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Abstract—Planning is an essential process in teams of multiple
agents pursuing a common goal. When the effects of actions
undertaken by agents are uncertain, evaluating the potential risk
of such actions alongside their utility might lead to more rational
decisions upon planning. This challenge has been recently tackled
for single agent settings, yet domains with multiple agents that
present diverse viewpoints towards risk still necessitate compre-
hensive decision making mechanisms that balance the utility and
risk of actions. In this work, we propose a novel collaborative
multi-agent planning framework that integrates (i) a team-level
online planner under uncertainty that extends the classical UCT
approximate algorithm, and (ii) a preference modeling and multi-
criteria group decision making approach that allows agents
to find accepted and rational solutions for planning problems,
predicated on the attitude each agent adopts towards risk. When
utilised in risk-pervaded scenarios, the proposed framework can
reduce the cost of reaching the common goal sought and increase
effectiveness, before making collective decisions by appropriately
balancing risk and utility of actions.

I. INTRODUCTION

Planning, where we try to come up with a series of actions to
achieve a goal sought by the agent [1], is an essential compo-
nent of autonomous agents. In realistic environments the size
and complexity of the problem is often a challenge, one that
is further aggravated when considering multiple agents which
must coordinate and act in parallel. This is the domain of
multi-agent planning, referring to a family of problems which
require “planning by and for multiple agents” [2]. In collab-
orative multi-agent planning in particular, a team of agents
combine their capabilities and beliefs to jointly complete a
task leading to a common goal [3]. However, such planners
typically do not consider important environmental information
such as the uncertainty of actions (e.g. a door may not open),
or the risk associated with actions (e.g. investing in a start-up
may be rewarding or lead to bankruptcy). The authors in [4]
address this issue by adopting the notion of risk defined as
the possibility of obtaining a utility (reward) lower than the
expected utility, due to an undesired outcome of taking an
action. The authors then proposed an extension of existing
first principles planners to provide an agent with the ability to
(i) assess both risk and utility (reward) of available actions,
and (ii) make rational decisions by striking a balance between
utility and risk, based on the attitude of the agent towards risk.
However, their work only considers the single agent setting.

This work focuses on developing a collaborative multi-agent
planner, that takes into account the different “points of view” of

each agent and their distinct risk tolerance levels. To scope our
work, we furthermore set out the following three principles:
Principle 1 Agents act in parallel, with one agent designated

as the team leader. While the team leader does the actual
planning, it is the group that decides on the best next
action to take.

Principle 2 Agents act purely collaboratively (with no form
of inter-agent competition being considered), and the
actions of an agent do not interfere with the actions of
other agents in the team.

Principle 3 All agents have similar competencies and capa-
bilities, i.e. they can perform the same set of actions with
equal probabilities of outcomes for each action.

To tackle the huge search space often involved in multi-
agent planning, we also need to rely on techniques such as
online planning in which planning and execution is interleaved.
Monte-Carlo Tree Search (MCTS) algorithms [5], [6] continu-
ously explore the search space, yet can return a “good enough”
action (rather than a complete series of actions) at any time.
To date, few online approaches have been applied to multi-
agent planning domains [7], [8]. Importantly, to the best of
our knowledge none of these works consider the possibility of
assessing risk and the utility of actions jointly.

The framework we propose and evaluate in this paper to
address these challenges is defined as follows. A planner agent
(the team leader) determines the best possible actions to be
performed by every agent as a team. To this end we extend
the classical UCT (Upper Confidence bounds applied to Trees)
version of MCTS [6] to effectively manage information at
team level, while assessing the utility and risk of possible
actions during search. Unlike the single-agent, non risk-aware
setting where only a single action is considered, a set of (team)
actions deemed “good enough” (with their associated reward
and risk estimates), are selected. Subsequently, “candidate”
actions are analysed by each agent to find a common accepted
solution to the planning problem [9] through a collective multi-
criteria decision making stage, where each agent balances the
utility and risk of each possible action at its current state, based
on its own risk tolerance level. Specifically, a team preference
is computed by aggregating individual assessments of (a subset
of) the available actions [10], [11]. The resulting preference
is finally used to return one team-level action deemed as the
most satisfactory decision.
The main contributions of our work are therefore as follows:

1) We propose a framework in which multiple agents can



collaborate as a team. The multi-agent planning compo-
nent takes the reward as well as the risk of each team
action into account, and a final decision is reached by
taking account of the individual concerns by all the agents
in the team [12].

2) We propose the first online planning algorithm that ef-
ficiently solves multi-agent planning problems involving
risk assessment and multi-criteria group decision-making.

