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As a class of defects in software requirements specification, inconsistency has been widely

studied in both requirements engineering and software engineering. It has been increasingly

recognized that maintaining consistency alone often results in some other types of non-

canonical requirements, including incompleteness of a requirements specification, vague

requirements statements, and redundant requirements statements. It is therefore desirable

for inconsistency handling to take into account the related non-canonical requirements in

requirements engineering. To address this issue, we propose an intuitive generalization of

logical techniques for handling inconsistency to those that are suitable for managing non-

canonical requirements, which deals with incompleteness and redundancy, in addition to

inconsistency.Wefirst argue thatmeasuring non-canonical requirements plays a crucial role

in handling them effectively. We then present a measure-driven logic framework for man-

aging non-canonical requirements. The framework consists of five main parts, identifying

non-canonical requirements, measuring them, generating candidate proposals for handling

them, choosing commonly acceptable proposals, and revising them according to the cho-

sen proposals. This generalization can be considered as an attempt to handle non-canonical

requirements along with logic-based inconsistency handling in requirements engineering.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A good-quality software requirements specification is crucial for the success of a software development project. How-

ever, it can often be difficult to develop such a requirements specification. Problems associated with requirements are

still potentially the major causes of software project failures, and there is a great need to facilitate software development

process [1].

Inconsistency has been considered as a main class of defects in requirements specifications [1]. A number of techniques

have been proposed to handle inconsistency in requirements engineering [2–12]. In particular, it has increasingly been

recognized that it is effective to use logics to formulatemanagement of inconsistent requirements specifications [1]. Various

logic-based approaches to handling inconsistency in requirements specifications have recently been proposed [2,4,1,9–12].

Most of these approaches focus on how to apply non-classical reasoning techniques, such as paraconsistent reasoning and

non-monotonic reasoning, to detecting and analyzing inconsistency in requirements specifications. For example, Hunter

and Nuseibeh [2] developed labeled quasi-classic logic to represent and reason about requirements specifications in the

presence of inconsistency. Gervasi and Zowghi [1] proposed methods for reasoning about inconsistency in natural language
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requirements by combining natural language parsing techniques and non-monotonic reasoning. Easterbrook and Chechik

[4] presented a framework termed χbel for merging inconsistent viewpoints using multi-valued logics.

However, inconsistency is not an isolated problem in requirements engineering. The process of maintaining consistency

often results in some other undesirable types of information about requirements. For example, Zowghi and Gervasi [12]

argued that there is an important causal relationship between consistency, completeness and correctness of requirements

in requirements evolution. Recently, Martinez et al. [11] took into account the interplay between inconsistency and incom-

pleteness in merging multi-perspective requirements. Previously, we termed requirements that are incomplete, redundant,

vague or inconsistent as non-canonical requirements [13].

Intuitively, a feasible proposal for inconsistency handling should take into account other non-canonical requirements

that are also involved in inconsistency. Previously, we have developed some logical tools for managing other non-canonical

requirements as well as inconsistency. For example, we have presented a logical tool for uniformly characterizing inconsis-

tency, incompleteness, vagueness, and redundancy in requirements specifications [13]. We have also proposed an approach

to detecting inconsistency, incompleteness and redundancy in requirements specifications based on Answer Set Program-

ming [14]. These methods focus on how to identify non-canonical requirements when detecting inconsistency rather than

on the problem of systematically managing non-canonical requirements.

It has increasingly been recognized that measuring inconsistency is crucial for effectively managing inconsistency in

requirements [5,15,11]. Furthermore, appropriate measurements of non-canonical requirements could provide a good basis

for making some trade-off decisions on handling non-canonical requirements. For example, software developers would

need to know whether a requirements specification would become more incomplete if some inconsistent requirements

are removed. They would also need to know whether some requirements changes for resolving inconsistency in a require-

ments specification would increase the degree of redundancy in the specification. On the other hand, the most redundant

requirements involved in inconsistency should be given priority for consideration when there are options for requirements

changes.

To address these issues, in this paper, we propose a logical framework for managing non-canonical requirements, in-

cluding inconsistent, incomplete, and redundant requirements. First, we formulate a requirements specification as a set of

logical formulas. Second, we present a framework for managing non-canonical requirements, which consists of five main

parts, identifying non-canonical requirements, measuring them, generating candidate proposals for handling them, choos-

ing commonly acceptable proposals, and revising them according to the chosen proposals. Third, we provide a family of

measures for non-canonical requirements, including measures for inconsistency, incompleteness, and redundancy. Finally,

we discuss some strategies for generating proposals for handling non-canonical requirements by using these measures.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to the logical representation of re-

quirements. We propose a general framework for managing non-canonical requirements in Section 3. Section 4 proposes

measures for non-canonical requirements. Section5discusses strategies for generatingproposals for handlingnon-canonical

requirements. We compare our approach with related work in Section 6. We conclude the paper in Section 7.

2. Preliminaries

First-order logic has increasingly been considered as a promising tool for representing requirements [2,9,10]. Moreover,

restricting first-order logic to propositional logic is a useful and practical way of balancing the computational advantages of

propositional logic and its limited expressive power in requirements engineering aswell as software engineering [1,9,10,16].

In this paper,weuse a classical first-order languagewithout function symbols and existential quantifiers. Classical first-order

logic is the most convenient to illustrate our approach, as will be seen in the rest of the paper.

Let P be a set of predicate symbols, V be a set of variable symbols, and C a set of constant symbols. We call A =
{p(q1, . . . , qn)|p ∈ P and q1, . . . , qn ∈ V ∪ C } the set of atoms. Let F be the set of classical formulas formed from a set

of atoms A and a set of logical connectives {∨,∧,¬,→}.
In particular, we call p(q1, . . . , qn) a ground atom if and only if q1, . . . , qn are all constant symbols. Let A0 be a set of

ground atoms and F0 be a set of classical formulas formed from a set of ground atoms A0 and a set of logical connectives

{∨,∧,¬,→}.
Let G be the set of ground formulas and prenex universally quantified formulas formed from F , where ∀X1 · · · ∀Xnα ∈ G

if α ∈ F , and X1, . . . , Xn are the free variables in α.

We can use formulas in G to formulate requirements expressed in natural language. For example, we can represent a

requirement,“If an authorized user requests to borrow a book and the book is available, then the user can borrow the book", as

∀User∀Book (auth(User) ∧ requ(User, Book) ∧ avai(Book)→ borr(User, Book)).

A scenario is a potential application setting of the system-to-be. For the sake of simplicity, we assume that a scenario

consists of two parts, a set of facts to model the scenario, and a set of expected responses to model the expected behavior of

the system-to-be. Moreover, facts and expected responses can be formulated by ground formulas in F0. We use 〈SI, SE〉 to
denote a scenario, where SI and SE are the set of facts and the set of expected responses, respectively. Intuitively, we consider
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that scenarios that correctly describe the application domains are consistent. When there is no confusion, we abbreviate a

scenario 〈SI, SE〉 as S. Suppose that a scenario S for the above requirement contains the following facts:

• Alice is an authorized user;
• Alice requests to borrow the Software Engineering book;
• A Software Engineering book is available.

and the following expected response:

• Alice can borrow the Software Engineering book.

We can then represent the scenario as 〈SI, SE〉, where

SI = {auth(Alice), requ(Alice, Soft_eng), avai(Soft_eng)},
SE = {borr(Alice, Soft_eng)}.

However, to check inconsistency in requirements specifications, universally quantified formulas are always instantiated

with constants in the given scenarios. For example, given the above scenario S, we use the following ground formula instead

of the universally quantified formula above:

auth(Alice) ∧ requ(Alice, Soft_eng) ∧ avai(Soft_eng)→ borr(Alice, Soft_eng).

Generally, if ground formulas α1, α2, . . . , αn are the instantiations of the universally quantified formula α with different

facts in a scenario, we may use α1 ∧ α2 ∧ · · · ∧ αn instead of α in the scenario. Thus, we concentrate on the instantiated

requirements in the rest of this paper. That is, we assume that a set of requirements with regard to a given scenario can be

formulated by a set of ground formulas in F0. With this in mind, we can restrict the first-order logical representation of

requirements to the propositional case in reasoning about requirements.

We call a finite set of formulas in G a knowledge base. In particular, we call a knowledge base a requirements specification

if each formula in the knowledge base represents a requirement. As pointed out in [17], the formulation of requirements

using formulas should be syntax sensitive, that is, any two knowledge bases that contain two different sets of formulas

are considered as two distinct requirements specifications even if the two knowledge bases are logically equivalent. For

example, {α, β} represents a set of two requirements α and β , but {α∧β}means that there is only one requirement, α∧β
[17]. Bear this in mind,when there is no confusion we make no distinction between a knowledge base and a requirements

specification in the rest of this paper.

Let 
 be the classical consequence relation, then K 
 K ′ if K 
 α for all α ∈ K ′.
A knowledge base K is inconsistent if there is a formula α such that K 
 α and K 
 ¬α. We abbreviate α ∧ ¬α as ⊥

when there is no confusion. Thus an inconsistent knowledge base K is denoted by K 
 ⊥.
Previously, we have defined inconsistency, incompleteness and redundancy in requirements with regard to a given

scenario, respectively.

