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Abstract. In this paper, we propose an adaptive algorithm for mergingn (n≥2) prioritized knowl-
edge bases which takes into account the degrees of conflict and agreement among these knowledge
bases. The algorithm first selectslargely partially maximal consistent subsets (LPMCS)of sources
by assessing how (partially) consistent the information in the subset is. Then within each of these
created subsets, amaximal consistent subsetis further selected and knowledge bases in it are merged
with a suitable conjunctive operator based on the degree of agreement among them. This result is
then merged with the remaining knowledge bases in the corresponding LPMCS in the second step
through the relaxation of the minimum operator. Finally, the knowledge bases obtained from the
second step are merged by a maximum operator. In comparison with other merging methods, our
approach is more context dependent and is especially useful when most sources of information are
in conflict.

Keywords: Possibilistic logic, prioritized knowledge bases, belief merging, context dependent
merging

1. Introduction

Merging multiple sources of information is important in many areas, such as sensor data fusion (e.g.,
[AG92]) and database integration (e.g., [LS98, Rev97]). This process becomes more complex when
uncertainty exists. Possibilistic logic provides a good logical framework for modelling and reasoning
with uncertainty. In this framework, uncertain information from a sources is represented as apossibilis-
tic knowledge base, which is a set of weighted formulas. A possibilistic knowledge base has a unique
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possibility distribution associated with it. In [BDP97, BDKP02], some semantic merging operators were
proposed to aggregatepossibility distributionsof original possibilistic knowledge bases, the result is a
new possibility distribution. Then the syntactical counterpart of a semantic merging operator is applied
to the possibilistic bases, and the result of merging is a possibilistic knowledge base whose possibility
distribution is the one obtained by the semantic merging operator. The merging operators proposed so far
(e.g., [BDP97, BDKP02]) can be divided into two classes, one class contains conjunctive operators (for
example, the minimum operator) and the other consists of disjunctive operators (for example, the max-
imum operator). The advantage of the conjunctive operators is that when original knowledge bases are
consistent, they exploit their complementarities by recovering all the symbolic information. However,
the conjunctive operator is not advisable to merge knowledge bases which are highly conflicting because
the inconsistency degreeof the resulting knowledge base can be very high. In contrast, the disjunctive
operators are appropriate to merge inconsistent knowledge bases because the resulting knowledge base
is consistent as long as one of the original knowledge bases is consistent. The disadvantage of disjunc-
tive operators is that too much information is lost after merging. Because of the pros and cons of the
conjunctive and disjunctive operators, it is not advisable to use only one of them when information from
multiple sources partially agrees with each other and only some of these sources are reliable. Several
adaptive merging rules have been proposed to integrate both the conjunctive and disjunctive operators
(e.g., [DPT88, DP92, DP94, DFP00, DP01]).

In [DPT88], an adaptive operator was proposed which consideredj sources out of all the sources,
where it was assumed that there werej sources reliable. Since it was not known whichj sources were
reliable, all the subsets with cardinalityj were considered and sources in each of these subsets were
merged conjunctively. The major problem with this method is that some of the subsets may contain
sources which are in conflict, so it is not appropriate to merge them conjunctively. Another drawback
is that it only utilizes two operators, one is a conjunctive operator (e.g., the minimum operator) and
the other is a disjunctive operator (e.g., the maximum operator). There are many other conjunctive and
disjunctive operators available that may be more appropriate to different subsets of sources, according to
the degrees of conflict and agreement among sources within a subset [QLB05].

Another adaptive rule was proposed in [DP92] which also utilizes the maximum and the minimum
operators. The rule was initially proposed to merge two sources only, and was later extended to merge
more than two sources in [DP94]. However, it is computationally very expensive because it needs to
compute all the maximal consistent subsets, which is known to be a very difficult task. Moreover, when
most possibilistic knowledge bases are in conflict, merging them using this rule may either delete too
much information or the rule is reduced to the disjunctive merge mode (e.g., using the maximum operator
only).

In summary, none of the adaptive rules available so far is satisfactory for merging multiple sources
of information that is partially consistent and many sources are involved in conflict. In this paper, we
attempt to investigate how merging such information can be more context-dependent and how various
operators (not just the maximum and minimum) can be integrated into the fusion process. We especially
consider the following issues in this paper to utilize a context-dependent adaptive merging.