This paper is set out as follows: Section II provides an
overview of basic concepts and ideas underpinning online
planning and decision making. In Section III, the scenario
used to illustrate our framework is introduced. A novel, risk-
aware online multi-agent planner is proposed in Section IV,
and subsequently integrated with a decision making approach
based on the risk tolerance of an agent in Section V. Section VI
illustrates the practical use of the proposed framework, and
finally, some concluding remarks are laid out in Section VII.

II. PRELIMINARIES

This section provides an overview of online planning and
the UCT algorithm, followed by basic concepts relating the
decision making framework considered in our proposal.

A. Online Planning

Online planning approaches interleave planning with execu-
tion: instead of generating the whole plan a priori (as occurs
with offline planners), online planners return a next “good-
enough” action to be executed at the current state. Online
planners are based on approximate anytime algorithms, and
they provide time-sensitive results on the next actions to take
under uncertainty. Our work integrates online planning with
risk assessment and decision making mechanisms, in problems
requiring cooperation to accomplish a common goal, and
where the actions performed by agents have uncertain effects.

UCT [6], [13] is a state-of-the-art anytime algorithm widely
utilised in planning domains pervaded by uncertainty, that
combines MCTS [14] with multi-bandit selection methods
[13]. The algorithm applies the following four steps: (i)
Selection: select a child node based on a selection function.
(ii) Expansion: randomly expand the selected node to a new
unsampled one. (iii) Rollout: randomly simulate a playout
(i.e. a sequence of selected actions and their outcomes) until
reaching a terminal state. (iv) Backpropagation: compute a
reward value associated with the terminal state reached, and
propagate it back up to the root node, updating the cumulative
reward values for each node in the path. A decision node
in UCT represents an environment state. A decision node
corresponding to a non-terminal state can be expanded into
available actions (represented by chance nodes) at that state,
leading in turn to child decision nodes for the outcomes of
such actions. The root decision node represents the current
environment state [6]. Every time a decision node is visited,
the selection of the action to take is based on previous rollouts,
such that actions that produced higher rewards, and actions
rarely visited in previous rollouts, are both favoured. This
enables algorithms such as UCT to find an elegant balance

between exploitation (selecting actions with better reward
statistics so far) and exploration (selecting actions that have
still been rarely simulated).

B. Decision Making Framework

Decision making has long constituted an important process
in human lives, consisting in the selection of the best or
most suitable choice from a set of alternatives. Emergent AI
techniques, including the development of deliberative multi-
agent systems [15], have witnessed the necessity of incorpo-
rating rational decision making capabilities into autonomous
agents. Multi-Criteria Decision Making (MCDM) refers to a
family of methods to deal with decision problems under the
presence of several, often conflicting criteria [16]. Agents have
the potential to implement MCDM methodologies by [15]:
(i) modeling consistent families of criteria, (ii) modeling
preferences over alternatives to guide their decisions, and (iii)
exploiting the decisions made to guide their actions.

The MCDM framework considered in this work (presented
in Section V) is formulated as follows:
• There exists a decision problem, consisting of m ≥ 2

alternatives or possible solutions, X = {x1, . . . , xm},
e.g. different actions to be chosen by a team of agents.

• Alternatives are assessed according to several indepen-
dent criteria, Q = {q1, . . . , qz}, z ≥ 2. For instance,
criteria for assessing a team-level action in our framework
include its associated reward and risk estimates.

• Each agent constructs a preference structure, in our case
a numerical preference vector in the unit interval, Pi =
[p1i . . . pmi ] to evaluate alternatives, with pji ∈ [0, 1] the
degree of preference of alternative xl by agent i.

In MCDM, alternatives are evaluated according to each
criterion separately, with pj,li the degree to which xj satisfies
criterion ql, j ∈ {1, . . . ,m}, l ∈ {1, . . . , z}. Therefore, an
aggregation function f : [0, 1]z → [0, 1] must be utilised to
combine satisfaction degrees over criteria, pj,1i , . . . , pj,zi , into
an overall one, with pji . Aggregation functions accomplish the
following properties [17]:

1) Boundary condition: f(0, . . . , 0)=0 and f(1, . . . , 1)=1.
2) Non-decreasing: (a1, . . . , az) ≤ (b1, . . . , bz), implies

f(a1, . . . , az) ≤ f(b1, . . . , bz).
3) Identity when unary: f(a) = a, ∀a ∈ [0, 1].

Examples of (families of) aggregation functions include av-
eraging functions, conjunctive functions (t-norms), disjunctive
functions (t-conorms), mixed functions e.g. uninorms, etc [18].