Definition 2.1 (Inconsistency [13]). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S, then R is incon-

sistent with regard to S if R ∪ SI 
 ⊥.
Definition 2.2 (Incompleteness [13]). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S, then R is

incomplete with regard to S if ∃α ∈ SE such that R ∪ SI �
 α.

Definition 2.3 (Redundancy [13]). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S, then R is redundant

with regard to S if ∃R′ ⊂ R s.t. R′ ∪ SI �
 ⊥ and R′ ∪ SI 
 SE . Furthermore, we call R′ a simplification of R w.r.t. S.

Note that the incompleteness of R w.r.t. S means that R does not contain requirements about some expected behaviors

of the system-to-be in S. In contrast, the redundancy of R w.r.t. S implies that R conveys redundant information (consistent

or not) about expected behaviors of the system-to-be in R.

We use the following example to illustrate the formulation of requirements in the form of classical logic formulas.

Example 2.1. Consider the following requirements specification of a residential estatemanagement system,whichmanages

the vehicle entrance of the estate.

(r1) Vehicles without authorization by the Management Board of the residential estate are not allowed to enter the

estate.

Please cite this article inpress as: K.Muet al., From inconsistencyhandling tonon-canonical requirementsmanagement:A logical perspective,

Int. J. Approx. Reason (2012), http://dx.doi.org/10.1016/j.ijar.2012.07.006

http://dx.doi.org/10.1016/j.ijar.2012.07.006


4 K. Mu et al. / International Journal of Approximate Reasoning xxx (2012) xxx–xxx

(r2) Vehicles with authorization by the Management Board of the residential estate can enter the estate.

(r3) The system triggers the warning alarm if a vehicle without authorization enters the estate.

(r4) If the system triggers the warning alarm, the driver of the vehicle cannot activate the button for entrance.

(r5) An emergency vehicle can enter the estate, and no authorization by the Management Board of the residential estate

is required.

(r6) Vehicles without authorization except emergency ones cannot enter the estate.

(r7) Drivers ofvehicles without authorization except emergency ones cannot activate the button for entrance.

First, we translate these requirements into logic formulas. Suppose that we use

• predicate Aut(x) to denote that x is authorized by theManagement Board of the residential estate, where x is a vehicle;
• predicate Ent(x) to denote that x enters the residential estate;
• predicate Ala(x) to denote that the system triggers the warning alarm if x enters the estate;
• predicate Act(x, y) to denote that x’s driver activates button y;
• predicate Eme(x) to denote that x is an emergency vehicle;
• constant entr to denote the button for entrance.

Each requirement statement can be represented by a formula:

(r1) (∀x)(¬Aut(x)→ ¬Ent(x)),
(r2) (∀x)(Aut(x)→ Ent(x)),
(r3) (∀x)(¬Aut(x)→ Ala(x)),
(r4) (∀x)(Ala(x)→ ¬Act(x, entr)),
(r5) (∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x)),
(r6) (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Ent(x)),
(r7) (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Act(x, entr)).
We can then use the above set of formulas to represent the given requirements specification as:

R = {(r1), (r2), (r3), (r4), (r5), (r6), (r7)}.

Second, we verify the preliminary requirements based on some scenarios. Now we consider the first scenario S1 about

fire engines. A fire engine should be considered as an emergence vehicle. Suppose that we use constant fi_en to denote a

fire engine, then S1 = 〈S1I , S1E 〉may be given as follows:

S1I = {Eme(fi_en)}, S1E = {Ent(fi_en)}.

Clearly,

R ∪ S1I 
 Ent(fi_en) ∧ ¬Ent(fi_en).
That is, R is inconsistent w.r.t. S1.

Consider the second scenario S2 about other vehicles. Suppose that vis1 is a visitor’s car with authorization, and vis2
is a visitor’s car without authorization, then S2 = 〈S2I , S2E 〉may be given as follows:

S2I = {Aut(vis1),¬Aut(vis2),¬Eme(vis1),¬Eme(vis2)},
S2E = {Ent(vis1),¬Ent(vis2)}.

Clearly, R is redundant w.r.t. S2, since

R \ {¬Aut(x)→ ¬Ent(x)} ∪ S2I 
 S2E .

Consider the third scenario S3 about the alarm. Suppose that vis3 is a visitor’s carwithout authorization. In this scenario,

we expect that its driver can activate the button for help when the warning alarm has been triggered, then S3 = 〈S3I , S3E 〉
may be given as follows:

S3I = {¬Aut(vis3),¬Eme(vis3)}, S3E = {¬Ent(vis3), Act(vis3, help)}.
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Clearly, R is incomplete w.r.t. S3, since

R ∪ S3I �
 Act(vis3, help).

3. A logical framework for managing non-canonical requirements

Roughly speaking, approaches for effectively managing non-canonical requirements should focus on revising non-

canonical requirements in addition to detecting them. However, techniques for identifying appropriate actions for revis-

ing non-canonical requirements are still to be developed. Even if we consider inconsistency handling only in requirements

engineering, it is difficult to provide a commonmethodology for handling all inconsistencies in requirements, since inconsis-

tency handling actions are rather context-sensitive [2,18,19]. Thismeans that a practical approach to revising non-canonical

requirements should focus on how to identify requirements to be changed rather than on how to change them.

It has increasingly been recognized that appropriate measures for inconsistent requirements provide a good basis for

making necessary trade-off decisions on resolving inconsistencies [5,11,15]. However, as mentioned earlier, inconsistency

handling in requirements is not an isolated problem, which is often associated with incompleteness and redundancy. It is

necessary to take into accountmeasurements for incompleteness and redundancywhenhandling inconsistencybasedon the

measurement for inconsistency. To address this issue, we propose ameasure-driven framework formanaging non-canonical

requirements, as shown in Fig. 1. Central to this framework is the issue on measuring non-canonical requirements, which

provides a basis for identifying appropriate proposals for resolving these non-canonical requirements. It should be noted that

this framework supports an iterative and evolutionary process for achieving a good software requirements specification. The

framework can be used when requirements analysts validate a software requirements specification with given scenarios, or

when some of the existing requirements in the specification have been changed.

The framework takes as input a software requirements specification to be validatedwith some given scenarios. Its output

is a consistent and complete simplification of the requirements specification with regard to given scenarios. The framework

consists of five activities for managing non-canonical requirements:

• Identifying non-canonical requirements. This activity is concentrated on detecting non-canonical requirements with

regard to the given scenarios. Most of the current logical approaches to identifying non-canonical requirements are

Fig. 1. A Framework for Managing Non-canonical Requirements
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focused only on inconsistency checking by reasoning with requirements. In our previous paper [14], we proposed a

logical approach to identifying non-canonical requirements using the Answer Set Programming technique. We argued

that the declarative nature of Answer Set Programming and its support for non-monotonicity make it suitable for

formulating the problem of identifying non-canonical requirements [14]. Informally speaking, given a scenario, the

problem of finding the behaviors of the system-to-be in the scenario can be reformulated into a problem of Answer Set

Programming,which considers the expected response of the scenario as an intended answer. By comparing the answers

computed by Answer Set Programming and the intended answer, inconsistency, incompleteness, and redundancy can

be identified using appropriate strategies [14].
• Measuring non-canonical requirements. It has increasingly been recognized that an appropriate measure for inconsis-

tent requirements may provide a good basis for making necessary trade-off decisions. Some approaches to measuring

inconsistent requirements have been proposed [15,20]. In comparison, relatively few approaches to measuring incom-

plete and redundant requirements have been proposed. However, it is potentially important tomeasure non-canonical

requirements in order to handle them. For example, developers would need to know how redundant a requirements

specification is, in particular, the blame on each requirement for the redundancy in the requirements specification, be-

fore they can make a decision on how to simplify it. Developers would also often need to monitor whether the revised

specification is less redundant (resp. less incomplete or less inconsistent) than the original one. In the next section, we

propose a family of measures for non-canonical requirements.
• Generating candidate proposals for handling non-canonical requirements. When non-canonical requirements are identi-

fied, appropriate actions for revising them would need to be proposed. However, it has been widely recognized that

proposing appropriate actions for handling non-canonical requirements, such as inconsistent requirements, is an im-

portant challenge in requirements engineering, sincehandlingnon-canonical requirements is a rather context-sensitive

process, which always involves a process of interaction and competition among the corresponding stakeholders [9]. It is

difficult to provide a commonmethodology for revising all the non-canonical requirements in requirements engineer-

ing. Consequently, a feasible general framework for handling non-canonical requirements should focus on identifying

requirements that should be changed rather than how these requirements should be revised. Intuitively, identifying

requirements that are involved in inconsistency (resp. redundancy) in a requirements specification should be changed

depends onmeasuring non-canonical requirements, especially, onmeasuring the blame on each requirement involved.

We will provide an approach to generating candidate proposals for handling non-canonical requirements later, which

is driven by the measures of non-canonical requirements.
• Choosing commonly acceptable proposals for handling non-canonical requirements. This activity is designed to identify

acceptable proposals for handling non-canonical requirements from candidate proposals, based on preference rela-

tions over the candidate proposals given by the stakeholders involved in non-canonical requirements. In requirements

engineering practice, the stakeholders may provide different proposals for handling non-canonical requirements from

their own perspective. Each stakeholder also assesses different proposals from her/his own perspective and gives pref-

erences on them according to her/his expectations. Developers would then need to identify proposals for handling

non-canonical requirements that are commonly acceptable using appropriate group decision making mechanisms,

such as negotiation [9] and combinatorial voting [21].
• Revising non-canonical requirements according to commonly acceptable proposals. This activity is designed to revise

the original requirements specification into a well structured requirements specification. It represents the action of

revising the original requirements specification based on the selected proposals by stakeholders. Note that the revision

according to the commonly acceptable proposals may lead to subsequent iteration of this process.