• the selection of either a conjunctive operator or a disjunctive operator should include the measures
of the quality of merged information in both modes and the level of information loss in a disjunctive
mode;

• given a knowledge base that is believed to be of high quality and can be taken as a reference,
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other knowledge bases should be ordered based on their degrees of consistency with this reference
knowledge base. In this way, a subset of sources can be formed around this reference which should
guarantee that the sources in the subset are consistent to at least a certain degree;

• to reinforce the beliefs from consistent sources, suitable reinforcement operators may be used
instead of the minimum operator. The selection criteria of a reinforcement operator should address
the degree of strong agreement among multiple knowledge bases;

• multiple operators, including maximum, minimum, and reinforcement, should be integrated into
merging at different stages to deal with different subsets of sources.

The end result of the investigation of above issues has led to the design of a context-dependent
adaptive algorithm for mergingn (n≥2) prioritized knowledge bases. The algorithm first selectslargely
partially maximal consistent subsets(LPMCSs) of sources and then further selects amaximal consist
subsetwithin each of the LPMCSs. Different merging operators are applied to these different subsets
based on the nature of the subset (e.g., maximal consistent or largely partially maximal consistent).
We believe that this algorithm is more context-dependent and can deal with multiple sources involving
conflict more adequately than the current approaches available.

This paper is organized as follows. In Section 2, we briefly review possibilistic logic and its combi-
nation modes. In Section 3, we define some quality measures of possibilistic knowledge bases and the
relaxation of the conjunctive merge. In Section 4, we first introduce the measures of conflict and agree-
ment between two PKBs, we then describe how to generate largely partial maximal consistent subsets.
In Section 5, the degrees of conflict and agreement between two PKBs are extended to multiple PKBs
first, then a merging operators selection criterion is defined to facilitate the selection of a right merging
operator for a right set of PKBs. Following this, an adaptive merging algorithm is proposed. In Section
6, we compare our algorithm with some adaptive merging rules proposed in the literature. Finally, we
conclude the paper in Section 7.

2. Preliminaries

2.1. Possibilistic Logic

We consider a propositional languageLPS from a finite setPS of propositional symbols [DLP94]. The
classical consequence relation is denoted as`. An interpretation (or a possible world) is a function from
PS to {0, 1} and is a model of a formulaφ iff ω(φ) = 1 whereω is an interpretation. We useΩ to
represent the set of all possible interpretations and usep, q, r, etc. to represent atoms inPS. We denote
formulas inLPS by φ, ψ, γ,, etc..

In possibilistic logic, at the semantic level, the basic notion is apossibility distribution, denoted by
π, which is a mapping from a set of interpretationsΩ to the interval [0,1].π(ω) represents the possibility
degree of the interpretationω with available beliefs. From apossibility distributionπ, two measures
defined on a set of propositional or first order formulas can be determined. One is thepossibility measure,
defined asΠ(φ) = max{π(ω) : ω |= φ}, where|= denotes the propositional logic satisfaction, i.e.,ω is
a model ofφ. The other is thenecessity measure, and is defined asN(φ) = 1−Π(¬φ). Π(φ) evaluates
the maximum consistency level ofφ with respect to beliefs encoded byπ andN(φ) corresponds to the
certainty degree ofφ from available beliefs encoded byπ.
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At the syntactic level, a formula, called apossibilistic formula, is represented by a pair(φ, α) where
φ is a formula andα ∈ [0, 1]. Possibilistic formula(φ, α) means that the necessity degree ofφ is
at least equal toα, i.e. N(φ) ≥ α. Pieces of uncertain information from a source are represented
by a possibilistic knowledge base(PKB) which is a finite collection of possibilistic formulas of the
form B = {(φi, αi) : i = 1, ..., n}. In this paper, we only consider PKBs where every formulaφ
is a classical propositional formula. The classical base associated withB is denoted asB∗, namely
B∗ = {φi|(φi, αi) ∈ B}. A PKB B is consistent if and only if its classical baseB∗ is consistent.