Another common decision framework that has attained
significant research interest is that of Group Decision Mak-
ing (GDM) problems, in which multiple individuals (e.g.
agents) must combine their own preferences to make an
accepted decision together. Classically, the resolution pro-
cess for GDM approaches involves an aggregation phase
that combines individual preferences Pi, . . . , Pn into a group
or collective preference Pc, and an exploitation phase, that
utilises the group preference to obtain an alternative or subset
of alternatives as the solution for the GDM problem [12].



Fig. 1. Example scenario

However, the need for highly accepted solutions that minimise
the possibility of disagreement between preferences of group
members, has led to the appearance of consensus reaching
approaches, introducing an additional phase aimed at bringing
such preferences closer to each other before making a decision
[19]. For the interested reader, an exhaustive overview of
consensus-reaching approaches for GDM can be found in [12].

III. SCENARIO OVERVIEW

The nuclear navigation scenario serves to illustrate the
multi-agent framework presented in this paper. A team of
robots (agents) are situated in different locations of a nuclear
site. A number of anomalies (targets) are detected in locations
around the plant. The robots, which operate concurrently,
must plan, coordinate and make decisions together to move
toward the targets and address the issues efficiently. The
nuclear site is organised into a number of locations and a
network of bridges to move between them (see Figure 1).
Some bridges are wider (and hence safer to cross) than others,
and falling off a bridge will permanently disable the robot. For
simplicity, we assume each robot has similar competencies in
terms of their probability of successfully crossing a bridge.
Furthermore, the robots are fully aware of their location
within the site at all times, as well as the locations of the
incomplete targets, and they also communicate any changes
in their location or action outcomes to the team planner agent.
Depending on their individual status, agents may have different
attitudes towards risk and, consequently, diverse preferences
over the available actions to perform. By taking account of
the individual preferences of agents, an accepted collective
decision should be made on the actions to be executed.

Team planner agent

Every  agent i

ε0

Current 

environment

state

Fig. 2. Architecture of the risk-aware multi-agent planning framework

IV. RISK-AWARE ONLINE MULTI-AGENT PLANNER

This section presents a novel multi-agent planning frame-
work for collaborative, uncertain settings. The main contri-
bution of the underlying online planning algorithm is the
extension of the single-agent approach in [4] to assess risk
of actions alongside their utility at team level. The proposed
framework (depicted in Figure 2) is further combined with a
collective MCDM approach for action selection at group level,
as explained later in Section V.

A. Notation and Basic Concepts
The following notation is introduced to refer to the ele-

ments utilised in the proposed planner. There exists a set
AG = {1, 2, . . . , n} of agents, and a finite action library
shared by all agents. Each action ak, 1 ≤ k ≤ m, is modeled
as a tuple 〈ak, φk, effk〉. φk represents the preconditions for
the action to be applicable, with effk = {(ε′, p)} the possible
(mutually exclusive) effects or outcomes ε′ of the action at
individual level, and their associated probability p. The set of
all possible environment states is denoted by E , where ε0 ∈ E
is the current state (root decision node in the search tree). The
subset of all goal states is denoted by EG ⊂ E . In the proposed
team planning approach, the team planner agent must manage
information about multiple agents jointly, therefore it needs to
formulate environment states at team level. Thus, a decision
node is modeled upon the following two elements:

1) Agent-specific information about the state of every agent
involved in the planning process, e.g. the current locations
of robots in the nuclear scenario.

2) Other purely environmental information, e.g. the locations
of unfixed targets (if any) in the nuclear site.

Based on this, a decision node associated to an environment
state ε ∈ E is formalised as a 2-tuple D(ε) = 〈s(AG); s(env)〉,
with s(AG) the current state of every agent and s(env) the
environmental information.

Example 1: Consider the nuclear navigation scenario. The
state s(i) of agent i is defined as a predicate of the form,
at(i, L), with L the location of agent i (either one of the
16 locations numbered 0-15, or “–” to indicate that i failed



in the execution of an action and is no longer available).
Let s(env) = ∧at(target,L)L be the locations of targets
(anomalies) not addressed yet. A decision node describing the
state depicted in Figure 1 can be formalised as follows:

D(ε) = 〈{at(1, 0), at(2, 6), at(3, 15)}; 2 ∧ 3 ∧ 8 ∧ 9 ∧ 12〉

i.e. agents 1,2, and 3 are located respectively in zones 0,6,15.
Furthermore, environmental information s(env) indicates the
existence of untreated targets in locations 2,3,8,9,12.