Note that we have only described the main activities in this process, some other activities for enhancing communica-

tion with stakeholders, such as translating requirements into formal logic formulas and translating logic-formulas-based

proposals into natural language sentences are omitted.

4. Measuring non-canonical requirements

4.1. Measuring inconsistent requirements

We focus on two kinds of measures for inconsistent requirements, i.e., the measure for inconsistency in a whole set of

requirements and the measure for the blame on each requirement for inconsistency in a set of requirements. An increasing

numberofmeasures for inconsistency in awhole knowledgebasehavebeenproposed inmanyapplications. In contrast, there

are relatively fewmeasures for the blame on each formula for inconsistency in a knowledge base. The Shapley inconsistency

value presented in [22] is one of the most representative measures for the blame on each formula for inconsistency in

a knowledge base, which allows a given assessment of inconsistency for a whole knowledge base to be distributed to

each formula by using a coalition game model – Shapley value. In particular, Hunter and Konieczny [17] argued that it is

natural to measure inconsistency in a knowledge base through minimal inconsistent subsets if we consider the minimal

inconsistent subsets of a knowledgebase as thepurest formof inconsistency in theknowledgebase, and theyproposed theMI

inconsistencymeasure (i.e., the number of minimal inconsistent subsets) tomeasure the inconsistency in a knowledge base.
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Furthermore, they proposed the MinInc inconsistency value, a special Shapley inconsistency value based on only minimal

inconsistent subsets of a knowledgebase, tomeasure theblameoneach formula for inconsistency in theknowledgebase [17].

Previously,werevised thesemeasuresandpresentedweightedMI inconsistencymeasureandweightedMinInc inconsistency

value to assess the degree of inconsistency in a knowledge base and the blame on each formula for inconsistency in the

knowledge base, respectively [20].

An inconsistent knowledge base K is called aminimal inconsistent set (or minimal inconsistent knowledge base) if none of

its proper subsets is inconsistent. If K ′ ⊆ K and K ′ is a minimal inconsistent set, then we call K ′ aminimal inconsistent subset

of K . We use MI(K) to denote the set of minimal inconsistent subsets of K , i.e.,

MI(K) = {K ′ ⊆ K|K ′ 
 ⊥ and for all K ′′ ⊂ K ′, K ′′ �
 ⊥}.
Minimal inconsistent subsets can be considered as the purest form of inconsistency for syntax sensitive conflict resolution,

since one only needs to remove one formula from eachminimal inconsistent subset in such cases [23]. From this perspective,

minimal inconsistent subsets have been considered as one of the intuitive constructions for developing an inconsistency

measure [17].

A formula in K is called a free formula if it does not belong to any minimal inconsistent subset of K [22]. That is, the free

formulas in K have nothing to do with the minimal inconsistent subsets of K . We use FREE(K) to denote the set of free

formulas in K , i.e.,

FREE(K) = {α ∈ K| for allM ∈ MI(K), α �∈ M}.
Definition 4.1 (Weighted MI inconsistency measure [20]). Let K be a knowledge base. Then the weighted MI inconsistency

measure for K , denoted as IW(K), is defined as follows1 :

IW(K) = ∑
M∈MI(K)

1

|M| .

Essentially, the weighted MI inconsistency measure for a knowledge base K is the sum of inconsistency measures for

all the minimal inconsistent subsets of K , while the inconsistency in a minimal inconsistent subset M is captured by 1
|M| .

Note that IW(M) = 1
|M| for the minimal inconsistent knowledge base M captures the intuition that the more formulas in a

knowledge base are needed to cause inconsistency in it, the less inconsistent it is [24].

Definition 4.2 (Weighted MinInc inconsistency value [20]). Let K be a knowledge base. Then the weighted MinInc inconsis-

tency value for K , denoted as MIVW, is defined as follows:

∀α ∈ K, MIVW(K, α) = ∑
M∈MI(K)s.t.α∈M

IW(M)

|M| =
∑

M∈MI(K)s.t.α∈M

1

|M|2 .

The weighted MinInc inconsistency value captures the blame on a formula for inconsistency in a knowledge base. The

basic idea of theweightedMinInc inconsistency value is that inconsistency in aminimal inconsistent subset is equally shared

among all the formulas in it, i.e., each formula in the minimal inconsistent subset has the same blame for inconsistency in

it. Furthermore, the blame on a formula for inconsistency in a knowledge base is the sum of the blames on the formula

for inconsistencies in all the minimal inconsistent subsets that the formula belongs to. Actually, as shown in [20], both

the weighted MI inconsistency measure and the weighted MinInc inconsistency value possess the intuitive properties

of inconsistency measures. For example, the weighted MI inconsistency measure satisfies the following three intuitive

properties presented in [22]:

• Consistency: IW(K) = 0 if and only if K is consistent.
• Monotony w.r.t. MI: IW (K1) ≤ IW (K2) if MI(K1) ⊆ MI(K2).• Free formula independence: If α is a free formula of K ∪ {α}, then IW (K ∪ {α}) = IW (K).

Roughly speaking, the consistency property requires that a desirable inconsistency measure assigns zero only to a con-

sistent knowledge base [22]. The satisfaction of this property ensures that IW is indeed an inconsistency measure because

it can distinguish inconsistent knowledge bases from consistent ones [25]. As a special variant of the Monotony property

presented in [22], the monotony w.r.t. MI property states that the degree of inconsistency in a knowledge base increases as

1 For the sake of simplicity, we abbreviate

⎧⎪⎨
⎪⎩

∑
a∈A

f (α), if A �= ∅,
0, else.

as
∑
a∈A

f (α).
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the number of its minimal inconsistent subsets increases [20]. The Free Formula Independence property states that adding

to or deleting from a knowledge a free formula does not change the inconsistency measure for it, since free formulas have

nothing to do with the minimal inconsistent subsets of it [22].

The weighted MinInc inconsistency value satisfies the following three intuitive properties:

• Innocence: ∀α ∈ K , ∀M ∈ MI(K), MIVW(M, α) = 0 if α �∈ M.

• Fairness: ∀α ∈ K , ∀M ∈ MI(K), MIVW(M, α) = 1
|M| IW(M) if α ∈ M.

• Cumulation: MIVW(K, α) = ∑
M∈MI(K)MIVW(M, α).

The innocence property states that any formula that is not in a minimal inconsistent subset should not bear any respon-

sibility for the inconsistency in the minimal inconsistent subset [20]. The property of Fairness requires that the blame on

each minimal inconsistent subset is shared equally among all the formulas in the minimal inconsistent subset [20]. The

cumulation property states that the blame on a formula for the inconsistency in a knowledge base equals to the sum of the

blames on this formula for the inconsistencies in all theminimal inconsistent subsets that this formula belongs to [20]. Note

that properties of innocence and cumulation together imply that the blame on any free formula in a knowledge base for

inconsistency is zero, i.e., any free formula needs not to bear any blame for the inconsistency in the base.

Based on the twomeasures, we can further define the degree of inconsistency in a requirements specificationwith regard

to a given scenario.

Definition 4.3 (Degree of inconsistency). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. Then the

degree of inconsistency in R w.r.t. S, denoted I(R|S), is defined as

I(R|S) = IW(R ∪ SI).

Definition 4.4 (Blame on a requirement for inconsistency). Let S = 〈SI, SE〉 be a scenario and R a requirements specification

for S. Then the blame on a requirement α in R for inconsistency w.r.t. S, denoted BI(R, α|S), is defined as

BI(R, α|S) = MIVW(R ∪ SI, α).

Note that the degree of inconsistency in Rw.r.t. S is referred to as the degree of inconsistency in R ∪ SI . Correspondingly,

the blame on a requirements in R for inconsistency w.r.t. S is the blame on the requirement for the inconsistency in R ∪ SI .

The properties of the weighted MinInc inconsistency value mentioned above render thatBI(R, α|S) intuitively captures the

blame on each requirement for inconsistency in R w.r.t. S.

We use the following examples to illustrate the two measures defined above.

Example 4.1. Given S = 〈SI, SE〉, where SI = {a, b, c} and SE = {d, e, f }. Let R = {a→ d, b ∧ c → ¬d, a ∧ d→ e, c→
f ,¬d→ ¬f } be the requirements for S. Clearly,

R ∪ SI 
 d ∧ ¬d, R ∪ SI 
 f ∧ ¬f .
Then R is inconsistent w.r.t. S. The set of minimal inconsistent subsets of R ∪ SI is given as follows:

MI(R ∪ SI) = {{a, a→ d, b, c, b ∧ c→ ¬d}, {b, c, b ∧ c→ ¬d,¬d→ ¬f , c→ f }}.
So

I(R|S) = 2

5
.

The blame on each requirement in R for inconsistencies in R w.r.t. S is given as follows:

BI(R, a→ d|S) = BI(R,¬d→ ¬f |S) = BI(R, c→ f |S) = 1

25
,

BI(R, b ∧ c→ ¬d|S) = 2

25
,

BI(R, a ∧ d→ e|S) = 0.

