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Abstract—Combination rules proposed so far in the Dempster-
Shafer theory of evidence, especially Dempster rule, rely on a
basic assumption, that is, pieces of evidence being combined are
considered to be on a par, i.e. play the same role. When a source
of evidence is less reliable than another, it is possible to discount
it and then a symmetric combination operation is still used. In the
case of revision, the idea is to let prior knowledge of an agent
be altered by some input information. The change problem is
thus intrinsically asymmetric. Assuming the input information is
reliable, it should be retained whilst the prior information should
be changed minimally to that effect. Although belief revision is
already an important subfield of artificial intelligence, so far,
it has been little addressed in evidence theory. In this paper,
we define the notion of revision for the theory of evidence and
propose several different revision rules, called the inner and outer
revisions, and a modified adaptive outer revision, which better
corresponds to the idea of revision. Properties of these revision
rules are also investigated.

I. INTRODUCTION

Dempster-Shafer theory of evidence (DS theory) [1], [2],
[3], rapidly gained a widespread interest for modeling and
reasoning with uncertain/incomplete information. When two
pieces of evidence are collected from two distinct sources, it
is necessary to combine them to get an overall result. So far,
many combination rules (e.g., [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], etc.) have been proposed in the literature.
These rules involve an implicit assumption that all pieces
of evidence come from parallel sources that play the same
role. However, when a source is less important than another,
the corresponding piece of information is discounted and the
above rules still apply. Usually such reliability information
is not contained in the input evidence. So, combination is
typically applied to pieces of information received from the
“outside”. However, an agent may have its own prior opinion
(from the inside), and then receives some input information
coming from outside. In such a case, the problem is no longer
one of combination, it is a matter of revision. Revision is
intrinsically asymmetric as it adopts an insider point of view
so that the input information and prior knowledge play specific
roles, while combination is an essentially symmetric process,
up to the possibility of unequal reliabilities of sources. Let us
look at the following example of revision problem (adapted
from [14]).

Example 1: An agent inspects a piece of cloth by can-
dlelight, gets the impression it is green (mI({g}) = 0.7)
but concedes it might be blue or violet (mI({b, v}) = 0.3).
However the agent’s prior belief about the piece of cloth (we

have no information about how this opinion was formed) was
that it was violet (m(v) = 0.8) without totally ruling out the
blue and the green (m(b, g) = 0.2). How can she modify her
prior belief so as to acknowledge the observation?
Evidently, the input evidence has priority over the prior
belief, hence after revision, we should conclude that the cloth
color is more possibly green. However, combination rules
in DS theory may fail to produce this result. For example,
if we apply Dempster’s rule of combination, then we get
m({v}) = 6

11 , m({g}) = 7
22 ,m({b}) = 3

22 which shows
violet is the most plausible color. The counterintuitive result
produced by the combination rules here stems from the under-
lying assumption that we treat the prior belief and the input
evidence on a par. Therefore, to solve the above belief change
problem, the correct action is to perform revision instead of
combination. Two principles should guide the revision process:

1) Success postulate : information conveyed by the input
evidence should be retained after revision;

2) Minimal change : the prior belief should be altered
as little as possible while complying with the former
postulate.

It should be noted that new evidence (new input informa-
tion) can be either sure or uncertain. Furthermore, if new
evidence is uncertain, uncertainty can either be part of the
input information, hence enforced as a constraint guiding the
belief change operation (as in the example) or it is meant to
qualify the reliability of the (otherwise crisp) input information
[15]. In the latter case, the success postulate is questionable
In this paper, we focus on the former, where new uncertain
evidence is accepted and serves as a constraint on the resulting
belief state.

In the field of artificial intelligence, revision strategies are
extensively studied in the contexts of logical theory revision
and probability kinematics. Belief revision [16], [17], [18] is
a framework for characterizing the process of belief change
in order to revise the agent’s current beliefs to accommodate
new evidence and to reach a new consistent set of beliefs.
Probability kinematics [14] considers how a prior probabil-
ity measure should be changed based on a new probability
measure on a coarser frame, which should be preserved after
revision. Jeffrey’s rule [14] is the most commonly used rule
for achieving this objective.

Within the scope of DS theory, the only revision rule is one
first addressed in [19] and later re-formulated in [20], as a
counterpart to Jeffrey’s rule. However, this rule only accepts



evidence in the form of a belief function that can be repre-
sented as a probability measure on a partition {U1, · · · , Un}
of W , i.e, such that Bel(Ui) = αi and

∑
αi = 1 . Ideally, a

belief function based revision rule should accept evidence in
the form of a general belief function definable on 2W rather
than just on a partition of W . Furthermore, like the original
Jeffrey’s rule, this rule requires that Pl0(Ui) > 0 whenever
αi > 0 where Pl0 is the plausibility function for the prior
epistemic state. In other words, this rule requires that new
evidence be not in conflict with the agent’s current beliefs,
which restricts the application of this rule. As a belief function
is defined by means of a probability distribution on 2W called
a mass function, it is natural to express the revision rule in
terms of mass functions.

In [21], [22] (and later in [15]), a revision rule for mass
functions was proposed and dubbed plausible conditioning
in [23]. Two additional revision rules were also proposed in
the same paper (re-examined in [24]), dubbed credible and
possible conditioning. However, these revision rules suffer
from the same drawback as the one in [20], that is, the new
evidence must be consistent with the prior belief in order to be
applied. In [25], the need for investigating revision strategies
for mass functions was addressed but no concrete revision
rule was proposed. In [26], Jeffrey’s rule was studied in DS
theory which showed that it could be seen as a special case
of Dempster’s combination rule.