Example 2: Let ak be the action of moving from location 0
to location 4 (i.e. crossing bridge 12 upwards) in the nuclear
scenario. Its corresponding formalisation is:

〈mv 0 4, at(0), {(at(4), 0.95), (at(−), 0.05)}〉

The precondition for an agent to execute this action, φk =
at(0), is being situated in location 0. The action has two pos-
sible outcomes: (i) reaching location 4, with 95% probability;
or (ii) failing to complete the action, with 5% probability.

The representation of states and actions in our planning
framework is based on PPDDL (Probabilistic Planning Do-
main Definition Language) [20], which is fully compliant with
implementations of approximate algorithms based on MCTS.
We now introduce the concept of team action. This concept
plays a central role in the proposed multi-agent planner.

Definition 1: A team action τ = {(i, aik), i ∈ pa(τ)}
encompasses a number of actions aik ∈ A simultaneously
assigned to a team of agents pa(τ) ⊆ AG (one action per
agent). Team actions are formulated during planning, taking
account of the current state and available actions per agent.

Example 3: Assuming the environment state represented
in Figure 1, τ = {(1,mv 0 4), (2,mv 6 7), (3,mv 15 14)}
indicates that the robot 1 must move from 0 to 4, robot 2 must
move from 6 to 7 and robot 3 must move from 15 to 14.

B. Risk-Aware Online Team Planner

We now discuss how the online risk-aware planner intro-
duced in [4] can be extended to deal with multiple collaborat-
ing agents. To do this, we propose an online multi-agent plan-
ner that (i) assesses both the risk and utility of actions from a
team of agents, and (ii) returns a set of team actions with their
associated utility and risk assessments, instead of returning a
single best team action. We consider a MCTS-based search
tree structure, with layers alternating between decision nodes,
D(ε), representing environment states ε, and chance nodes,
C(τ), representing team actions τ . The children of a decision
node reflect the team actions available at ε. Conversely, the
children of a chance node indicate the stochastic outcomes or
resulting environment states from applying τ .

Below we describe how the outcomes of team actions
and their probabilities of occurrence are determined. Having
multiple agents executing a team action in parallel may involve
a large number of possible outcomes, therefore we firstly
discuss how the representation of such outcomes can be
simplified, in order to prevent an excessive branching factor in
the search tree. We assume two types of outcome for any τ :
success outcome, ετ , when all participating agents succeed in

completing their respective actions, and undesired outcome,
ετ , otherwise. The undesired outcome of τ encompasses all
the possible eventualities εF that may lead τ into failure (i.e.
one or more agents in pa(τ) failing to complete their assigned
action). Therefore, ετ =

⋃
εF∈ετ εF .

Importantly, the number of all possible undesired outcomes
εF described by ετ directly depends on the number of agents
participating in the team action, |pa(τ)|. Concretely, it is given
by the number of possible subsets of agents, fa(τ) ⊆ pa(τ),
that might succeed in completing their action, i.e. |ετ | =
2|pa(τ)| − 1. Both goal states εG ∈ EG (which result from
completing a sequence of team actions until reaching the goal
established) and undesired outcomes ετ ∈ EF (with EF ⊂ E
the set of all undesired outcomes) are terminal states, with
ET = EG ∪ EF the set of all terminal states.

Remark 1: A (summarised) undesired outcome ετ is deemed
as a terminal state, because if an unexpected situation is
encountered, the team planner agent starts another online
planning process for the remaining agents upon the resulting
environment state, taken as the new ε0.

Probabilistic information of individual actions must be
combined to describe the effects of team actions. Let P (τ)
be the probability of successfully completing τ , and P (τ)
the probability of reaching any form of undesired outcome.
Actions aki assigned to every agent i ∈ pa(τ) are regarded
as independent from each other, hence P (τ) can be easily
calculated upon the individual action library information, as
P (τ) =

∏
i∈pa(τ) P (a

k
i ), with P (aki ) = p ∈ [0, 1] being

the probability of reaching the expected (successful) effect of
executing the agent action aki = 〈ak, φk, {(ε′, p), (ε′, 1− p)}〉.
Intuitively, P (τ) = 1− P (τ).

Below we introduce a reward function that allows for a
reduced branching of the search tree by estimating a single
reward value for all possible forms of undesired outcome.

Definition 2: Let ET = EG ∪ EF be the set of all terminal
states, as defined above. A reward function f is defined as a
mapping f : ET → [−1, 1]\{0}, with the following properties:

(i) f(εG) > 0, ∀εG ∈ EG, i.e. arriving at a goal state always
produces a positive reward value.

(ii) f(ετ ) < 0, ∀ετ ⊂ EF , i.e. arriving at any undesired
outcome always produces a negative reward value.

(iii) Let d ∈ N be the depth level at which the terminal state
is encountered. Assume two identical terminal states ε1,
ε2 can be reached at depth d1 and d2 respectively, with
d1 < d2. Then f(ε1) ≥ f(ε2).