Note that a∧d→ e is a free formula in R∪SI and has nothing to dowith the inconsistency in R∪SI . Evidently,BI(R, a∧d→
e|S) = 0 captures this fact. In contrast, b ∧ c → ¬d is the common formula of the two minimal inconsistent subsets, and

then it should bear more blame for the inconsistency in R ∪ SI . Actually,
2
25

> 1
25

describes exactly this intuition.
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Example 4.2. Consider Example 2.1 again. R is inconsistent w.r.t. S1, and MI(R ∪ S1) = {M1}, where

M1 = {(∀x)(¬Aut(x)→ ¬Ent(x)), (∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x)), Eme(fi_en)}.
So

I(R|S1) = 1

3
.

The blame on each requirement in R for inconsistencies in R w.r.t. S1 is given as follows:

BI(R, (∀x)(¬Aut(x)→ ¬Ent(x))|S1) = 1

9
,

BI(R, (∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x))|S1) = 1

9
,

BI(R, (∀x)(Aut(x)→ Ent(x))|S1) = BI(R, (∀x)(¬Aut(x)→ Ala(x))|S1) = 0,

BI(R, (∀x)(Ala(x)→ ¬Act(x, entr))|S1) = 0,

BI(R, (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Ent(x))|S1) = 0,

BI(R, (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Act(x, entr))|S1) = 0.

4.2. Measuring incomplete requirements

To revise incomplete requirements, developers often need to know how incomplete a requirements specification is with

regard to a given scenario. Let us recall the definition of incompleteness. A requirements specification R is incomplete with

regard to a given scenario S if someexpectedbehaviors in the scenario cannot bederived from the requirements specification.

Intuitively, measures for the degree of incompleteness in a requirements specification w.r.t. a given scenario should at least

distinguish it from the case in which all the expected behaviors in the scenario can be derived from the requirements

specification, i.e, R ∪ SI 
 SE . On the other hand,note that if R ∪ SI 
 ⊥ for S, then R ∪ SI 
 SE because of trivial reasoning

in the presence of inconsistency. However, in this case, R ∪ SI 
 SE does not necessarily mean that R is complete with

regard to S. We therefore need to distinguish inconsistent requirements from truly complete requirements with regard to a

given scenario. To address this issue,we first define the drastic measure for the degree of incompleteness in a requirements

specification with regard to a given scenario.

Definition 4.5 (Drastic measure). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. Then the drastic

measure for the degree of incompleteness in R w.r.t. S, denoted as Cd(R|S), is defined as

Cd(R|S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−1, R ∪ SI 
 ⊥,

0, R ∪ SI �
 ⊥, R ∪ SI 
 SE,

1, ∃α ∈ SE s.t. R ∪ SI �
 α.

Note that thedrasticmeasureCd allowsusonly todistinguishamong inconsistent, completeand incomplete requirements

specifications with regard to a given scenario. It cannot be used to distinguish between different incomplete requirements

specifications with regard to a given scenario.

However, for it to be more intuitive and more distinctive, the measure for the degree of incompleteness should take into

account the following aspects:

• It can distinguish consistent requirements specifications from inconsistent ones w.r.t. a given scenario. As mentioned

above, it is meaningless to measure how incomplete an inconsistent requirements specification is with the given

scenario because of trivial reasoning in the presence of inconsistency. We need only a designated value to differentiate

inconsistent requirements specifications from consistent ones for a given scenario.
• For all consistent requirements specifications w.r.t. a given scenario, an intuitivemeasure for the degree of incomplete-

ness should distinguish truly complete requirements specifications from incomplete ones for the scenario.
• An intuitive measure for the degree of incompleteness should assign the same value to all truly complete require-

ments specifications w.r.t. a given scenario. That is, it cannot be used to differentiate truly complete requirements

specifications from each other. It is necessary to ensure that an individual measure is indeed a measure for

incompleteness.
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• The measure for the degree of incompleteness should take into account the expected behaviors of the system-to-

be that could not be derived from a requirements specification in a given scenario. Intuitively, given a scenario S,

the incompleteness of a requirement specification R w.r.t. the scenario depends on the number of missing require-

ments w.r.t. S, which is captured implicitly by the expected behaviors of the system-to-be that could not be derived

from the requirements specification in the scenario. Moreover, the more expected behaviors that could not be de-

rived from a requirements specification in the scenario, the more incomplete the requirements specification w.r.t. the

scenario is.

To address these issues, we take into account the expected responses that could not be derived from a requirements

specification in a scenario to measure the degree of incompleteness of the requirements specification. Moreover, we call

such expected responses the set of missing expected responses.

Definition 4.6 (Missing expected responses). Let S = 〈SI, SE〉 be a scenario and R a consistent requirements specification for

S. Then the set of missing expected responses induced by R in S, denoted as ME(R|S), is defined as the expected responses

that could not be derived from R in S, i.e.,

ME(R|S) = {α ∈ SE| R ∪ SI �
 α}.
We use the normalized number of the missing expected responses induced by a requirements specification in a scenario

to measure the degree in incompleteness of the requirements specification w.r.t. the scenario.

Definition 4.7 (Degree of incompleteness). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. Then the

degree of incompleteness in R w.r.t. S, denoted as C(R|S), is defined as

C(R|S) =
⎧⎨
⎩−1, R ∪ SI 
 ⊥,

|ME(R|S)|
|SE | , R ∪ SI �
 ⊥.

As the drastic measure, −1 is considered as the designated value for inconsistent requirements specifications, i.e., it

satisfies the following property of inconsistency:

• Inconsistency: C(R|S) = −1 if and only if R is inconsistent w.r.t. S.

Moreover, the measure for the degree of incompleteness satisfies the following property of completeness:

• Completeness: C(R|S) = 0 if and only if R is consistent and complete w.r.t. S.

This property ensures that C is indeed an incompleteness measure, because it could not distinguish between different

consistent and complete requirements specifications w.r.t. a given scenario but could measure incomplete ones.

Compared to the drastic measure, the measure C(R|S) provides a finer-grained description of incompleteness in a re-

quirements specification Rw.r.t. the given scenario S. Given a scenario, the higher the number ofmissing expected responses

induced by a requirements specification, the more incomplete the requirements specification is, i.e.,

• Monotony w.r.t. ME: for any two consistent requirements specifications R and R′ for S,C(R|S) ≤ C(R′|S) if |ME(R|S)| ≤
|ME(R′|S)|.

Example 4.3. Given S = 〈SI, SE〉, where SI = {a, b} and SE = {c, d, e, f }. Let R0 = {a→ c, c ∧ b→ d}, then
R0 ∪ SI �
 e, and R0 ∪ SI �
 f .

So

Cd(R0|S) = 1.

Suppose that after revision, a new requirements specification R1 is given as follows: R1 = {a→ c, c ∧ b→ d, c ∧ d→ e}.
Then

R1 ∪ SI �
 f .

So

Cd(R1|S) = 1.
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Note that the two drastic measures Cd(R0|S) and Cd(R1|S) only say that the two corresponding requirements specifi-

cations are incomplete with regard to S. Intuitively, R1 is less incomplete than R0 with regard to S. However, the weighted

measure can make this distinction, since

C(R1|S) = 1

4
< C(R0|S) = 1

2
.

Example 4.4. Consider Example 2.1 again. R is incomplete w.r.t. S3 = 〈S3I , S3E 〉where

S3I = {¬Aut(vis3),¬Eme(vis3)}, S3E = {¬Ent(vis3), Act(vis3, help)}.
And

C(R|S3) = |{Act(vis1, help)}||S3E |
= 1

2
.

4.3. Measuring redundant requirements

An appropriate proposal formeasuring redundant requirements should focus onmeasuring the degree of redundancy in a

requirements specification w.r.t. a scenario as well as the blame on each requirement for the redundancy. Roughly speaking,

a measure for the degree of redundancy in a requirements specification describes how redundant the whole requirements

specification is w.r.t. a scenario, whilst the blame on each requirement for the redundancy captures the contribution made

by each requirement to the redundancy in the specification.

Intuitively, to assess the amount of redundant information in a requirements specification w.r.t. a scenario, we need to

first identify simplifications of the specification that exactly convey necessary and sufficient information about the scenario.

We start the measure for the degree of redundancy in a requirements specification from the minimal simplifications of a

requirements specification.

Definition 4.8 (Minimal simplifications [13]). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. A subset

R′ of R is called a minimal simplification of R w.r.t. S if

(1) R′ is a simplification of R w.r.t. S.

(2) no proper subset of R′ is a simplification of R w.r.t. S.

In particular, we use MS(R|S) to denote the set of minimal simplifications of R w.r.t. S.

Essentially, eachminimal simplification of a redundant requirements specification conveys adequate requirements infor-

mation w.r.t. a given scenario. Any requirement not belonging to a minimal simplification can be considered as potentially

redundant because we can derive all the expected responses from the minimal simplification in the scenario. That is, each

minimal simplification of a requirements specification provides a perspective to separate the specification into two parts,

i.e., a minimal set of requirements conveying adequate information and potential redundancy. Moreover, the smaller the

size of a minimal simplification, the bigger the number of potential redundant requirements is. To address this issue, we

build a measure for the degree of redundancy for a redundant requirements specification upon the ratio of the number of

requirements to the smallest number of requirements that convey adequate information. Evidently, such measures capture

how far a redundant requirements specification is beyond themost adequate requirements specification. On the other hand,

for a non-redundant requirements specification, its incompleteness essentially describes how far the requirements specifi-

cation is from an expected adequate (i.e., truly complete but not redundant) requirements specification. So, we may build

redundancy measures for a non-redundant requirements specification upon its incompleteness assessment.