Given a PKBB, a uniquepossibility distribution, denoted asπB, can be obtained by the principle of
minimum specificity. For allω ∈ Ω,

πB(ω) =

{
1 if ∀(φi, αi) ∈ B, ω |= φi,

1−max{αi|ω 6|= φi} otherwise.
(1)

The inconsistency degreeof B, which defines the level of inconsistency ofB, is defined by

Inc(B) = 1−maxωπB(ω).

Definition 2.1. [DLP94] Let B be a PKB, andα ∈ [0, 1]. We call theα-cut (respectively strictα-cut)
of B, denoted asB≥α (respectivelyB>α), the set of classical formulas inB having a necessity degree at
least equal toα (respectively strictly greater thanα).

The inconsistency degree ofB in terms of theα-cut can be equivalently defined as [DLP94]:

Inc(B) = max{αi|B≥αi is inconsistent}.

Definition 2.2. [DLP94] LetB be a PKB. Let(φ, α) be a piece of information withα>Inc(B). (φ, α)
is said to be a consequence ofB, denoted byB `π (φ, α), iff B≥α ` φ. Given two PKBsB1 andB2,
B1`πB2 iff B1 ` (φ, α) for all (φ, α) ∈ B2. We sayB1 is equivalent toB2 iff B1`πB2 andB2`πB1.

2.2. Merging operators in possibilistic logic

Many combination operators for merging PKBs have been proposed [BDKP02]. Given several PKBs, the
semantic combination rules are applied to aggregate the possibility distributions associated with them.

Definition 2.3. [BDKP02] A conjunctive operator is a two place function⊕ : [0, 1]× [0, 1]→[0, 1] such
that∀α∈[0, 1], α⊕1 = 1⊕α = α.

Definition 2.4. [BDKP02] A disjunctive operator is a two place function⊕ : [0, 1]× [0, 1]→[0, 1] such
that∀α∈[0, 1], α⊕0 = 0⊕α = α.

Examples of conjunctive operators are theminimumoperator (also called the idempotent conjunction),
theproduct(α× β) and thelinear product(max(0, α + β − 1)), and examples of disjunctive operators
are themaximumoperator (also called the idempotent disjunction), theprobabilistic sum(α+β−α×β)
and thebounded sum(min(1, α + β)).

Definition 2.5. [BDKP02] A reinforcement operator is a two place function⊕ : [0, 1] × [0, 1]→[0, 1]
such that∀α, β 6=1 andα, β 6=0, α⊕β<min(α, β).
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Examples of reinforcement operators are the product and the linear product (also calledLukasiewicz
t-norm). It is clear that a conjunctive operator can also be a reinforcement operator.

Given two PKBsB1 andB2, and a merging operator⊕, the semantic combination rule combines the
possibility distributionsπB1 andπB2 using⊕ asπ⊕(w) = πB1(w)⊕πB2(w). Its syntactical counterpart
is the following PKB [BDKP02]:

B1⊕B2 = {(φi, 1− (1− αi)⊕1) : (φi, αi)∈B1}∪{(ψj , 1− 1⊕(1− βj)) : (ψj , βj)
∈B2}∪{(φi ∨ ψj , 1− (1− αi)⊕(1− βj)) : (φi, αi)∈B1 and (ψj , βj)∈B2}. (2)

For example, when⊕ = min, B1⊕B2 = B1∪B2. It is often assumed that an operator used to com-
bine possibility distributions should be both commutative and associative. In this case, the order of the
combination will not influence the result of merging when multiple PKBs are considered. The general
convention of selecting a merging operator in possibilistic logic is that when the union of original PKBs is
consistent, it is advisable to use either a conjunctive or a reinforcement operator based combination rule
because all the formulas in these PKBs are kept in the resulting PKB and their necessity degrees are not
decreased; when the original knowledge bases are in conflict, a disjunctive operator is more appropriate.

It is clear that when⊕ is associative, the syntactic computation of the resulting base is easily gener-
alized ton sources. The syntactical generalization for a non-associative operator can be done as follows.