In this paper, we first discuss the form a mass-function-
based revision rule (or operator) should take in order to
comply with the success and the minimal change postulates.
We define a family of mass-function-based revision rules,
dubbed inner and outer revision, modified outer revision, and
adaptive revision. We also prove the equivalence between the
modified outer revision and the adaptive revision. This result
is significant since these two revision rules start from different
perspectives, and in some sense, the adaptive revision can be
seen as a justification for the modified outer revision. Finally,
we prove that our revision rules generalize both Jeffrey’s rule
and Halpern’s rule.

The rest of the paper is organized as follows. We give
some preliminaries in Section II. In Section III, we discuss
the principles a revision rule on mass functions shall satisfy.
We then propose a set of revision rules in Section IV. Section
V contains several rational properties of the revision rules. In
Section VI, we conclude the paper.

II. PRELIMINARIES

Let W be a set of possible worlds (or the frame of
discernment). A mass function is a mapping m : 2W → [0, 1]
such that

∑
A⊆W m(A) = 1 and m(∅) = 0. A is called a

focal set of m if m(A) > 0. Let S(m) denote the support of
m, i.e. the union of the focal sets, that is, S(m) =

⋃n
i=1 Ai

where Ais are focal sets of m.
A mass function m is called Bayesian iff all its focal sets

are singletons. A mass function m is called Partitioned iff
its focal sets A1, · · · , Ak form a partition of W , i.e., A1 ∪
· · · ∪ Ak = W and Ai ∩ Aj = ∅ for i 6= j. Given m, its

corresponding belief function Bel : 2W → [0, 1] is defined
as Bel(B) =

∑
A⊆B m(A) and its corresponding plausibility

function Pl : 2W → [0, 1] is defined as Pl(B) = 1−Bel(B).
There are several conditioning methods for

belief/plausibility functions [15]. The following, called
Dempster conditioning is the most commonly used one [20].

Definition 1: Let U be a subset of W such that Pl(U) >
0, then conditioning belief/plausibility functions on U can be
defined as

Pl(V |U) =
Pl(V ∩ U)

Pl(U)
,

Bel(V |U) = 1− Pl(V |U) =
Pl(U)− Pl(V ∩ U)

Pl(U)
.

It is a revision rule that transfers the mass bearing on each
subset V to its subset V ∩ U , thus sanctioning the success
postulate. Moreover, resulting masses bearing on non-empty
sets are renormalized via simple division by Pl(U), i.e. do not
change in relative value, which expresses minimal change.

Definition 2: (Specialization [22]) We write m v m′ (v is
typically called s-ordering) iff there exists a square matrix Σ
with general term σ(A,B), A,B ∈ 2W verifying∑

A⊆W σ(A,B) = 1,∀B ⊆ W,
σ(A, B) > 0 ⇒ A ⊆ B, A, B ⊆ W,

such that m(A) =
∑

B⊆W σ(A, B)m′(B),∀A ⊆ W.
The term σ(A, B) may be seen as the proportion of the
mass m′(B) which is transferred (flows down) to A. Matrix
Σ is called a specialization matrix, and m is said to be a
specialization of m′. Specialization is an extension of set-
inclusion to random sets.

Example 2: Let W = {w1, w2, w3}, and let m and
m′ be two mass functions such that m({w1}) = 0.3,
m({w2}) = 0.5, m({w1, w2}) = 0.1, m({w2, w3}) = 0.1,
and m′({w1}) = 0.1, m′({w1, w2}) = 0.5, m′({w2, w3}) =
0.4. Then m is a specialization of m′. It can be considered
as m′ flows a mass value 0.2 of {w1, w2} to {w1} (i.e.,
σ({w1}, {w1, w2}) = 0.4), a mass value 0.2 of {w1, w2} to
{w2} and a mass value 0.3 of {w2, w3} to {w2}.

m \ m′ {1} {2} {3} {1,2} {1,3} {2,3} W
{1} 1 0 0 2

5 0 0 0
{2} 0 0 0 2

5 0 3
4 0

{3} 0 0 0 0 0 0 0
{1,2} 0 0 0 1

5 0 0 0
{1,3} 0 0 0 0 0 0 0
{2,3} 0 0 0 0 0 1

4 0
W 0 0 0 0 0 0 0

Table 1: The Matrix σ(A,B).
Notation {1} etc stands for subset {w1} etc. Value 2/5
on the 1st row shows the ratio of the mass on subset
{w1, w2} from m′ that will flow down to subset {w1}, namely
σ({w1}, {w1, w2}) = 2/5.

A. Revision Rules

Jeffrey’s probability kinematics rule was introduced as fol-
lows.



Definition 3: Let P be a probability measure over W
denoting the prior epistemic state and PI be a probability
measure over a partition {U1, · · · , Un} of W denoting the
input evidence. Let ◦Jef denote Jeffrey’s rule. Then :

P ◦Jef PI(w) =
∑n

i=1 PI(Ui)P (w|Ui).
Note that for w ∈ Ui, the above equation can be simplified as
P ◦Jef PI(w) = PI(Ui)

P (w)
P (Ui)

. That is, the revised probability
of element w within each Ui is the same as their prior
probability in relative value.

Similarly, Halpern’s belief function revision rule is defined
as follows [20].