Definition 4.9 (Degree of redundancy). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. Then the

degree of redundancy in R w.r.t. S, denoted as Dr(R|S), is defined as

Dr(R|S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
{ |R|
|R′| |R′ ∈ MS(R|S)

}
, MS(R|S) �= ∅,

1− C(R|S), MS(R|S) = ∅, and C(R|S) ≥ 0,

−1, MS(R|S) = ∅, and C(R|S) = −1.

Roughly speaking,−1 is still considered as a designated value for inconsistent but non-redundant requirements speci-

fications w.r.t. a given scenario. Moreover, for redundant R w.r.t. S, Dr(R|S) aims to capture the most redundant perspective

of R w.r.t. S, that is, Dr(R|S) focuses on the case of the smallest minimal simplification. In addition, we consider 1− C(R|S)
as the degree of redundancy for consistent but incomplete requirements specification R w.r.t. S.
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Fig. 2. From Inconsistency to Redundancy

As shown by the following proposition,Dr(R|S)may be considered as an intuitivemeasure for the degree of redundancy.

Proposition 4.1. Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. ThenDr satisfies the following properties:

• Monotony: If R is redundant w.r.t. S, then Dr(R|S) ≤ Dr(R ∪ R′|S) for any R′.
• Redundancy: Dr(R|S) > 1 if R is redundant w.r.t. S.
• Adequacy: Dr(R|S) = 1 if and only if R ∪ SI �
 ⊥, R ∪ SI 
 SE, and ∀R′ ⊂ R, R′ ∪ SI �
 SE.• Incompleteness: 0 ≤ Dr(R|S) < 1 if R is consistent but incomplete with regard to S.

Proof. We only provide a proof for Monotony. Proofs for the other three properties are evident.

• Monotony. Let R be a redundant requirements specification w.r.t. S. Then MS(R|S) �= ∅ and MS(R|S) ⊆ MS(R ∪ R′|S)
for any R′. So,

Dr(R|S)=max

{ |R|
|R′′| |R

′′ ∈ MS(R|S)
}

≤max

{ |R ∪ R′|
|R′′| |R

′′ ∈ MS(R|S)
}

≤max

{ |R ∪ R′|
|R′′| |R

′′ ∈ MS(R ∪ R′|S)
}

=Dr(R ∪ R′|S). �

Intuitively, themonotony property states that as a redundant requirements set w.r.t. a given scenario expands, the degree

of redundancy in it cannot decrease. The redundancy property states that the degree of redundancy in R w.r.t. S should be

strictly greater than 1 if R is redundant w.r.t. S. Essentially, it implies that there is at least one perspective to separate R into

two nonempty parts, i.e., aminimal simplification and a set of potentially redundant requirements. In contrast, the adequacy

property states that Rwith the degree of redundancy 1 w.r.t. S is exactly an adequate requirements specification for S, i.e., it

is consistent and complete, but not redundant w.r.t. S. The incompleteness property states that the degree of redundancy in

R w.r.t. S is a non-negative value less than 1 if R is consistent but incomplete w.r.t. S.

Informally speaking, incompleteness is due to insufficient information about requirements. By contrast, both redun-

dancy and inconsistency result from toomuch information. However, redundancy requires that at least one proper subset of

a requirements specification conveys adequate information about the given scenario, i.e., a redundant requirements spec-

ifications w.r.t. a scenario conveys adequate information about the given scenario as well as other extra information. But

this does not necessarily hold for inconsistency, because inconsistency focuses only on contradiction in a requirements

specification rather than the adequacy of the specification w.r.t. a scenario. Furthermore, if a requirements specification

is inconsistent but not redundant, it is also meaningless to assess the incompleteness because of trivial reasoning in the

presence of inconsistency. Actually, the last three properties support that Dr distinguishes between redundant require-

ments (Dr(R|S) > 1), adequate requirements (i.e., consistent, complete but non-redundant requirements, Dr(R|S) = 1),

incomplete requirements (0 ≤ Dr(R|S) < 1), and inconsistent but non-redundant requirements (Dr(R|S) = −1) for a
given scenario within the context of redundancy. This is illustrated in Fig. 2. In some sense, this distinction shows how the

dimensions of inconsistency, incompleteness and redundancy are brought together in a linear scale. However, inconsistency,

incompleteness, and redundancy are essentially heterogeneous. We have to point out that there are fewer possibilities for

algebraic manipulations concerning this linear scale, except making the distinction as described above.

Example 4.5. Given S = 〈SI, SE〉, where SI = {a, b} and SE = {c, d}. Let R = {a→ c, c∧ b→ d, a∧ b→ (¬c∨ d)}, then
MS(R|S) = {R1, R2},

where R1 = {a→ c, c ∧ b→ d}, R2 = {a→ c, a ∧ b→ (¬c ∨ d)}. So,

Dr(R|S) = max

{ |R|
|R1| ,

|R|
|R2|

}
= 3

2
.
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Example 4.6. Consider Example 4.3 again.

0 < Dr(R0|S) = 1

2
< Dr(R1|S) = 3

4
< 1.

This result is intuitive, since we know that both R1 and R0 are incomplete w.r.t. S, but R1 is less incomplete than R0 w.r.t. S.

Definition 4.10 (Maximal potential redundancy). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. A

subset R′ of R is called a maximal potential redundancy of R w.r.t. S if R \ R′ is a minimal simplification of R w.r.t. S.

We use MR(R|S) to denote the set of maximal potential redundancies of R w.r.t. S. In particular, we use MRMAX(R|S) to
denote the set of the largest maximal potential redundancies of R w.r.t. S, that is,

MRMAX(R|S) = {R′|R′ ∈ MR(R|S), and ∀R′′ ∈ MR(R|S), |R′′| ≤ |R′|}.
Note that if R′ is one of the largest maximal potential redundancies of R w.r.t. S, then R \ R′ must be the smallest minimal

simplification of R w.r.t. S.

Example 4.7. Consider Example 4.5 again. Both R′1 = {a ∧ b→ (¬c ∨ d)} and R′2 = {c ∧ b→ d} are the largest maximal

potential redundancies of R w.r.t. S.

As mentioned above, each minimal simplification of a requirements specification provides a possible perspective to

separate the requirements specification into two parts, i.e., the minimal simplification and the corresponding maximal

potential redundancy. Moreover, each maximal potential redundancy may be considered as one of the perspectives to

capture redundant information in the requirements specificationw.r.t. a scenario. Intuitively, from the perspective of a given

maximal potential redundancy, the degree of redundancy in a requirements specification should be equally shared by each

requirement belonging to the maximal potential redundancy. Similar to the degree of redundancy, we focus on the blame

on a requirement for the largest maximal potential redundancies (i.e., the most redundant perspectives of a requirements

specification) that the requirement belongs to.

Definition 4.11 (Blame on a requirement for redundancy). Let S = 〈SI, SE〉 be a scenario and R a requirements specification

for S. The blame on a requirement α in R for redundancy in R w.r.t. S, denoted BR(R, α|S), is defined as

BR(R, α|S) =
⎧⎪⎨
⎪⎩

1
|R′| × |R|

|R\R′| , ∃R′ s.t. α ∈ R′ and |R|
|R\R′| = max

R′′∈MR(R|S)s.t.α∈R′′
{ |R|
|R\R′′|

}
,

0, else.

Intuitively, BR(R, α|S) captures the contribution of α to the most redundant perspective in R w.r.t. S in which α is

involved.

Evidently, we can get the following proposition from Definition 4.11.

Proposition 4.2. Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. BR(R, α|S) satisfies the following

properties:

• Independence: BR(R, α|S) = 0 if and only if α �∈ R′ for each R′ ∈ MR(R|S).
• Fairness: If ∃α, β ∈ R s.t. ∀R ∈ MR(R|S), α ∈ R′ iff β ∈ R′, then

BR(R, α|S) = BR(R, β|S).
• Distribution: For Dr(R|S) > 1,

∑
α∈R′

BR(R, α|S) = Dr(R|S) if R′ ∈ MRMAX(R|S).

Proof. The properties of Independence and Fairness are evident. We only provide a proof for Distribution.

• Distribution. Let R be a requirements specification for S such that Dr(R|S) > 1. Then MS(R|S) �= ∅ and

Dr(R|S)=max

{ |R|
|R′′| |R

′′ ∈ MS(R|S)
}

=max

{ |R|
|R \ R′′′| |R

′′′ ∈ MR(R|S)
}

.
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Let R′ ∈ MRMAX(R|S), then

|R|
|R \ R′| = max

{ |R|
|R \ R′′′| |R

′′′ ∈ MR(R|S)
}

.

So, Dr(R|S) = |R|
|R\R′| .

On the other hand, ∀α ∈ R′,

BR(R, α|S)= max
R′′∈MR(R|S)s.t.α∈R′′

{ |R|
|R \ R′′|

}
× 1

|R′′|
= |R|
|R \ R′| ×

1

|R′| .