Proposition 2.1. [BDKP02] Let B1, ..., Bn be a set ofn possibilistic knowledge bases andπ1, ..., πn

be their associated possibility distributions. LetπB⊕ be the result of combiningπ1, ..., πn with ⊕. The
possibilistic knowledge base associated toπB⊕ is:

B⊕ = {(Dj , 1−⊕(x1, ..., xn)) : j = 1, ..., n}, (3)

whereDj are disjunctions of sizej between formulas taken from differentBi’s (i = 1, ..., n) andxi is
either equal to1− αi or to 1 depending respectively ifφi belongs toDj or not.

3. Quality Measures of Possibilistic Knowledge Bases

3.1. Quality measures of possibilistic knowledge bases

Measure of non-specificity: In [HK83], a measure of possibilistic uncertainty, callednonspecificity,
was proposed to generalize the Hartley measure of information [Har28]. Given a possibility distribution
π on Ω = {ω1, ...ωn}, π(ωi) (i = 1, ..., n) are reordered asπ1 = l≥π2≥...≥πn > 0, wherel may be
less than 1 (in that case,π is not normal). Letπn+1 = 0. The measure of non-specificity ofπ is

H(π) =
1
l
Σn

j=1(πj − πj+1)log2j (4)

Given two PKBsB1 andB2, we say the quality ofB1 is better than that ofB2 if H(πB1) < H(πB2),
whereπBi are possibility distributions ofBi.

Note that the definition ofH(π) given in Equation 4 is valid only whenminω∈Ωπ(ω) = 0. When
this condition does not hold, we need to add an extra elementω′ into Ω and letπ(ω′) = 0 in order to use
Equation 4. It should also be noted thatH(π) = 0 wheneverπ(ω1) = l andπ(ωi) = 0 for anyωi 6= ω1,
regardless the actual value ofl. This raises a question as whetherπ(ω1) = 1 should be treated the same
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asπ′(ω1) = 0.8 (or any other values, such as0.2). We argue on the one hand that whenπ(ω1) is very
small, e.g.,0.2, it is unlikely thatπ(ωi) = 0 holds for all the otherωi, so most of the time,π(ω1) cannot
be too small. On the other hand, ifπ(ω1) is the only non-zero value and it is reasonably large, then this
possibility distribution is specific enough, since degrees of possibility can be viewed as relative measures
after all. Therefore,π(ω1) = 0.8 can be regarded as carrying the same information asπ(ω1) = 1 when
π(ωi) = 0 for any otherωi.

Degree of coherence:The degree of coherence was proposed to measure consistency in an inconsistent
possibilistic knowledge base [DKP03]. It is defined in the framework of quasi-possibilistic logic.

First we introduce the quasi-possibilistic interpretation.

Definition 3.1. [DKP03] LetOPS be the set defined as follows:

OPS = {(+p, α) : p∈PS, α∈[0, 1]} ∪ {(−p, α) : p∈PS, α∈[0, 1]}
We call anyX⊆OPS a quasi-possibilistic interpretation. By Definition 3.1, there may exist several
(+p, α1),...,(+p, αn) in an interpretation. In this case, we assume that only(+p, αk) whereαk =
maxn

i=1αi is taken into account and all the other formulas(+p, αj) (αj 6=αk) do not appear in the inter-
pretation (we can do so because any(+p, αj) with αj < αk is subsumed by(+p, αk)).

For each atomp∈PS, and eachX⊆OPS , (+p, α)∈X means thatX provides a reason forp with con-
fidenceα and a reason against¬p with confidenceα. Similarly, (−p, α)∈X means thatX provides a
reason for¬p with confidenceα and a reason againstp with confidenceα.

For an interpretationX, it may contain both(+p, α) and(−p, β) for some atomp.

Definition 3.2. [DKP03] Let l1∨...∨ln be a clause, thenFocus(l1∨...∨ln, li) is the clause without the
disjunctli, i.e. Focus(l1∨...∨ln, li) = l1∨...∨li−1∨li+1∨...∨ln.

Definition 3.3. [DKP03] Letp be a propositional symbol,∼ is the complementary operation defined as
∼p is¬p and∼(¬p) is p. This operation is not in the object language but will be used to make definitions
clearer.