(iv) f(εG) > f(ετ ) for any εG ∈ EG, ετ ∈ EF .
According to (iii), a goal state is more rewarding when

encountered after a lower number of team actions. Similarly,
an undesired outcome is more detrimental when more effort is
previously invested, i.e. after more actions. A discount factor
δ ∈]0, 1[ is applied on f to reflect this property. The reward
for an undesired outcome is calculated as follows:

f(ετ ) = −δd−1
∑
εF∈ετ Pτ (εF ) · f(εF )∑

εF∈ετ Pτ (εF )
(1)



Clearly, f(ετ ) is calculated as the (discounted) probability-
weighted average of all possible forms of undesired outcome,
εF ∈ ετ , which correspond to each of the non-empty subsets
fa(τ) of agents that fail to complete their associated action,
such that fa(τ) ∈ P(pa(τ))\{∅}. Their probability of occur-
rence, denoted by Pτ (εF ), is easily calculated upon individual
agent action information: Pτ (εF ) =

∏
i∈pa(τ) Pi(εF ), where

for each aki assigned to i through τ ,

Pi(εF ) =

{
1− P (aki ) if εF � at(i,−),
P (aki ) otherwise. (2)

The reward value for each εF is computed based on the amount
of failing agents in the team, i.e. f(εF ) =

|fa(τ)|
|pa(τ)| . This non-

negative value is only a partial step in the calculation of the
overall negative reward for ετ (Eq. (1)).

Since we consider a collaborative setting with a common
goal pursued by all agents, the reward of a goal state is defined
based on the discount factor δ and its depth d, as f(εG) =
δd−1, i.e. the sooner the goal is accomplished (lower cost of
executing actions), the more beneficial the outcome is.

Having defined the reward function, we now describe the
procedure to assess risk, which extends the one in [4].

Definition 3: The immediate risk of taking a team action τ
at state ε is the probability-weighted variance1 of its outcome
rewards:

IR(ε, τ) = P (τ)(f(ετ )−E(ε, τ))
2
+ P (τ)(f(ετ )−E(ε, τ))

2

(3)
with E(ε, τ) the expected utility of taking τ at ε:

E(ε, τ) = P (τ)f(ετ ) + P (τ)f(ετ ) (4)

The success outcome of taking τ at ε is denoted by ετ .
Eq. (1) allows to determine f(ετ ), but f(ετ ) can not be
directly calculated unless ετ ∈ EG. Instead, reward values of
non-terminal states are calculated during the backpropagation
phase. The immediate risk calculated by Eq. (3) is a measure
associated to chance nodes (i.e. team actions). In decision
nodes, however, the team of agents has a choice of which team
action to execute. Therefore, we now define the immediate risk
associated to a decision node.

Definition 4: Given a state ε and its set of immediately
available team actions, Av(ε), the immediate risk exposure
under a rational decision making perspective, is given by the
immediate risk of the least risky team action available at ε:

RE(ε) = minτ∈Av(ε)IR(ε, τ) (5)

The measure defined above considers the risk of immediate
team actions only, disregarding further actions beyond these,
hence we modify it to assess an average cumulative risk upon
the reward and immediate risk of courses of action.

Definition 5: The cumulative risk exposure at state ε is
defined as:

CRE(ε) = minτ∈Av(ε)CMR(ε, τ) (6)

1Since we consider the use of approximate algorithms, the obtained
variances are in practice suitable approximations.

with CMR(ε, τ) the cumulative minimum risk of taking a
team action τ at ε, calculated as follows:

CMR(ε, τ)=
IR(ε, τ) + CMRold · visits(C(τ))

visits(C(τ)) + 1
(7)

visits(·)∈N is the number of times a node has been visited.
When a chance node is firstly visited, CMR(ε, τ)=IR(ε, τ).
The selection and expansion phases are applied similarly to
plain UCT, and multiple risk rollouts are applied at each UCT
iteration for resampling purposes, as explained in [4]. The
backpropagation phase is applied by updating both reward and
risk estimated in an average cumulative fashion:
• The reward of a non-terminal state f(ε) is updated

every time D(ε) is visited during backpropagation, tak-
ing rewards of successive team action outcomes into
consideration. Thus, f(ε) is interpreted as the average
cumulative reward of arriving at this state:

f(ε) =
f(ε∗) + visits(N(ε)) · fold(ε)

visits(N(ε)) + 1
(8)

Here, f(ε∗) is the reward of the expected (success)
outcome of the least risky action in Av(ε).