Definition 4: Let Bel be a belief function over 2W denoting
the prior epistemic state and BelI be a belief function over a
partition {U1, · · · , Un} of W denoting the input evidence. Let
◦Hal denote Halpern’s revision rule, then we have

Bel ◦Hal BelI(V ) =
∑n

i=1 BelI(Ui)Bel(V |Ui).
In [23], alternative revision rules are defined as follows. Let

m denote the prior mass function and mI the input evidence.
Credible mcr(A|mI) =

∑
A⊆B

m(A)mI(B)
Bel(B) where for any

focal set B of mI , Bel(B) > 0.
Possible mpo(A|mI) =

∑
A∩B 6=∅

m(A)mI(B)
Pl(B) where for

any focal set B of mI , Pl(B) > 0.
Plausible mpl(A|mI) =

∑
C∩B=A

m(C)mI(B)
Pl(B) where mI

must satisfy mpl(∅|mI) = 0 and for any focal set B
of mI , Pl(B) > 0.

Obviously, these rules are only applicable when m and mI

are highly consistent.

III. PRINCIPLES OF MASS FUNCTION BASED REVISION

Now we discuss how the two general revision principles can
be applied to mass-function-based revision. Let m̂ = m ◦mI

be the posterior mass function, and ◦ be a revision operator
which associates a resultant mass function m̂ with two given
mass functions, one represents the prior belief state (m) and
the other new evidence (mI ). Moreover, we focus on rules
that generalize Jeffrey’s probability kinematics, and Dempster
rule of conditioning.

Success postulate through specialization: The first fun-
damental principle of revision is to preserve new evidence.
Translated into the language of DS theory, this principle states
that for m̂ = m ◦mI , m̂ should in some sense imply mI . But
how can we define the notion of implication between mass
functions?

In propositional logics, when we write φ ` ψ (φ implies
ψ), we in fact state that φ is more specialized than ψ, e.g., a
grey bird (i.e., φ = g ∧ b) is a more specialized concept than
a bird (ψ = b). It corresponds to inclusion between sets of
models A = Mod(φ) and B = Mod(ψ). Hence it is natural
for us to use the notion of specialization between two mass
functions (Def. 2). In fact, specialization between two mass
functions can be equally seen as a generalization of implication
in propositional logic. That is, we have

Proposition 1: Let m and m′ be two mass functions defined
on a set of possible worlds W s.t. m(Mod(φ)) = 1 and
m′(Mod(ψ)) = 1. If m is a specialization of m′, then φ |= ψ
(i.e. A ⊆ B).

Note that m(Mod(φ)) = 1 (resp. m′(Mod(ψ)) = 1) is a
mass function representation stating that proposition φ (resp.
ψ) is true in m (resp. m′). Therefore the success postulate in
evidence theory reads : m̂ v mI .

Minimal change principle: The issue is to define what min-
imal change means in DS theory in terms of mass functions.
Intuitively, it suggests using informational distance functions
d between two mass functions, m and mI . Namely one can
use d to look for a specialization of mI at minimal distance
from m. However, under this approach, d(m,m) = 0 for any
distance function d, hence we ought to have m ◦ m = m
(since m itself is a specialization of m and m is at minimal
distance from itself among all specializations of m). However,
the combination of independent mass functions, exhibits a
reinforcement effect which cannot occur in logic-based belief
merging. That is, m ⊕ m 6= m (⊕ is a mass function
combination operator) whilst 4(φ, φ) = φ (4 is a belief
merging operator acting on logic formulas). Similarly, in belief
revision, φ ◦r φ = φ (if ◦r is a belief revision operator), but
for mass functions, we do not necessarily expect m ◦m = m,
instead, we may expect some reinforcement effect if the new
evidence is identical to, but considered independent from the
prior beliefs. For instance we may believe to some degree that
Toulouse rugby team won the European championship this
year. If some friend coming from abroad says he believes it
likewise, this piece of information confirms our prior belief,
so that even if our opinion remains the same, we become more
confident in it.

The bottom line is that there is a certain conflict between
the minimal change principle and the confirmation effect when
revising uncertain information.

Generalization of Jeffrey’s rule: Since a Bayesian mass
function can be seen as a probability distribution, we would
expect that a mass-function-based revision rule should gen-
eralize Jeffrey’s rule. The latter strictly satisfies the minimal
change principle in the sense that P ◦P = P , which involves
no confirmation effect.

Generalization of Dempster conditioning: Finally, if
mI(A) = 1 for some subset U ⊆ W such that Pl(U) > 0,
then P̂ l = Pl(·|U), in the sense of Dempster conditioning (this
is true for Jeffrey’s rule that reduces to conditioning when the
input information is a sure fact). Note that Dempster rule of
combination also specializes to such conditioning in this case.
This is because combination and revision collapse to what
Gärdenfors calls expansion when the input information is a
sure fact consistent with the prior epistemic state. In the logical
setting revision becomes symmetric, and in the evidence
setting, revision sounds asymmetric due to the difference of
nature of the input information and the prior epistemic state.

IV. MASS FUNCTION BASED REVISION OPERATORS

A. Inner and Outer Revision operators

We first propose inner and outer revision operators which
are named after the concepts of inner and outer probability
measures, both of which are closely related to belief and
plausibility measures [1].



An inner revision operator is defined as follows.
Definition 5: Let m and mI be two mass functions over

W and let ◦i be an inner revision operator that revises m
with mI , then the revision result is defined as
m ◦i mI(A) =

∑
A⊆B σi(A,B)mI(B) where

σi(A,B) =





m(A)
Bel(B) for Bel(B) > 0,

0 for Bel(B) = 0 and A 6= B,
1 for Bel(B) = 0 and A = B.