Definition 3.4. [DKP03] For a model (interpretation)X, the strong satisfaction relation|=S is defined
as follows. Letp be a propositional symbol, letl1, ..., ln be literals, and letφ andψ be two formulas:

• X|=S(p, α) iff (+p, β)∈X with β≥α

• X|=S(¬p, α) iff (−p, β)∈X with β≥α

• X|=S(φ∧ψ, α) iff X|=S(φ, α) andX|=S(ψ, α)

• X|=S(l1∨...∨ln, α) iff (X|=S(l1, α) or ... orX|=S(ln, α)) and∀i∈{1, ..., n} (if X|=S(∼li, α),
thenX|=S(Focus(l1∨...∨ln, li), α))

Let us denoteQΠ(B) the set of strong models ofB.

Example 3.1. LetB = {(p, 0.8), (¬p∧q, 0.5), (¬p∨r, 0.2), (t∨s, 0.3)}. ThenX = {(+p, 0.8), (−p, 0.5),
(+q, 0.5), (+r, 0.2), (t, 0.3)} andY = {(+p, 0.8), (−p, 0.5), (+q, 0.5), (+r, 0.2), (s, 0.3)} are two strong
models ofK.
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Next we introduce the notion of minimal quasi-possibilistic model.
Given a modelX, we define the set of models thatsubsumit as follows:

subsum(X) = {Y |Y 6=X, Y ∗⊆X∗ and ∀(+pi, α)∈X, ∃(+pi, β)∈Y with β≤α,

and ∀(−pi, α)∈X,∃(−pi, β)∈Y with β≤α}

Definition 3.5. [DKP03] The set of minimal (strong) models ofB is defined as:

MQΠ(B) = {X∈QΠ(B)|∀Y ∈QΠ(B), Y 6∈subsum(X)}
Before introducing the degree of coherence, we need to define the notions ofConflictbaseQΠ and of
OpinionbaseQΠ. We use±p as a notion for+p or−p.

Definition 3.6. [DKP03] Let X be a model,
ConfictbaseQΠ(X) = {(p, α)|(+p, β)∈X and (−p, γ) ∈ X and α = min(β, γ)}
OpinionbaseQΠ(X) = {(p, α)|(±p, α)∈X and 6 ∃(±p, β) ∈ X with β>α}

Definition 3.7. [DKP03] Let B be a set of pair(p, α), wherep∈PS, thenA(B) = Σ(p,α)∈Bα.

The degree of coherence of a model and the degree of coherence of a knowledge base are then defined as

Definition 3.8. [DKP03] LetX be a model, thenCoherenceQΠ is a function from the set of interpreta-
tions to [0,1] such that

CoherenceQΠ(X) = 1− A(ConflictbaseQΠ(X))
A(OpinionbaseQΠ(X))

Definition 3.9. [DKP03] LetB be a possibilistic knowledge base, thenCoherenceQΠ(B) is defined as:

CoherenceQΠ(B) = maxX∈MQΠCoherenceQΠ(X)

For instance, given the knowledge baseB and the two strong modelsX andY in Example 3.1, the de-
grees of coherence for these two models respectively areCoherenceQΠ(X) = 0.72, CoherenceQΠ(Y ) =
0.72. Since these two strong models are also minimal, we haveCoherenceQΠ(B) = 0.72.

Quality measure of conjunctive and disjunctive mergesWhen a disjunctive operator (e.g. the maxi-
mum) is applied during a merge, the merged information gets less precise. In contrast, if a conjunctive
operator (e.g. the minimum) is applied, the resulting PKB may be inconsistent. Therefore, the associated
possibility distributionπ should be normalized first. The denominatorl in Equation 4 normalizes such
a distribution when measuring it. To facilitate the selection of conjunctive and disjunctive operators, we
measure the difference of the non-specificities of a conjunctively merged PKB (denoted asBcm) and a
disjunctively merged PKB (denoted asBdm). Thedifference of the non-specificitiesbetweenBcm and
Bdm is defined asDiffBcm