• The updated risk estimate of a chance node in the
backpropogation path is compared to that of its sibling
nodes, and the risk of the sibling chance node with lowest
risk estimated at that level is backpropagated.

The planner finally returns (a subset2 of) team actions with
their associated risk and reward estimates, rather than a single,
most rewarding team action. These assessed team actions are
subsequently evaluated by participating agents (Section V).

The following example illustrates the calculation and back-
propagation of reward and risk estimates back to the root node.

Example 4: Consider the search tree excerpt depicted in
Figure 3, where the nodes corresponding to τ5 and its out-
comes have been newly expanded. As a result of a roll-
out, a goal state with reward f(εG) = 0.7 is encountered.
This reward is backpropagated straightaway up to the last
decision node generated, N(ε5). The immediate risk of the
predecessor chance node, C(τ5), is calculated (Eq. (3)), re-
sulting in IR(ε1, τ5) = 0.09. Since this is the first time
C(τ5) is visited, its cumulative minimum risk is trivially
CMR(ε1, τ5) = IR(ε1, τ5) = 0.09. This value is compared
to that of its existing sibling node so far, and it is lower than
CMR(ε1, τ4) = 0.59, it is backpropagated as the cumulated
risk exposure at ε1, CRE(ε1) = 0.09. The reward at this
state is updated (Eq. (8)) based on its previous reward, the
reward being backpropagated, and the visit count, resulting
in f(ε1) = (0.65 · 2 + 0.7 · 1)/3 = 0.67. The chance node
C(τ1) has been previously visited, hence both the immediate
and cumulative minimum risk of τ1 are updated by using Eqs.
(3) and (7), respectively. By comparing CMR(τ1) with that
of its sibling nodes, CMR(τ3) < CMR(τ1), therefore the
estimates in the parent node, f(ε0), CRE(ε0), are updated by
backpropagating estimates from τ3 (instead of τ1) in this case.

2If the number of immediately available team actions is large, those ones
with lowest reward estimates (e.g. below a threshold) can be left out.



Fig. 3. Reward calculation and backpropagation (see Example 4)

V. RISK-AWARE MULTI-AGENT DECISION MAKING

This section describes the multi-criteria group decision
making approach applied by agents to jointly select one of
the candidate team actions returned by the planner. Firstly,
risk attitude-based reasoning process conducted by agents to
assess the available team actions. A GDM procedure is then
undertaken to collectively select the best team action.

A. Preference Modeling upon Multiple Criteria

In order to rationally evaluate team actions, every agent
i needs to determine its risk tolerance level RTi ∈ [0, 1],
calculated based on the availability of q ≥ 1 resources deemed
as relevant by i. Resource availability determines the attitude
the agent should adopt towards risk, and the availability
of each resource is viewed as the satisfaction degree of a
criterion, under an MCDM perspective. RTi is computed by
using a function ρi that aggregates resource availability levels:

RTi = ρi(AV
1
i , . . . , AV

q
i ) (9)

Each argument AV ki ∈ [0, 1], k ∈ 1 . . . q, is an availability
indicator of the k-th resource: the larger its value, the higher
the availability. Moreover, from the non-decreasing property
fulfilled by ρi, the higher any of the AV ki is, the closer RTi is
to one, hence the more tolerant agent i is towards risky actions.
The aggregation function ρi can be customised to suit each
specific scenario and agent, by establishing the resource levels
relevant to each agent and the way its associated indicators are
determined. This allows agents to flexibly consider different
(sets of) resources when calculating RTi.

Example 5: Consider the nuclear navigation scenario. An
agent i utilises the following four availability indicators to
assess its risk tolerance level: AV 1

i , remaining battery life;
AV 2

i : remaining time; AV 3
i , number of agents still operating;

AV 4
i , number of anomalies addressed in the nuclear plant so

far. In order to express these indicators as values in [0,1],

they can be easily defined as percentages with respect to a
full battery level, the total available time, number of agents in
the team and anomalies initially detected, respectively.

Examples of aggregation functions that can be utilised by i
to aggregate availability levels into RTi include: (i) arithmetic
mean; (ii) weighted mean; or (iii) the Ordered Weighted
Averaging (OWA) operator [21], in which elements are firstly
arranged in decreasing order, and importance weights W =
{w1, . . . , wq} (

∑
k wk=1) are assigned to ordered elements.

OWA operators allow to reflect different optimistic (resp.
pessimistic) attitudes in the aggregation process, depending
on importance weights being rather assigned to the highest
or lowest elements to aggregate. Yager defined an measure of
optimism, OW ∈ [0, 1], to categorise OWA operators [22]:

OW =

∑q
k=1(q − k)wk
q − 1

(10)

Optimistic (OR-like) OWA operators accomplish OW > 0.5.
Conversely, pessimistic (AND-like) operators fulfill OW <
0.5, and neutral operators fulfill OW = 0.5.