The intuition behind inner revision can be illustrated as
follows. To obtain the revised mass value for A, we need to
flow down some of the mass value of every positive mI(B)
to subsets A ⊆ B. Furthermore, the flowing-down portion
σi(A,B) of mI(B) should be proportional to m(A) across
all subsets of B (hence σi(A,B) = m(A)

Bel(B) ). If m does not
consider B possible at all (Bel(B) = 0), then value mI(B)
should be totally allocated to B. By construction, the inner
revision operator is a specialization of mI , that preserves as
much information from m as possible. It is easy to prove that
m◦i mI is a mass function, i.e.,

∑
A⊆W m ◦i mI(A) = 1 and

m ◦i mI(∅) = 0.
An outer revision operator is defined as follows.
Definition 6: Let m and mI be two mass functions over W

and let ◦o be an outer revision operator that revises m with
mI , then the revision result is defined as
m ◦o mI(A) =

∑
A∩B 6=∅ σo(A,B)mI(B) where

σo(A,B) =





m(A)
Pl(B) for Pl(B) > 0,

0 for Pl(B) = 0 and A 6= B,
1 for Pl(B) = 0 and A = B.

The intuition of outer revision is similar to that of inner
revision except that here for any A, we flow down portions of
mass values of Bs to subsets A such that A∩B 6= ∅ preserving
the masses m(A) in relative value across the concerned A sets
(dividing them by Pl(B)). Note that for outer revision, the
revised result is not necessarily a specialization of mI , but
this change rule naturally appears by duality. Similarly, it is
easy to prove that m ◦o mI is a mass function.

The inner (resp. outer) revision rule extends the credible
(resp. possible) conditioning rules to the revision situation
where new evidence totally conflicts with prior beliefs. That
is, revision can be done even when Pl(B) = 0.

Example 3: Let m and mI be two mass functions on
W , such that m({w1}) = 0.2, m({w1, w2}) = 0.8, and
mI({w1}) = 0.4,mI({w1, w2}) = 0.4, mI({w4}) = 0.2.

Applying inner revision operator ◦i, we get min = m◦i mI

where
min({w1}) = mI({w1}) m({w1})

Bel({w1})

+mI({w1, w2}) m({w1})
Bel({w1,w2}) = 0.48,

min({w1, w2}) = mI({w1, w2}) m({w1,w2})
Bel({w1,w2}) = 0.32,

min({w4}) = 0.2.
Similarly, applying outer revision operator ◦o, we get

mout = m ◦o mI s.t. mout({w1}) = 0.16, mout({w1, w2}) =
0.64, and mout({w4}) = 0.2.
However, these two rules do suffer from some drawbacks.

Example 4: Let m({w1, w2}) = 1 and mI({w1, w3}) = 1,
then intuitively m supports w1 while rejects w3, and hence we
expect the revision result to be m({w1}) = 1. However, from
inner revision, the revised result is min({w1, w3}) = 1 whilst
from outer revision, the revised result is mout({w1, w2}) = 1.
Both revision results are not fully agreeable with intuitions.

B. A modified outer revision operator

As mentioned earlier, the result of outer revision is not
necessarily a specialization of the mass function representing
new evidence, hence strictly speaking, from the viewpoint of
Section III, the outer revision is in fact not a revision. In
this section, we define a modified outer revision that yields
a specialization of the new evidence.

Definition 7: Let m and mI be two mass functions over
W . Operator ◦m is a modified outer revision operator that
revises m with mI s.t. for any C 6= ∅, m ◦m mI(C) =∑

A∩B=C σm(A,B)mI(B) where

σm(A,B) =





m(A)
Pl(B) for Pl(B) > 0,

0 for Pl(B) = 0 and A 6= B,
1 for Pl(B) = 0 and A = B.

Note that σm(A,B) is exactly the same as σo(A, B). The
only difference between the modified revision rule and its
predecessor is that instead of flowing down a portion of mI(B)
to A (A ∩B 6= ∅), we flow down this portion to A ∩B. This
modification makes the revision result truly a specialization
of mI . Also, the modified outer revision extends the plausible
conditioning rule [21], [23] to situations where Pl(B) = 0.

Example 5: (Ex. 4 cont’) Let m({w1, w2}) = 1 and
mI({w1, w3}) = 1. Applying ◦m we get a revision result
m such that m({w1}) = 1, which is exactly what is expected.

C. Adaptive revision

The inner and outer revision rules are described using
Bel and Pl functions that are inner and outer measures
respectively. We should however describe a mass-function-
based revision rule, in terms of the mass function only. In
this subsection we propose such an adaptive revision rule for
mass functions. It also overcomes the weaknesses of inner and
outer revision.

Intuitively, for mass-function-based revision, only corre-
lated information needs to be taken into account. By correlated
information, we mean focal sets of mI that are consistent with
S(m). That is, if A is a focal set of mI and A ∩ S(m) 6= ∅,
then the new mass value on A after revision should reflect
both mI(A) and the mass m(A); otherwise, mI(A) should
be retained after revision.

Example 6: Let W = {w1, w2, ..., w8}, define m such that
m({w1, w8}) = 0.2,m({w1, w2}) = 0.4, m({w3}) = 0.3,

m({w6, w7}) = 0.1,
and mI such that mI({w1, w2}) = 0.5,mI({w4, w5}) =

0.3, mI({w6}) = 0.2,
then m̂ = m ◦ mI should imply mI . Observe that the prior
m rules out {w4, w5}. Hence mI({w4, w5}) = 0.3 should be
retained after revision, i.e.,m̂({w4, w5}) = 0.3, and no other
focal sets of the posterior m̂ shall contain w4 or w5.



From Example 6, we also observe that

A. Focal element {w1, w2} of mI is correlated with
focal sets of {w1, w8} and {w1, w2} of m, so
m({w1, w8}), m({w1, w2}) should be involved in the
revised value of {w1, w2}. Similarly, {w6, w7} of m and
{w6} of mI are correlated. But {w1, w8}, {w1, w2} of
m and {w6} of mI are not, and likewise for focal sets
{w6, w7} of m and {w1, w2} of mI .