Obviously,

∑
α∈R′

BR(R, α|S) = |R|
|R \ R′| = Dr(R|S). �

Intuitively, the property of independence states that a requirement that does not belong to any maximal potential re-

dundancy of R takes no responsibility for redundancy in R, i.e., such a requirement that is free from redundancy should be

assigned zero. The property of fairness states that two formulas that belong to the same maximal potential redundancy

should bear the same blame for the redundancy of the maximal potential redundancy. The property of distribution states

that the blame for the redundancy in a redundant R w.r.t. S may be shared among all the requirements that belong to one

of the largest maximal potential redundancies in R. It coincides with the intention of Dr(R|S) to capture the most redun-

dant perspective of R w.r.t. S. In this sense, Proposition 4.2 shows that BR(R, α|S) intuitively captures the blame on each

requirement for the redundancy.

Example 4.8. Consider Example 4.5 again. Then

BR(R, a ∧ b→ (¬c ∨ d)|S) = BR(R, c ∧ b→ d|S) = 3

2
,

BR(R, a→ c|S) = 0.

This result is intuitive, since a→ c does not belong to any maximal potential redundancy of R w.r.t. S.

Example 4.9. Consider Example 2.1 again. R is redundant w.r.t. S2, and

MS(R|S2)= {{(∀x)(Aut(x)→ Ent(x)), (∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x)),
(∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Ent(x))}}.

So

Dr(R|S2) = 7

3
.

The blame on each requirement in R for the redundancy in R w.r.t. S2 is given as follows:
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BR(R, (∀x)(Aut(x)→ Ent(x))|S2) = 0,

BR(R, (∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x))|S2) = 0,

BR(R, (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Ent(x))|S2) = 0,

BR(R, (∀x)(¬Aut(x)→ ¬Ent(x))|S2) = 7

12
,

BR(R, (∀x)(¬Aut(x)→ Ala(x))|S2) = 7

12
,

BR(R, (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Ent(x))|S2) = 7

12
,

BR(R, (∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Act(x, entr))|S2) = 7

12
.

Note that all themeasurespresentedaboveare syntax sensitive. That is, it is notnecessary that any two logically equivalent

knowledge bases have the same measurement. For example, IW ({a,¬a}) = 1
2
but IW ({a∧¬a}) = 1. However, this syntax

sensitivity is meaningful for measuring non-canonical requirements. As mentioned earlier, formulating requirements is

syntax sensitive, and any two different knowledge bases (e.g., {a,¬a} and {a ∧ ¬a}) are considered as different sets of

requirements [17]. In this sense, {a ∧ ¬a} contains only one self-contradictory requirement statement, whilst {a,¬a}
contains two self-consistent requirements, i.e., a and¬a, but two requirements contradict each other. So it is not surprising

that {a ∧ ¬a} and {a,¬a} have different measures.

5. Generating proposals for handling non-canonical requirements

As mentioned earlier, a general framework that is feasible for handling non-canonical requirements should provide an

approach to identifyingwhich requirements should be changed rather thanhow to change them. Roughly speaking, a feasible

approach to generating proposals for handling non-canonical requirements can be divided into three steps:

(1) to generate preliminary proposals according to the blame on each requirement for the inconsistency;

(2) to evaluate the preliminary proposals on their impact on incompleteness in the requirements specification, and then

to revise the preliminary proposals;

(3) to evaluate the revised proposals on their impact on the redundancy in the requirements specification, and then to

adapt these proposals to simplify the requirements specifications.

In this paper, a proposal for handling non-canonical requirements consists of three parts, i.e., the set of requirements to be

revised, the set of requirements to be suspended, 2 and the set of expected responses for inducingnewrequirements. Roughly

speaking, the set of requirements to be revised corresponds to strategies for resolving inconsistency in the requirements

specification w.r.t. a given scenario, whilst the set of requirements to be suspended corresponds to strategies for simplifying

the requirements specificationw.r.t. agivenscenario. Incontrast, thesetofexpectedresponses for inducingnewrequirements

is exactly the set of expected responses that cannot be derived from the (original or revised) requirements specification in

the given scenario. It is considered as a hint onmissing requirements about the scenario, and then corresponds to strategies

for resolving incompleteness of the requirements specification w.r.t. the given scenario.

Roughly speaking, given a scenario, each requirement in theminimal inconsistent subsetsmay be considered as potential

one to be revised, and each requirement in the maximal potential redundancies of a requirements specification may be

considered as one to be suspended. On the other hand, each expected response that cannot be derived from the unchanged

requirements may be considered as one to be included. Along this line, we define the following (valid) potential proposals

for handling non-canonical requirements.

Definition 5.1 (Potential proposals). Let S = 〈SI, SE〉 be a scenario and R a requirements specification for S. A potential

proposal for handling non-canonical requirements in R w.r.t. S, denoted as P, is defined as a 3-tuple P = 〈P�, P⊕, P�〉 such
that

(1) P� ⊆ ⋃
R′∈MI(R∪SI)

R′,

(2) P� ⊆ ⋃
R′∈MR(R|S)

R′,

(3) P⊕ ⊆ ME(R \ (P� ∪ P�)|S) if R \ (P� ∪ P�) is consistent w.r.t. S.

Note that in a proposal for handling non-canonical requirements P = 〈P�, P⊕, P�〉, P�, P⊕, and P� are the set of

requirements to be revised, the set of expected responses to be included, and the set of requirements to be suspended,

2 Allowing for frequent changes in requirements engineering, developers often suspend rather than remove such requirements.
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respectively. In particular, for an adequate requirements specification R for S, MI(R|S) = MR(R|S) = ME(R|S) = ∅, so
P� = P⊕ = P� = ∅, i.e., there is no need to revise R. This result is intuitive.

Definition 5.2 (Valid potential proposals). Let S = 〈SI, SE〉 be a scenario and R an inconsistent requirements specification for

S. Let P be a potential proposal for handling non-canonical requirements. Then P is valid w.r.t. S if

(1) (R ∪ P⊕ \ (P� ∪ P�)) ∪ SI �
 ⊥.
(2) (R ∪ P⊕ \ (P� ∪ P�)) ∪ SI 
 SE .

Essentially, condition (1) ensures that the revised requirements specification shouldbe consistentw.r.t. thegiven scenario,

and condition (2) requires that the revised requirements specification should be also complete w.r.t. the given scenario.

Example 5.1. Given S = 〈SI, SE〉, where SI = {a, b, c} and SE = {d, e, f , g}. Let R = {a→ d, b ∧ c→ e, a ∧ c→ f , e→
f , b→ ¬d ∧ g,¬d→ ¬e} be the requirements about S. Then

R ∪ SI 
 d ∧ ¬d, R ∪ SI 
 e ∧ ¬e.
And

MI(R ∪ SI) = {{a, b, a→ d, b→ ¬d ∧ g}, {b, c, b→ ¬d ∧ g, b ∧ c→ e,¬d→ ¬e}}.
Obviously, P = 〈P�, P�, P⊕〉 is a valid potential proposal w.r.t. S, where

P� = {e→ f }, P� = {b→ ¬d ∧ g}, P⊕ = {g}.
Sometimes developers also need to prioritize valid potential proposals in different ways to identify the most appropriate

proposals for handling non-canonical software requirements. Note that inconsistency handling is central to non-canonical

requirements management. So, we need to associate priority with the appropriateness of a valid potential proposal for

handling inconsistency. Intuitively, to evaluate the appropriateness of a valid potential proposal, the following aspects

should be taken into account:

• First, the requirements with higher blame on inconsistency should be given the priority to be included in the set

of requirements to be revised. Suppose that P1� and P2� are two sets of requirements to be revised for handling

inconsistency in R w.r.t. S, then P1� is more appropriate than P2�, denoted by P1� � P2�, if ∀M ∈ MI(R ∪ SI),∃α ∈ P1� ∩ M such that BI(R, α|S) ≥ BI(R, β|S) for all β ∈ P2� ∩ M. That is, for each minimal inconsistent subset,

themore appropriate proposal should include at least one requirement in theminimal inconsistent subset such that its

blame on inconsistency is higher than that of any requirements in the subset involved in the less appropriate proposal.
• Second, the smaller set of expected responses to be included is preferred. Inconsistency handling actions may lead to

incompleteness or redundancy in many cases. Note that the smaller the set of expected responses to be included, the

less incomplete the revised requirements specification due to inconsistency handling is.
• Third, the minimal simplification with smaller size is preferred. Informally speaking, each minimal simplification

conveys the same information as the original redundant requirements specification, and provides a possible way to

simplify the redundant requirements specification.Moreover, the smaller the size of aminimal simplification, themore

concise the minimal simplification is.

Definition 5.3 (More appropriateness). Let S = 〈SI, SE〉 be a scenario and R an inconsistent requirements specification for S.

Let P1 and P2 be two valid potential proposals. P1 is more appropriate than P2 for handling non-canonical requirements in

R w.r.t. S if

(1) P1� � P2�, or
(2) |P1⊕| ≤ |P2⊕| if P1� � P2�, 3 or

(3) |P1�| ≥ |P2�| if |P1⊕| = |P2⊕| and P1� � P2�.

Note that condition (1) ensures that the requirements with higher blame for inconsistency should be given the priority

to be included in the more appropriate proposals, whilst conditions (2) and (3) state that the the smaller set of expected

responses to be included and the smaller minimal simplification are preferred, respectively.