Example 6: Consider agent i from the previous example.
Assume its remaining battery life is 70% (AV 1

i = 0.7), half
of the time limit elapsed (AV 2

i = 0.5), all agents still operate
(AV 3

i = 1) and two out of five anomalies have been dealt with
(AV 4

i = 0.4). The agent utilises the OWA operator to calculate
RTi, by adopting a slightly optimistic, OR-like aggregation
attitude [21] given by the vector W = {0.3, 0.3, 0.2, 0.2}:

RTi = 1 · 0.3 + 0.7 · 0.3 + 0.5 · 0.2 + 0.4 · 0.2 = 0.69

Notice that the optimistic attitude stems from larger impor-
tance weights being associated to the two largest arguments,
1 and 0.7. Furthermore, OW = 0.566 > 0.5.

Given RTi and the m assessed team actions 〈τj , fj , rj〉
returned by the online planner, j = 1, . . . ,m, each agent
proceeds to construct a preference vector Pi = [p1i p

2
i . . . p

m
i ],

where a rating pji ∈ [0, 1] indicates its satisfaction degree
with τj : the higher pji , the more satisfied i is with τj . The
assessed reward fj , assessed risk rj , and the agent attitude
towards risk are three determinant criteria to compute a rating
for each team action. Therefore, pji is calculated as a function
π : [0, 1]× [0, 1]× R→ [0, 1] of such criteria:

pji = π(RTi, fj , rj)

with π accomplishing the following three properties:
i. If RTi > 0.5 the agent adopts a risk tolerant attitude,

tending to favor team actions with higher reward.
ii. If RTi < 0.5 the agent adopts a risk averse attitude,

tending to favor team actions with lower risk.
iii. If RTi = 0.5 the agent has a risk neutral attitude,

deeming reward and risk of team actions as equally
important criteria.

These properties are fulfilled by defining π as a combining
function that aggregates information related to the assessed
reward and risk, and weighs these two criteria based on the



agent risk tolerance level. This results in deriving a preference
degree that appropriately balances utility and risk:

pji = RTi · f j + (1−RTi) · (1− rj) (11)

Before applying Eq. (11), the assessed reward and risk of
τj are normalised to take values in the unit interval:

f j =
fj −mink fk

maxk fk −mink fk
rj =

rj −mink rk
maxk rk −mink rk

(12)
with k ∈ {1, . . . ,m}. Normalisation implies that for the
assessed team action with highest (resp. lowest) reward, we
have f j = 1 (resp. f j = 0). Similarly, for the most and least
risky assessed team actions, rj = 1 and rj = 0, respectively.

Example 7: Consider RTi = 0.69 from the previous exam-
ple (i is slightly inclined towards rewarding team actions rather
than low risk ones), and the following assessed team actions
returned by the planner, 〈τ1, 0.43, 1.08〉, 〈τ2,−0.07, 0.36〉,
〈τ3, 0.83, 1.45〉, 〈τ4, 0.3, 1.15〉. Its associated preference vector
is Pi = [0.56 0.31 0.69 0.51]. The slightly risk tolerant
attitude is reflected through the agent preference towards
higher rewards, as occurs with τ3 for instance.

B. GDM Approach for Team Action Selection

All active agents provide their preferences Pi to the team
planner agent, which elicits them and defines a GDM problem
on {P1, . . . , Pn} aimed at making a common accepted solution
on the next team action to undertake. Concretely, an aggre-
gated team preference Pc that minimises the distance between
individual preferences of agents and Pc, i.e. a consensus
preference, is sought [12]. An automatic, iterative consensus-
reaching approach is conducted, by applying the optimal
preference aggregation method proposed by Lee in [23].

Let d(Pi, Ph) ∈ [0,m] denote the dissimilarity between two
preference vectors Pi,Ph, computed by using a Minkowski
distance measure d, e.g. the Euclidean distance, given by:

d(Pi, Ph) =

√√√√ m∑
j=1

(pji − p
j
h)

2 (13)

An approximation to an optimal team preference vector
Pc = [p1c , . . . , p

m
c ] that minimises the sum of (weighted)

dissimilarities with individual preferences can be obtained by
an iterative algorithm similar to Fuzzy C-means [23]. The
algorithm weighs the preferences of agents assuming every
agent preference Pi is initially regarded as equally important,
assigning wi = 1/n,∀i ∈ {1, . . . , n}

pjc =

∑
i(wi)