B. {w3} is not contained in S(mI), hence should not be
contained in S(m̂).

These observations show that we can partition W on the basis
of correlated focal sets of m and mI as follows. Let S1∪· · ·∪
Sk ∪ Suncor = S(m) ∪ S(mI) where

1) Suncor is the union of focal sets of m which have no
intersection with S(mI) and focal sets of mI which have
no intersection with S(m).

2) Each Si is the union of correlated focal sets. That is, for
a focal set A of m (resp. mI ) s.t. A ⊆ Si, then for any
focal set B of mI (resp. m), we have B ⊆ Si whenever
A ∩ B 6= ∅. In addition, if A is a focal set of m (resp.
mI ) s.t. A ⊆ Si and B is a focal set of mI (resp. m)
s.t., B ⊆ Suncor or B ⊆ Sj for j 6= i, then we have
A ∩ B = ∅. For instance, in Example 6, we can either
have k = 2, s.t. S1 = {w1, w2, w8}, S2 = {w6, w7}, or
k = 1, s.t. S1 = {w1, w2, w6, w7, w8}.

3) k is the maximum number of correlated groups which
satisfies the above two properties. Hence in Example 6,
we should have k = 2 and S1 = {w1, w2, w8}, S2 =
{w6, w7}.

Each element Si of the partition corresponds to a subset
Fi of focal sets. A partition of the set of focal sets F ∪ FI

containing those of m and mI is thus obtained. Given two
mass functions, the partition of W into union of correlated
focal sets can be obtained by Algorithm 1. The algorithm
comes down to computing maximal connected components in
a certain non-directed bipartite graph induced by the sets of
focal sets F and FI . Namely, consider the bipartite graph
whose nodes consist in focal sets in F and FI (if the same
set appears in F and FI it produces two nodes). Arcs connect
one focal set A ∈ F to one focal set B ∈ FI if and only if
A∩B 6= ∅. Each Si is the union of focal sets corresponding to
a maximal connected component in the graph. The set Suncor

is the union of focal sets corresponding to isolated nodes in
the bipartite1 graph.

Proposition 2: Let m and mI be two mass functions, and
S1 and S2 be the sets of focal sets for them respectively,
Algorithm 1 produces a unique partition of W containing the
maximum number of correlated groups.
Proof: The proof is easy after the following two results.

• Let A be a focal set of m (resp. mI ) s.t. A ⊆ Si and B is
a focal set of mI (resp. m) s.t., B ⊆ Suncor or B ⊆ Sj

for j 6= i, then we have A ∩B = ∅.

1A bipartite graph is a set of graph vertices decomposed into two disjoint
sets such that no two graph vertices within the same set are adjacent.

Algorithm 1 Partitioning into Correlated Groups
Require: F1: the set of focal sets of m, F2: the set of focal

sets of mI .
Ensure: A maximum number of correlated groups consisting

of focal sets.
1: Set Suncor = ∅, k = 0;
2: while F1 6= ∅ do
3: Select a focal set A in F1;
4: if A does not overlap with any focal sets in F2 then
5: Suncor = Suncor ∪A; F1 = F1 \ {A};
6: else
7: k = k + 1, i = 2, Sk = A, F1 = F1 \ {A}, preB =

Sk;
8: repeat
9: Let B = {B : B ∈ Fi and B ∩ preB 6= ∅} be the

set of focal sets of mi that intersect preB ;
10: Let Sk =

⋃
B∈B B ∪ Sk; preB =

⋃
B∈B B;

11: Fi = Fi \ B;
12: i = 3−i; (repeatedly checking elements in F1 and

F2)
13: until Sk can not be changed any further;
14: end if
15: end while
16: Suncor =

⋃
A∈F2

A ∪ Suncor;
17: return {S1, · · · , Sk, Suncor};

This is clear from the procedure of Algorithm 1 (lines
8-13).

• Let {S1, · · · , Sk, Suncor} be the output of Algorithm 1.
For any two focal sets B, B′ ⊆ Si (regardless of B, B′

from m or mI ), 1 ≤ i ≤ k, then for any other partition
result {S′1, · · · , S′k′ , S′uncor} satisfying conditions 1-3,
there should be a S′t such that B, B′ ⊆ S′t, hence Si ⊆ S′t.
Now we prove the 2nd result. Let the first focal set being
included in Si be A (Algorithm line 4), then from the
procedure of Algorithm 1 (lines 8-13), there exists a
series of focal sets C0, · · · , Cm such that C0 = A,Cm =
B, Cj∩Cj+1 6= ∅ (e.g., {w1}, {w1, w2}, {w2}) and also a
series of focal sets D0, · · · , Dn such that D0 = A,Dn =
B′, Dl ∩ Dl+1 6= ∅ (e.g., {w1}, {w1, w3}, {w3}). Since
the partition {S′1, · · · , S′k′ , S′uncor} satisfies condition 1
and A intersects with C1 and D1 which are focal sets of
the other mass function, we have A 6⊆ S′uncor. So there
exists S′t such that A ⊆ S′t, hence by condition 2, we
have C1, D1 ⊆ S′t, C2, D2 ⊆ S′t, and so on. Finally we
must have B = Cm, B′ = Dn ⊆ S′t.