We present an algorithm for generating proposals which support this intuition.

Our algorithm for generating proposals consists of three sub-algorithms, i.e., the algorithm for generating P�, the algo-

rithm for generating P⊕ given P�, and the algorithm for generating P� given P� and P⊕. We start with the algorithm for

generating proposals for handling inconsistency.

3 P1� � P2� if P1� � P2� and P2� � P1� .
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For each R′ ⊆ R, let BIMAX(R′) be the set of requirements of R′ with the highest degree of blame for inconsistency in R,

i.e.,

BIMAX(R′) = {α|α ∈ R′, and ∀β ∈ R′, BI(R, β|S) ≤ BI(R, α|S)}.
Let Q be a set of subsets of R, then we abbreviate

⋃
K ′∈Q

K ′ as ⋃
Q .

An algorithm for generating proposals P� for handling inconsistency based on the degree of blame is given in

Algorithm 1.

Algorithm 1. GENERATE_PROPOSALS_FOR_INCONRE(S, R)
Input: A Scenario S and the related requirements specification R

Output: A set of proposals ��

1 �� ← ∅
2 ��0← {∅}
3 T ← 0

4 Q ← MI(R ∪ SI)
5 while Q �= ∅
6 do ��T+1← ∅
7 for each P� ∈ ��T

8 Q ← MI(R ∪ SI) \ {M|M ∈ MI(R ∪ SI),M ∩ P� �= ∅}
9 for each α ∈ BIMAX(R ∩⋃

Q)
10 P� ← P� ∪ {α}
11 ��T+1← ��T+1 ∪ {P�}
12 T ← T + 1

13 �� ← ��T

14 return ��

Roughly speaking, this algorithm focuses on finding proposals that consist of some requirements with the highest blame

on inconsistency for each minimal inconsistent subset of a requirements specification in a scenario. Lines 8–10 ensure that

the requirement chosen for each P� in each round is one of the requirements with the highest blame on inconsistency

in all the minimal inconsistent subsets that cannot be eliminated by revising all the requirements that have been chosen

for P�.

Proposition 5.1. Let �� be the output of Algorithm 1 given R and S. Then ∀P� ∈ ��, P� � P′� for any valid proposal P′� for

handing inconsistency in R w.r.t. S.

Proof. Suppose that P� � P′� does not hold, then ∃M ∈ MI(R ∪ SI), such that ∀α ∈ P� ∩ M, ∃β ∈ P′� ∩ M satisfies

BI(R, α|S) < BI(R, β|S). In particular, consider α0 ∈ BIMAX(P� ∩M). Obviously, ∃β ∈ P′� ∩M such that

BI(R, α0|S) < BI(R, β|S). (∗)
On the other hand, let Pα0

= {γ |γ ∈ P� \ {α0}, BI(R, α0|S) ≤ BI(R, γ |S)}. Furthermore, let Q = MI(R ∪ SI) \ {M|M ∈
MI(R ∪ SI),M ∩ Pα0

�= ∅}, then α0 ∈ BIMAX(R ∩⋃
Q). So, ∀β ∈ M,

BI(R, α0|S) ≥ BI(R, β|S),
which contradicts (∗). �

Given a set of potential proposals for handling inconsistency in a requirements specification with regard to a given sce-

nario, intuitively, the proposals that result in less incompletenessw.r.t. the given scenario are the oneswithmore preference.

Let CMMIN(��) be the set of the most preferred proposals in ��, i.e.,

CMMIN(��) = {P� ∈ ��|∀P′� ∈ ��, C((R \ P�)|S) ≤ C((R \ P′�)|S)}.
Essentially, CMMIN(��) is exactly the set of the proposals in �� that result in the lowest incompleteness in the revised

requirements specification.

We propose an algorithm for generating proposals for handling incompleteness given a set of proposals for inconsistency

handling, as described in Algorithm 2.
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Algorithm 2. GENERATE_PROPOSALS_FOR_INCOMRE(S, R, ��)
Input: A Scenario S, the related requirements specification R, and a set of proposals for inconsistency handling ��
Output: A set of proposals ��⊕

1 ��⊕ ← ∅
2 �0← ∅
3 �0← CMMIN(��)
4 for each P� ∈ �0

5 if C((R \ P�)|S) = 0 then P⊕ = ∅
6 else P⊕ = {α|α ∈ SE, (R \ P�) ∪ SI �
 α}
7 P�⊕ = 〈P�, P⊕〉
8 ��⊕ ← ��⊕ ∪ {P�⊕}
9 return ��⊕

Informally speaking, this algorithm aims to extend each of the most preferred proposals for handling inconsistency to

a proposal for handling incompleteness due to inconsistency handling as well as inconsistency in R. The loop (Lines 4–8)

ensures that P⊕ is exactly the set of expected responses that cannot be derived from R \ P� in S if P� is one of the most

preferred proposals.

Recall the approaches tomeasuring redundancy, in whichwe focus on how to capture themost redundant perspective of

a requirement specification w.r.t. a given scenario. Correspondingly, we need to identify the requirements with themaximal

blame for the redundancy, i.e., the largest maximal potential redundancies. We propose an algorithm for identifying the

most preferred proposals for handling redundancy given ��⊕, as described in Algorithm 3.

Algorithm 3. GENERATE_PROPOSALS_FOR_REDUNDRE(S, R, ��⊕)
Input: A Scenario S, the related requirements specification R, and a set of proposals for inconsistency and incompleteness

handling ��⊕
Output: A set of proposals ��⊕�

1 ��⊕� ← ∅
2 for each P�⊕ ∈ ��⊕
3 if Dr(R ∪ P⊕ \ P�|S) > 1 then

4 for each R′ ∈ MRMAX(R ∪ P⊕ − P�|S)
5 P� = R′
6 P�⊕� = 〈P�, P⊕, P�〉
7 ��⊕� ← ��⊕� ∪ {P�⊕�}
8 else P� = ∅
9 P�⊕� = 〈P�, P⊕, P�〉

10 ��⊕� ← ��⊕� ∪ {P�⊕�}
11 return ��⊕�

Based on the three base algorithms, we present an algorithm for generating the most appropriate proposals for handling

non-canonical requirements as follows:

Algorithm 4. GENERATE_PROPOSALS_FOR_NONCANRE(S, R)
Input: A Scenario S and the related requirements R

Output: A set of proposals �

1 �← ∅
2 �� ← GENERATE_PROPOSALS_FOR_INCONRE(S, R)
3 ��⊕ ← GENERATE_PROPOSALS_FOR_INCOMRE(S, R, ��)
4 ��⊕� ← GENERATE_PROPOSALS_FOR_REDUNDRE(S, R, ��⊕)
5 �← ��⊕�
6 return �

Now we use the following example to illustrate these algorithms.

Example 5.2. Consider Example 2.1 again. Consider a scenario S = 〈SI, SE〉, where

SI = {Eme(vis1), Aut(vis2),¬Eme(vis2),¬Aut(vis3),¬Eme(vis3)},
SE = {Ent(vis1), Ent(vis2),¬Ent(vis3), Ala(vis3),¬Act(vis3, entr), Act(vis3, help)}.
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Evidently,

R ∪ SI 
 Ent(vis1) ∧ ¬Ent(vis1).
MI(R ∪ SI) = {{(∀x)(¬Aut(x)→ ¬Ent(x)), (∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x)), Eme(vis1)}}.

Then

BI((∀x)(¬Aut(x)→ ¬Ent(x))|S) = BI((∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x))|S) = 1

9
.

According to Algorithm 1, we can get

�� = {P1�, P2�},

where

P1� = {(∀x)(¬Aut(x)→ ¬Ent(x))},
P2� = {(∀x)(Eme(x)→ Ent(x) ∧ ¬Aut(x))}.

Furthermore,

(R− P1�) ∪ SI �
 {Act(vis3, help)},
(R− P2�) ∪ SI �
 {Ent(vis1), Act(vis3, help)}

Then

C((R \ P1�)|S) = 1

6
<

1

3
= C((R \ P2�)|S),

and

CMMIN(��) = {P1�}.
So according to Algorithm 2, we can get

��⊕ = {P1�⊕ = 〈P1�, P1⊕〉},

where

P1⊕ = {Act(vis3, help)}.
Finally,

Dr(R ∪ P1⊕ \ P1�|S) > 1

and

(R ∪ P1⊕ \ P1�) \ {(∀x)(Ala(x)→ ¬Act(x, entr))} ∪ SI 
 SE,

(R ∪ P1⊕ \ P1�) \ {(∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Act(x, entr))} ∪ SI 
 SE.

And

MRMAX(R ∪ P1⊕ \ P1�|S) = {R1, R2},
where
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R1 = {(∀x)(Ala(x)→ ¬Act(x, entr))},
R2 = {(∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Act(x, entr))}.

So according to Algorithm 3, we can get the valid potential proposal for non-canonical requirements w.r.t. S as follows:

� = ��⊕� = {P1�⊕� = 〈P1�, P1⊕, P1�〉, P′1�⊕� = 〈P1�, P1⊕, P′1�〉},

where

P1� = {(∀x)(Ala(x)→ ¬Act(x, entr))},
P′1� = {(∀x)(¬Aut(x) ∧ ¬Eme(x)→ ¬Act(x, entr))}.

