Furthermore,

(R— P1@) US;  {act(vis3, help)},

(R —Pyg) US; I {Ent(visl), Act(vis3, help)}

Then

1
C(R\ P1p)IS) =

<

= C((R\ P20)I9),

| =
W |

and

CMmin(TTp) = {P1}.

So according to Algorithm 2, we can get

Noe = {P1oe = (P1o: P1g)}:
where

P1g = {Act(vis3, help)}.
Finally,

Di(RUPig \ P1plS) > 1

and
(RUP1g \ P1p) \ {(Vx)(ala(x) = —act(x, entr))} Us; F s,
(RUP;g \ P1g) \ {(¥x)(—aut(x) A =Eme(x) — —act(x, entr))} U s; b .
And
MRuax (R U Pig \ P16 S) = {Ry, Ro},
where
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R1 ={(Vx)(ala(x) — —Act(x, entr))},

Ry = {(Vx)(—Aaut(x) A —Eme(x) — —Act(x, entr))}.

So according to Algorithm 3, we can get the valid potential proposal for non-canonical requirements w.r.t. S as follows:

M = Mege = {Picss = (P1o: P1e:Pia): Pigge = (Pio: Pie. Pig)).

where

Pig = {(Vx)(ala(x) — —act(x, entr))},

P{e = {(Vx) (—'Aut(x) N ﬁEme(x) — —'Act(x, entr))}.

That is, there are two possible ways of handling non-canonical requirements w.r.t. S as follows:

® Proposal I:
(I1) To revise (r1);
(I2) To add requirements information about activating the button for help;
(I3) To suspend or revise (r4).

® Proposal II:
(II1) To revise (r1);
(I12) To add requirements information about activating the button for help;
(I13) To suspend or revise (r7).

Note that the main difference between Proposal I and Proposal II is that they choose different requirements to be sus-
pended. The two proposals agree with each other in both the requirements to be revised and the expected responses to be
included. Actually, both proposals are intuitive for the following reasons:

e Although both (r1) and (r5) are involved in the inconsistency, only (r5) describes correctly the requirement about
emergency ones in this scenario, then it is intuitive to consider (r1) as the requirement to be revised.

e Evidently, the information about activating the button for help is missing in the requirements specification for the
given scenario, so it is also natural to consider {act(vis3, help)} as Pg in any feasible proposal.

® Note that if we keep (r7) in the requirements specification, then (r4) will be redundant. Alternatively, if we keep (r4)
in the requirements specification, then (r7) will be redundant. Therefore, there are two possible ways of eliminating
redundancy.

Note that these algorithms aim to generate potential proposals appropriate only for handling non-canonical requirements
with regard to a given scenario rather than for revising the whole requirements specification directly. However, these
algorithms can provide practical support for revising the whole requirements specification for several reasons:

e Note that local consistency in a set of requirements with regard to a given scenario does not guarantee the global
consistency of a requirements specification. But inconsistency in a set of requirements w.r.t. a scenario definitely shows
that the whole requirements specification is inconsistent. Actually, as mentioned in [5], it is particularly difficult to check
the global consistency of a large requirements specification. When checking consistency of the whole requirements
specification becomes infeasible, identifying and handling inconsistency based on scenarios may be considered as a
practical way of revising the whole requirements specification as much as possible.

e Similar to the relation between local consistency and global consistency, completeness of a set of requirements w.r.t. a
scenario does not guarantee completeness of the whole requirements specification. But local incompleteness of a set
of requirements w.r.t. a scenario is meaningful for verifing incompleteness of the whole requirements specification.
Informally speaking, each potential proposal for handling local incompleteness provides a chance to elicit the require-
ments information about certain application setting. On the other hand, checking completeness of requirements is also
particularly difficult in many cases [12]. Moreover, the development of any complex system inevitably involve many
stakeholders, and each stakeholder is familiar with only some special application scenarios. This makes scenario-based
incompleteness handling even more necessary.

® Note that potential proposals for handling redundancy in a set of requirements w.r.t. a scenario are concentrated on
suspending redundant requirements w.r.t. a scenario. It also provides a chance to scan and confirm these requirements
and to improve the quality of the whole requirements specification.

e Essentially, the logical framework presented above aims to test and revise requirements at the requirements stage in
some sense if we consider scenarios as prototypes of conceptual test cases. Similar to software testing, the testing
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and revision are often built upon a family of scenarios. In this sense, the algorithm provides support for requirements
testing based on each scenario.

Note that the potential proposals generated by these algorithms aim to simply point out which requirements may be
considered to be revised rather than how to revise them in the given scenario. Obviously, the choice of scenarios also has
impact on decision making on handling non-canonical requirements. However, how to design scenarios appropriate for
checking and handling non-canonical requirements is a rather context-sensitive issue. It is difficult to provide an universal
way of design or choose scenarios in general. Whatever actions developers choose according to these proposals, the revised
requirements need to be checked again within the logical framework presented in this paper.

6. Related work

Handling non-canonical requirements is a common issue in requirements engineering. Most logic-based techniques for
managing non-canonical requirements only handle inconsistency in requirements. Relatively few logic-based approaches
to managing non-canonical requirements have been proposed along with inconsistency handling, especially to making
appropriate proposals for handling non-canonical requirements. In the following, we compare our approach with some of
closely related approaches.