From the first result, we have that the partition result
{S1, · · · , Sk, Suncor} satisfies conditions 1 and 2. From
the second result, we have that for any partition result
{S′1, · · · , S′k′ , S′uncor} satisfying conditions 1-3, k ≥ k′ must
hold. Otherwise if k < k′, then there exists S′j such that ∀i,
Si 6⊆ S′j . However, for any focal set A ⊆ S′j ( A 6⊆ S′uncor),
A must intersect at least one focal set A′ of the other mass
function, hence A 6⊆ Suncor. Let A ⊆ Si, then from the



second result, we can easily infer that Si ⊆ S′j which
leads to a contradiction. Therefore, k ≥ k′ holds. Since
{S′1, · · · , S′k′ , S′uncor} satisfies condition 3, we should have
k = k′ which shows that S1, · · · , Sk, Suncor also satisfies con-
dition 3. Furthermore, from the second result it is not difficult
to prove that {S′1, · · · , S′k, S′uncor} and {S1, · · · , Sk, Suncor}
form a bijection. Therefore, {S1, · · · , Sk, Suncor} is the unique
result satisfying conditions 1-3. Q.E.D.

Based on the obtained partition, we only need to consider re-
vision inside Si. For convenience, let focal sets of m included
in Si be A1

i , · · · , As
i and let SA

i = ∪s
k=1A

k
i . Similarly, let focal

sets of mI included in Si be B1
i , · · · , Bt

i and SB
i = ∪t

j=1B
j
i .

Let SAB
i = SA

i ∩ SB
i . Now we aim to flow down the masses

of Bis to their subsets based on m(Ai) values.
For each Bj

i , different portions of mI(B
j
i ) should flow

down to its subsets. Based on the idea of Jeffrey’s rule, for
each subset C of Bj

i , its share of the mass value mI(B
j
i )

should be proportional to the ratio of its mass value m(C) to
the sum of masses m(D) of all the subsets of D ⊆ Bj

i . More
precisely, given a subset Si in the partition, flowing down the
mass of Bj

i can be performed in the following procedure.
1) For each subset C of Bj

i , we calculate supp(C) =∑
Ak

i
∩Bj

i
=C m(Ak

i ) which is the measure of support for

subset C based on Ak
i s in Si from the viewpoint of Bj

i .
2) For C, the flown down value from Bj

i is
m̂j(C) = mI(B

j
i )

supp(C)∑
C⊆B

j
i

supp(C)
.

This technique can be seen as a kind of conditioning on Bj
i ,

i.e., m̂j(C)

mI(Bj
i
)

= supp(C)∑
C⊆B

j
i

supp(C)
. Evidently, this equation is to

some extent similar to the form of Jeffrey’s rule.
Example 7: (Ex. 6 Cont’) In subset S1 in the parti-

tion: m({w1, w8}) = 0.2, m({w1, w2}) = 0.4 and
mI({w1, w2}) = 0.5, we need to flow down mI({w1, w2}) =
0.5 to the subsets of {w1, w2}, i.e., {w1}, {w2} and {w1, w2}.
Here m({w1, w2}) = 0.4 can be seen as a positive sup-
port for giving the revised mass value of mI({w1, w2}) to
{w1, w2} since {w1, w2} ∩ {w1, w2} = {w1, w2}. Similarly,
m({w1, w8}) = 0.2 supports {w1} from mI({w1, w2})
since {w1, w2} ∩ {w1, w8} = {w1}. Therefore, we get
supp({w1, w2}) = 0.4 and supp({w1}) = 0.2, and hence
m̂({w1, w2}) = 1

3 and m̂({w1}) = 1/6.
After allocating all fractions of mI(B

j
i ), 1 ≤ j ≤ t, we

are able to sum up all the masses that each subset C receives.
This leads to the following definition of an adaptive revision
operator.

Definition 8: Let m and mI be two mass functions and
{S1, · · · , Sk, Suncor} be the partition of W obtained from
Algorithm 1. Let m̂j(C) and supp(C) be defined as above.
Then an adaptive revision operator for mass functions ◦a is
defined as m̂ = m ◦a mI such that m̂(C) =

∑t
j=1 m̂j(C).

From Algorithm 1, C does not intersect any focal set
included in another element of the partition, so the flowing
down process for other elements of the partition does not affect
the revised mass value of C. Hence m̂(C) obtained in Def. 8
is indeed the final result for C.

Proposition 3: m̂ is a specialization of mI .
Example 8: (Ex. 6 Cont’) Let m and mI be as defined in

Ex. 6, then we have m̂ = m ◦a mI s.t. m̂({w1}) = 1/6,
m̂({w1, w2}) = 1/3, m̂({w4, w5}) = 0.3, and m̂({w6}) =
0.2.

V. PROPERTIES OF MASS FUNCTION BASED REVISION

We prove the equivalence between the modified outer revi-
sion and the adaptive revision. This finding is significant since
these two revision strategies are from different perspectives
and the proof of equivalence shows that the modified outer
revision is well justified.

Proposition 4: For any two mass functions m and mI over
W , we have m ◦m mI = m ◦a mI .

Proof. It can be shown that∑

C⊆Bj
i

supp(C) =
∑

C⊆Bj
i

∑

Ak
i
∩Bj

i
=C

m(Ak
i )

=
∑

Ak
i
∩Bj

i
6=∅

m(Ak
i ) = Pl(Bj

i ).

If Pl(Bj
i ) = 0, then Bj

i does not intersect any focal set
of m, based on Algorithm 1, Bj

i is in Suncor (note that
the converse is also right, i.e., if a focal set B of mI is in
Suncor, then Pl(B) = 0), hence the mass value of Bj

i remains
unchanged after revision. This is equivalent to the following
condition in Def. 7:

Pl(B) = 0 =⇒
{

σm(A,B) = 0 for A 6= B,
σm(A,B) = 1 for A = B.