That is, there are two possible ways of handling non-canonical requirements w.r.t. S as follows:

• Proposal I:

(I1) To revise (r1);

(I2) To add requirements information about activating the button for help;

(I3) To suspend or revise (r4).
• Proposal II:

(II1) To revise (r1);

(II2) To add requirements information about activating the button for help;

(II3) To suspend or revise (r7).

Note that the main difference between Proposal I and Proposal II is that they choose different requirements to be sus-

pended. The two proposals agree with each other in both the requirements to be revised and the expected responses to be

included. Actually, both proposals are intuitive for the following reasons:

• Although both (r1) and (r5) are involved in the inconsistency, only (r5) describes correctly the requirement about

emergency ones in this scenario, then it is intuitive to consider (r1) as the requirement to be revised.
• Evidently, the information about activating the button for help is missing in the requirements specification for the

given scenario, so it is also natural to consider {Act(vis3, help)} as P⊕ in any feasible proposal.
• Note that if we keep (r7) in the requirements specification, then (r4) will be redundant. Alternatively, if we keep (r4)

in the requirements specification, then (r7) will be redundant. Therefore, there are two possible ways of eliminating

redundancy.

Note that these algorithms aim to generate potential proposals appropriate only for handling non-canonical requirements

with regard to a given scenario rather than for revising the whole requirements specification directly. However, these

algorithms can provide practical support for revising the whole requirements specification for several reasons:

• Note that local consistency in a set of requirements with regard to a given scenario does not guarantee the global

consistency of a requirements specification. But inconsistency in a set of requirementsw.r.t. a scenario definitely shows

that thewhole requirements specification is inconsistent. Actually, asmentioned in [5], it is particularlydifficult to check

the global consistency of a large requirements specification. When checking consistency of the whole requirements

specification becomes infeasible, identifying and handling inconsistency based on scenarios may be considered as a

practical way of revising the whole requirements specification as much as possible.
• Similar to the relation between local consistency and global consistency, completeness of a set of requirements w.r.t. a

scenario does not guarantee completeness of the whole requirements specification. But local incompleteness of a set

of requirements w.r.t. a scenario is meaningful for verifing incompleteness of the whole requirements specification.

Informally speaking, each potential proposal for handling local incompleteness provides a chance to elicit the require-

ments information about certain application setting. On the other hand, checking completeness of requirements is also

particularly difficult in many cases [12]. Moreover, the development of any complex system inevitably involve many

stakeholders, and each stakeholder is familiar with only some special application scenarios. Thismakes scenario-based

incompleteness handling even more necessary.
• Note that potential proposals for handling redundancy in a set of requirements w.r.t. a scenario are concentrated on

suspending redundant requirements w.r.t. a scenario. It also provides a chance to scan and confirm these requirements

and to improve the quality of the whole requirements specification.
• Essentially, the logical framework presented above aims to test and revise requirements at the requirements stage in

some sense if we consider scenarios as prototypes of conceptual test cases. Similar to software testing, the testing
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and revision are often built upon a family of scenarios. In this sense, the algorithm provides support for requirements

testing based on each scenario.

Note that the potential proposals generated by these algorithms aim to simply point out which requirements may be

considered to be revised rather than how to revise them in the given scenario. Obviously, the choice of scenarios also has

impact on decision making on handling non-canonical requirements. However, how to design scenarios appropriate for

checking and handling non-canonical requirements is a rather context-sensitive issue. It is difficult to provide an universal

way of design or choose scenarios in general. Whatever actions developers choose according to these proposals, the revised

requirements need to be checked again within the logical framework presented in this paper.

6. Related work

Handling non-canonical requirements is a common issue in requirements engineering. Most logic-based techniques for

managing non-canonical requirements only handle inconsistency in requirements. Relatively few logic-based approaches

to managing non-canonical requirements have been proposed along with inconsistency handling, especially to making

appropriate proposals for handling non-canonical requirements. In the following, we compare our approach with some of

closely related approaches.

Ourpreviouspaper [13]maybeconsideredasanattemptofmanagingnon-canonical requirementsbyextendingproposals

for handling inconsistency in requirements, which focuses on how to formulate non-canonical requirements rather than

how to identify and generate proposals for handling non-canonical requirements practically. In contrast, themeasure-driven

frameworkpresented in this paper focuses onhowto identify andgenerate appropriate proposals for handlingnon-canonical

requirements in a feasible way. In particular, a family of measures for non-canonical requirements play an important role in

generating more appropriate proposals for handling non-canonical requirements.

In addition, the interplay between inconsistency and incompleteness in requirements specifications has been considered

in handling inconsistent requirements specifications in [12,11]. However, resolving inconsistency in a requirements specifi-

cation cannot ensure that the revised requirements specification does not contain redundant information. Given a scenario,

a requirements specification may contain redundant information for some expected behaviors of the system-to-be in the

scenario, even if the specification lacks information for other expected behaviors of the system-to-be. That is, redundancy

may exist alongwith incompleteness in a requirements specification. Compared to [11,12], this paper has considered redun-

dancy as well as inconsistency and incompleteness. That is, we focus on monitoring redundancy as well as incompleteness

resulted from inconsistency handling.

Note that potential proposals for handling incompleteness focus on pointing out which expected responses cannot be

derived from requirements in a scenario. That is, we consider the set ofmissing expected responses as a hint on eliciting new

requirements about the scenario. However, to be more practical, we may consider using abduction techniques presented in

[26] in handling incompleteness as well as handling inconsistency. This is one of the main directions of our future work.

On the other hand, our previous papers [9,21,10] presented two approaches to identifying acceptable common proposals

for handling inconsistency in multi-perspective requirements with qualitative priority levels (such as high and low). These

approaches emphasize the importance of group decisionmakingmechanisms such as negotiation amongmultiple perspec-

tives [9,10] and combinatorial vote [21] in identifying requirements to be changed. In contrast, the framework presented in

this paper aims not only to resolve inconsistency, but also to evaluate the impact of proposals for inconsistency handling

on incompleteness or redundancy in a requirements specification with regard to a given scenario. Moreover, the framework

presented in this paper emphasizes the role of appropriate measurement of non-canonical requirements in identifying re-

quirements to be changed. Actually, it is not hard to adapt our framework to requirements with priority levels if we adopt

the corresponding measures for inconsistent prioritized knowledge bases such as [27].

With regard to the potential implementation of the proposed measures in this paper, the core of inconsistency measures

is to compute minimal inconsistent subsets for a knowledge base. One of the underlying problems is to check whether a

set of formulas is consistent, i.e., a SAT problem. On the other hand, the problem of incompleteness and that of redundancy

are tightly associated with the problem of inconsistency, since K ∪ {¬α} �
 ⊥ if K �
 α, and K ∪ {¬α} 
 ⊥ if K �
 ⊥
and K 
 α for all satisfiable formula α. It is promising to transfer the computation of measures for incompleteness and

redundancy to the SAT-based computation. This makes the core computationally hard, since SAT is NP-complete [28], and

checking whether a set of clauses is a minimal inconsistent subset is DP-complete [29]. However, as pointed out in [17], the

impressive progress in SAT solvers in recent years has promoted techniques for practically identifying minimal inconsistent

subsets of a knowledge base. Some algorithms such as [30] have been proposed to practically find eachminimal inconsistent

subset (called Minimally Unsatisfiable Subformulas or MUS in these algorithms) of a knowledge base. On the other hand, as

an efficient Java library of SAT solvers, SAT4J library 24 provides the first-time users of SAT with black boxes, who want to

incorporate SAT technologies into their applicationwithoutworrying about the details. 5 The implementation of a prototype

tool with the SAT4J library as well as the existing algorithm presented in [30] is one of the main directions of future work.

4 https://wiki.objectweb.org/sat4j/.
5 https://www.sat4j.org.
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7. Conclusions

It has increasingly been recognized that inconsistency handling in requirements engineering is not an isolated problem.

It always results in some other undesirable issues such as incompleteness and redundancy of requirements. Therefore, it is

intuitive to extend logic-based approaches to manage non-canonical requirements such as incompleteness and redundancy

in requirements engineering. This paper has made the following contributions in managing non-canonical requirements in

requirements engineering:

(a) Wehaveproposeda logical framework formanagingnon-canonical requirements, including inconsistent, incomplete,

and redundant requirements, which consists of five main parts, identifying non-canonical requirements, measuring

non-canonical requirements, generating candidate proposals for handling non-canonical requirements, choosing

commonly acceptable proposals and revising non-canonical requirements according to the chosen proposals.

(b) We have presented a family of measures for non-canonical requirements, including ones for inconsistency, incom-

pleteness, and redundancy.

(c) We have proposed three algorithms for generating proposals for handling non-canonical requirements.

Note that the logical framework is based on the choice of scenarios in some sense. Moreover, we assume that all the

scenarios aredeveloped correctlywithin the logical framework.However, howtodevelopandchoose scenarios appropriately

is still a challenge in requirements specification. Some scenarios may also be problematic, and even contradict each other.

Moreover, proposals for handling incompleteness use only expected responses that cannot be derived in a scenario as

a hint on eliciting missing requirements. Such proposals are sketchy in some cases when we consider the practicability of

proposals. In futurework, wewill adapt the logical framework for revising scenarios aswell as requirements in requirements

engineering practice.
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