Our previous paper [13] may be considered as an attempt of managing non-canonical requirements by extending proposals
for handling inconsistency in requirements, which focuses on how to formulate non-canonical requirements rather than
how to identify and generate proposals for handling non-canonical requirements practically. In contrast, the measure-driven
framework presented in this paper focuses on how to identify and generate appropriate proposals for handling non-canonical
requirements in a feasible way. In particular, a family of measures for non-canonical requirements play an important role in
generating more appropriate proposals for handling non-canonical requirements.

In addition, the interplay between inconsistency and incompleteness in requirements specifications has been considered
in handling inconsistent requirements specifications in [12,11]. However, resolving inconsistency in a requirements specifi-
cation cannot ensure that the revised requirements specification does not contain redundant information. Given a scenario,
a requirements specification may contain redundant information for some expected behaviors of the system-to-be in the
scenario, even if the specification lacks information for other expected behaviors of the system-to-be. That is, redundancy
may exist along with incompleteness in a requirements specification. Compared to [11,12], this paper has considered redun-
dancy as well as inconsistency and incompleteness. That is, we focus on monitoring redundancy as well as incompleteness
resulted from inconsistency handling.

Note that potential proposals for handling incompleteness focus on pointing out which expected responses cannot be
derived from requirements in a scenario. That is, we consider the set of missing expected responses as a hint on eliciting new
requirements about the scenario. However, to be more practical, we may consider using abduction techniques presented in
[26] in handling incompleteness as well as handling inconsistency. This is one of the main directions of our future work.

On the other hand, our previous papers [9,21,10] presented two approaches to identifying acceptable common proposals
for handling inconsistency in multi-perspective requirements with qualitative priority levels (such as high and low). These
approaches emphasize the importance of group decision making mechanisms such as negotiation among multiple perspec-
tives [9,10] and combinatorial vote [21] in identifying requirements to be changed. In contrast, the framework presented in
this paper aims not only to resolve inconsistency, but also to evaluate the impact of proposals for inconsistency handling
on incompleteness or redundancy in a requirements specification with regard to a given scenario. Moreover, the framework
presented in this paper emphasizes the role of appropriate measurement of non-canonical requirements in identifying re-
quirements to be changed. Actually, it is not hard to adapt our framework to requirements with priority levels if we adopt
the corresponding measures for inconsistent prioritized knowledge bases such as [27].

With regard to the potential implementation of the proposed measures in this paper, the core of inconsistency measures
is to compute minimal inconsistent subsets for a knowledge base. One of the underlying problems is to check whether a
set of formulas is consistent, i.e., a SAT problem. On the other hand, the problem of incompleteness and that of redundancy
are tightly associated with the problem of inconsistency, since K U {—«a} F/ L if K I/ @,and KU {—a} F LifK ¥ L
and K + « for all satisfiable formula «. It is promising to transfer the computation of measures for incompleteness and
redundancy to the SAT-based computation. This makes the core computationally hard, since SAT is NP-complete [28], and
checking whether a set of clauses is a minimal inconsistent subset is DP-complete [29]. However, as pointed out in [17], the
impressive progress in SAT solvers in recent years has promoted techniques for practically identifying minimal inconsistent
subsets of a knowledge base. Some algorithms such as [30] have been proposed to practically find each minimal inconsistent
subset (called Minimally Unsatisfiable Subformulas or MUS in these algorithms) of a knowledge base. On the other hand, as
an efficient Java library of SAT solvers, SAT4] library 24 provides the first-time users of SAT with black boxes, who want to
incorporate SAT technologies into their application without worrying about the details.> The implementation of a prototype
tool with the SAT4] library as well as the existing algorithm presented in [30] is one of the main directions of future work.

4 https://wiki.objectweb.org/sat4j/.
5 https://www.sat4j.org.
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7. Conclusions

It has increasingly been recognized that inconsistency handling in requirements engineering is not an isolated problem.
It always results in some other undesirable issues such as incompleteness and redundancy of requirements. Therefore, it is
intuitive to extend logic-based approaches to manage non-canonical requirements such as incompleteness and redundancy
in requirements engineering. This paper has made the following contributions in managing non-canonical requirements in
requirements engineering;:

(a) We have proposed alogical framework for managing non-canonical requirements, including inconsistent, incomplete,
and redundant requirements, which consists of five main parts, identifying non-canonical requirements, measuring
non-canonical requirements, generating candidate proposals for handling non-canonical requirements, choosing
commonly acceptable proposals and revising non-canonical requirements according to the chosen proposals.

(b) We have presented a family of measures for non-canonical requirements, including ones for inconsistency, incom-
pleteness, and redundancy.

(c) We have proposed three algorithms for generating proposals for handling non-canonical requirements.

Note that the logical framework is based on the choice of scenarios in some sense. Moreover, we assume that all the
scenarios are developed correctly within the logical framework. However, how to develop and choose scenarios appropriately
is still a challenge in requirements specification. Some scenarios may also be problematic, and even contradict each other.
Moreover, proposals for handling incompleteness use only expected responses that cannot be derived in a scenario as
a hint on eliciting missing requirements. Such proposals are sketchy in some cases when we consider the practicability of
proposals. In future work, we will adapt the logical framework for revising scenarios as well as requirements in requirements
engineering practice.
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