If Pl(Bj
i ) > 0, then Bj

i is not in Suncor. Hence ∀l, Bl
i is

not in Suncor, we have Pl(Bl
i) > 0.

m̂(C) =
t∑

j=1

m̂j(C) =
t∑

j=1

mI(B
j
i )

supp(C)
Pl(Bj

i )

=
t∑

j=1

mI(B
j
i )

∑
∀Ak

i
,Ak

i
∩Bj

i
=C m(Ak

i )

Pl(Bj
i )

=
t∑

j=1

∑

∀Ak
i
,Ak

i
∩Bj

i
=C

m(Ak
i )

Pl(Bj
i )

mI(B
j
i )

=
∑

∀A,B,A∩B=C

m(A)
Pl(B)

mI(B)

Therefore, we have ◦m = ◦a. Q.E.D.
Now we prove that our adaptive revision rule (also the

modified outer revision rule) generalizes both Jeffrey’s rule
and Halpern’s rule.

Proposition 5: If m is a Bayesian mass function and mI is
a partitioned mass function, then m ◦a mI = m ◦Jef mI . If
m is a mass function and mI is a partitioned mass function,
then we have Bel(m ◦a mI) = Bel(m) ◦Hal Bel(mI).

We show that the vacuous mass function plays no role in
revision. It can also be seen as a reflection of minimal change.

Proposition 6: Let m be a mass function and mW be such
that mW (W ) = 1, then we have m◦a mW = mW ◦a m = m.



Furthermore, we can also prove that if prior beliefs and new
evidence are in total conflict, then the revision result is simply
the latter.

Proposition 7: Let m and mI be two mass functions such
that S(m) ∩ S(mI) = ∅, then we have m ◦a mI = mI .

Example 9: Let W = {w1, ..., w5} and m be such that
m({w1}) = 0.4,m({w1, w2}) = 0.6, mI be such that
mI({w3, w4}) = 0.2,mI({w3, w5}) = 0.4,mI({w5}) = 0.4,
then we have m ◦a mI = mI .

Proposition 8: Let m and mI be two mass functions such
that mI(U) = 1, then m ◦a mI comes down to Dempster
conditioning if Pl(U) > 0 and m ◦a mI = mI otherwise.

Proposition 9: Let m and mI be two mass functions such
that ∀A ∈ F , B ∈ FI , A∩B 6= ∅, then m ◦a mI comes down
to Dempster rule of combination.
There is no need for renormalization factor in Dempster rule
then. It corresponds to an expansion as the input information
does not contradict the output.

For iterated revision, we have the following result.
Proposition 10: 2 Let m, mI ,mI′ be three mass functions

on W . If mI′ yields a finer partition induced by correlated
focal sets than mI , then we have m◦a mI ◦a mI′ = m◦a mI′ .

Example 10: Let m be such that m({w1}) =
0.3,m({w1, w2}) = 0.3,m({w3}) = 0.1,m({w4}) = 0.3,
mI be such that mI({w1, w3}) = 0.6, mI({w2, w4}) = 0.4
and mI′ be such that mI′({w1, w3}) = 0.2,mI′({w2} =
0.3,mI′({w4}) = 0.5, then we have ˆ̂m = m◦amI ◦amI′ with
ˆ̂m({w1}) = 6

35 , ˆ̂m({w2}) = 0.3, ˆ̂m({w3}) = 1
35 , ˆ̂m({w4}) =

0.5. m̌ = m ◦a mI′ has the same set of focal sets and
corresponding mass values.
In [18], four postulates on iterated belief revision were pro-
posed, i.e., C1-C4. C1 and C2 are described as follows.

C1 If α |= µ, then (Φ ◦ µ) ◦ α ≡ Φ ◦ α.
C2 If α |= ¬µ, then (Φ ◦ µ) ◦ α ≡ Φ ◦ α.

Φ ◦ α |= β here stands for BS(Φ ◦ α) |= β where BS(Ψ)
represents the belief set of epistemic state Ψ.

Proposition 10 can be seen as a generalization of the
above two iterated belief revision postulates. More precisely,
since α, µ, and ¬µ can be represented in terms of mass
functions as mα(Mod(α)) = 1, mµ(Mod(µ)) = 1 and
m¬µ(Mod(¬µ)) = 1, obviously if α |= µ (resp. α |= ¬µ),
then mα has a finer partition induced by correlated focal sets
than mµ (resp. m¬µ), hence C1 and C2 can be seen as special
cases of Proposition 10. Due to the limitation of space, here
we omit the discussion on relationships between our revision
rules and the other revision postulates in [18].

VI. CONCLUSION

Although belief revision in probability theory is fully stud-
ied, revision strategies in evidence theory have seldom been
addressed. In this paper, we have investigated the issue of

2For convenience, proofs for this and some other propositions are put in
the Appendix Section.

revision strategies for mass functions. We have proposed a set
of revision rules to revise prior beliefs with new evidence.
These revision rules are proved to satisfy some useful proper-
ties, such as the iteration property (Prop. 10). These rules are
also proved to generalize the well known Jeffrey’s rule and
Halpern’s belief function revision rule.

Our modified outer revision rule coincides with the adaptive
revision rule that is proposed from a totally different per-
spective from that of the inner and outer revision rules. This
result also demonstrates that a rational, yet mathematically
simple, revision of mass functions can be achieved. Further
work should strive to simplify the presentation of the revision
rule in order to better lay bare its significance and further
simplify its computation. Moreover, a precise formulation of
the minimal change principle in the presence of reinforcement
effect due to independence between the prior and the input is
also needed.
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APPENDIX

Proof of Proposition 1: The proof is straightforward and
omitted.

Proof of Proposition 3: The proof is straightforward and
omitted. In addition, it could be seen as a corollary of
Proposition 4.