µpji
(wi)µ

wi =
(1/d(Pi, Pc))

1/(µ−1)∑
l (1/d(Pl, Pc))

1/(µ−1) (14)

This process is iteratively applied, for each pjc ∈ Pc and
wi ∈W respectively, until satisfying a stopping condition, e.g.
when weights of agents preferences stabilise, i.e. ‖W (t+1) −
W (t)‖ ≤ κ, with t and t+ 1 two iterations of the consensus-
reaching algorithm, and κ ≈ 0, κ > 0 the threshold difference

used as stopping criterion. The parameter µ ≥ 1 is utilised
to control the influence of noisy information, i.e. agents
preferences whose weight is low due to their preferences being
situated far from consensus, compared to that of preferences
with larger wi: the larger µ, the stronger the difference between
the influence made by agents positioned close and far from
consensus. The convergence of the algorithm is thoroughly
demonstrated in [23]. The resulting collective preference Pc is
utilised to select the best3 team action τ∗ with p∗i = maxj p

j
c,

as the “best” (most preferred) team action for its execution.
This team action is finally executed by agents in pa(τ∗).

VI. EXPERIMENTS AND RESULTS

In this section we demonstrate the performance of the
proposed multi-agent planning framework. Throughout exper-
iments, we refer to the nuclear navigation scenario (Section
III, Figure 1) with three robots and five target anomalies.

We start by evaluating the overall performance of the
framework by comparing it against three baseline approaches:
B1: Risk-aware planning, individual decision making: Instead

of making a collective decision, only the team planner
agent evaluates candidate team actions by balancing re-
ward and risk (based on its own attitude towards risk).

B2: Risk-aware planning, lowest-risk team action selection:
The team planner agent directly selects the lowest-risk
available team action, i.e. without balancing reward and
risk.

B3: Reward-driven planning: Only the reward of team ac-
tions is assessed during planning (risk is not assessed),
therefore the immediate team action with highest reward
estimate is returned by the planner straightaway, with no
need for subsequent decision making process.

10 different settings are considered for the (success) proba-
bilities of agent actions, ranging between pw ∈ [0.86, 0.95] for
crossing wider bridges, and with pn = pw−0.05 for narrower
bridges. The experiments were run 100 times, gathering the
following two metrics:
• Success Rate (%): Number of executions where the goal

of completing the five targets is achieved before all three
robots fall off a bridge.

• Average Reward when Successful: Average reward f
associated to the result of successful executions. To this
end we calculate the reward of an outcome reached upon
execution of actions, after which some agents might have
failed. According to this, the f(εG) calculated during
planning is adjusted by multiplying it by the proportion
of “surviving” agents, #surv/3. This metric provides an
estimate of the cost invested in reaching the goal.

Figure 4 shows the results obtained for each metric and
action probability setting. In general, balancing the reward
and potential risk of team actions leads to higher chances
of success. This becomes more noticeable as the success
probabilities of agent actions decrease. The difference in

3Best is understood in this context as the most collectively accepted team
action based on their individual preferences.
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Fig. 4. Success rate (left) and average reward when successful (right) of the proposed risk-aware framework against three baseline approaches.

performance accentuates when compared with (B3), i.e. when
the team planning process is purely reward-driven and risk
is completely ignored. Results demonstrate that assessing risk
alongside reward of team actions, and making more informed,
context-aware decisions based on all agents’ viewpoints to-
wards risk, becomes increasingly beneficial in cooperative
settings, particularly as the uncertainty of action effects in-
creases. On the contrary, relying on only one agent to make
decisions (B1) does not provide optimal results in multi-agent
settings, thus the need for rational collective decision making
mechanisms among agents is justified.

A larger average reward when successful is generally ob-
served with the proposed risk-aware framework regardless
of the agent action probabilities. Only in some cases the
reward-driven baseline (B3) slightly outperforms in average
reward, however this occurs at the cost of a much lower %
success with respect to the other approaches being compared
(as outlined above). The lowest-risk approach (B2) shows the
most accentuated difference with our framework in terms of
average reward when successful. Overall, results show that the
cost of reaching the goal can be reduced when planning and
making decisions predicated on risk assessment.

VII. CONCLUDING REMARKS

This work presented a collaborative multi-agent planning
framework for domains where agent actions have uncertain
effects, that integrates an online multi-agent planner capable of
assessing risk alongside utility of actions, with a multi-criteria
group decision making approach that enables the collective
selection of an accepted solution for the planing problem.
As a result, agents make rational decisions by balancing the
risk and utility of actions based on their attitude towards
risk. Future work aims at extensions to larger-scale scenarios
through subgroup delegation and uncertain information fusion.
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