Proofs of Propositions 5,6,7: The proofs are straightfor-
ward and omitted.

Proof of Proposition 10: Let m̂ = m ◦a mI , ˆ̂m = m ◦a

mI ◦a mI′ and m̌ = m ◦a mI′ . Here we need show ∀V ,
m̌(V ) = ˆ̂m(V ).

For any V ⊆ W , if m̌(V ) =∑
A∩B=V σ̌m(A, B)mI′(B) > 0, then we obviously

have V ⊆ B, as B should be a focal set of mI′ hence V can
only be included in a particular focal set of mI′ , say BV ,
hence we have m̌(V ) = mI′(BV )

∑
A∩BV =V σ̌m(A, BV ).

Now we discuss two subcases.
• If Pl(BV ) = 0, we then have for any V ⊆ BV ,

m̌(V ) = 0 if V 6= BV and m̌(V ) = mI′(BV ) if
V = BV . As ˆ̂m(V ) =

∑
A∩B=V

ˆ̂σm(A,B)mI′(B),
similar to the above, we also have ˆ̂m(V ) =
mI′(BV )

∑
A∩BV =V

ˆ̂σm(A,BV ). Now again we have
two subcases.

– If P̂ l(BV ) = 0, then based on Def. 7, immediately
we have ˆ̂m(V ) = 0 if V 6= BV and ˆ̂m(V ) =
mI′(BV ) if V = BV which implies ˆ̂m(V ) = m̌(V ).

– If P̂ l(BV ) > 0, then we have ˆ̂σm(A, BV ) = m̂(A)

P̂ l(BV )

where m̂(A) =
∑

C∩D=A σ̂m(C,D)mI(D). Since
mI is a mass function, similarly we have that D
can only be a particular DA of mI and m̂(A) =
mI(DA)

∑
C∩DA=A σ̂m(C, DA). From V ⊆ DA ∩

BV and mI′ is a refined mass function of mI , we
must have BV ⊆ DA. Hence from C ∩DA ∩BV =
A∩BV = V , we get C∩BV = V . As Pl(BV ) = 0,
we get m(C) = 0. Hence from Def. 7, we have

σ̂m(C, DA) =
{

1 for Pl(DA) = 0 ∧ C = DA,
0 otherwise.

If V 6= BV , then as C ∩ BV = V and DA ∩
BV = BV , we get C 6= DA. Hence we have
σ̂m(C, DA) = 0, hence m̂(A) = 0, hence ˆ̂m(V ) =
0 = m̌(V ). If V = BV , then we have ˆ̂m(BV ) =
mI′ (BV )

P̂ l(BV )
mI(DA)

∑
C∩BV =BV

σ̂m(C,DA). Now if

Pl(DA) > 0, then we get ∀U ∩ BV 6= ∅, m̂(U) =∑
C′∩DA=U

m(C′)
Pl(DA)mI(DA) = 0 as m(C ′) = 0

(obtained by C ′∩BV 6= ∅ and Pl(BV ) = 0). Hence
P̂ l(BV ) = 0 which contradicts with P̂ l(BV ) > 0.
Hence we should have Pl(DA) = 0, then based on
Def. 7, we have m̂(DA) = mI(DA) and for any
E ∩ DA 6= ∅, E 6= DA, m̂(E) = 0, hence we
have P̂ l(BV ) = mI(DA). As σ̂m(C,DA) = 1 for
C = DA, we get

ˆ̂m(BV )

=
mI′(BV )

P̂ l(BV )
mI(DA)

∑

C∩BV =BV

σ̂m(C, DA)

=
mI′(BV )

P̂ l(BV )
mI(DA) = mI′(BV ) = m̌(BV ).

• If Pl(BV ) > 0, then we have

ˆ̂m(V )

=
mI′(BV )

P̂ l(BV )

∑

A∩BV =V

m̂(A)

=
mI′(BV )

P̂ l(BV )

∑

A∩BV =V

∑

C∩D=A

σ̂m(C, D)mI(D),

since V ⊆ D, similarly we must have D can only be a
particular focal set of mI s.t. BV ⊆ D. We denote it as
DV , and we have Pl(DV ) ≥ Pl(BV ) > 0. Hence we
have

ˆ̂m(V )

=
mI′(BV )

P̂ l(BV )

∑

A∩BV =V

∑

C∩DV =A

σ̂m(C, DV )mI(DV )

=
mI′(BV )

P̂ l(BV )

∑

A∩BV =V

mI(DV )
Pl(DV )

∑

C∩DV =A

m(C)

= mI′(BV )

∑
A∩BV =V

mI(DV )
Pl(DV )

∑
C∩DV =A m(C)

∑
A′∩BV 6=∅

mI(DA′ )
Pl(DA′ )

∑
C′∩DA′=A′ m(C ′)

,

as A′ ∩BV 6= ∅ and A′ ⊆ DA′ , we similarly have BV ⊆
DA′ , but only one focal set of mI contains BV , hence it
should be DA′ = DV . So we have

ˆ̂m(V )

= mI′(BV )

∑
A∩BV =V

mI(DV )
Pl(DV )

∑
C∩DV =A m(C)

∑
A′∩BV 6=∅

mI(DV )
Pl(DV )

∑
C′∩DV =A′ m(C ′)

= mI′(BV )

∑
A∩BV =V

∑
C∩DV =A m(C)∑

A′∩BV 6=∅
∑

C′∩DV =A′ m(C ′)

= mI′(BV )

∑
C∩BV =V m(C)∑
C′∩BV 6=∅m(C ′)

= mI′(BV )

∑
C∩BV =V m(C)

Pl(BV )
= m̌(V ).