Bdm
= H(πBcm)−H(πBdm

).
WhenDiffBcm

Bdm
< 0, the quality of the conjunctive merge is better than the quality of the disjunctive

merge. The smaller theDiffBcm
Bdm

is the better the quality of the conjunctive merge, and it is more advisable
to choose a conjunctive operator even though the resulting PKB may be inconsistent; otherwise, the
disjunctive merge is a better choice.
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Example 3.2. Suppose we are given three PKBs,B = {B1, B2, B3}: B1 = {(p, 0.5), (q, 0.6), (r, 0.8)},
B2 = {(p, 0.6), (q∨r, 0.7)}, B3 = {(¬p ∨ r, 0.4), (¬q, 0.3)}. Bcm = {(p, 0.6), (q, 0.6), (r, 0.8),
(¬q, 0.3)} andBdm = {(¬p∨q∨r, 0.4), (p∨¬q, 0.3)}. So H(πBcm) = 1.44 andH(πBdm

) = 2.76,
andDiffBcm

Bdm
= −1.32. Therefore, the quality of the minimum merge is better than that of the maximum

merge.

3.2. Relaxation of the conjunctive rule

When a disjunctive operator results in a great loss of original information, a conjunctive operator may
be more appropriate even though the result could be inconsistent. In the following we define some
conditions where a conjunctive operator is advisable to be used.

Definition 3.10. Let B = {B1, ..., Bn} be a set ofn PKBs and letBcm andBdm be the merged PKBs
of applying the minimum and maximum operators toB respectively. Then these PKBs inB

(a) should be merged conjunctivelywhenInc(Bcm) = 0;

(b) are advised to be merged conjunctivelywhen

(i) 0 < Inc(Bcm)≤ε0;

(ii) CoherenceQΠ(Bcm)≥ε1;

(iii) DiffBcm
Bdm

< 0

(c) should be merged disjunctively, otherwise.

whereε0 is a predefined threshold for the degree of inconsistency tolerance, andε1 is a threshold for the
degree of coherence.

In Definition 3.10, we relax the condition where a conjunctive operator can be applied. For a set of PKBs
which is inconsistent (that is, their union is inconsistent), when the degree of inconsistency and the degree
of coherence of their conjunctively merged PKB are tolerable, and the quality of their disjunctively
merged PKB is poorer than that of the conjunctively merged PKB, it is more appropriate to have them
merged conjunctively. It is also possible to define another threshold forDiffBcm

Bdm
which guarantees that

the conjunctively merged result ismuchbetter than the disjunctively merged one.
Note that the minimum and the maximum operators are only used in Definition 3.10 to judge whether

we should combine PKBs inB using a conjunctive or a disjunctive operator. Since the minimum oper-
ator has no reinforcement effect whilst the other two conjunctive operators have, it is sufficient to use
minimum operator in Definition 3.10. The reason for this is that if these PKBs cannot be merged by the
minimum operator, then they definitely cannot be merged by the other two conjunctive operators.

Furthermore, as we will see later, in our algorithm, when a set of PKBs can be merged conjunctively
or are advised to be merged conjunctively, we are not restricted to use the minimum operator to combine
them. We may choose a conjunctive operator with the reinforcement effect.

Example 3.3. (Continuing Example 3.2) Let us setε0 = 0.3 andε1 = 0.6 in Definition 3.10, which
means that the requirement for the degree of inconsistency tolerance is low and the requirement for
the degree of coherence is somewhat high. SinceInc(B1∪B2∪B3) = 0.3, CoherenceQΠ(B1∪B2
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∪B3) = 0.85 andDiffBcm
Bdm

= −1.32, it is advisable to merge them conjunctively. Suppose we choose
the minimum operator to merge them, then the result of merging isB = B1∪B2∪B3. It is easy to check
thatBcm`πBdm whereBcm andBdm are given in Example 3.2. SoBcm contains more information than
Bdm does.

4. Largely Partially Maximal Consistent Subset

4.1. Degree of conflict and degree of strong agreement

In this section, we introduce the degree of conflict and degree of agreement between two PKBs in
[QLB05] that will be used in the next subsection and will be used to define the degree of conflict and
agreement among multiple PKBs later.

Let us first define weighted prime implicants which generalize the prime implicants for PKBB =
{(φ1, α1), ..., (φn, αn)} whereφi are clauses and each of the clauses is a disjunction of literals. For
a more general PKB, we can decompose it as an equivalent PKB whose formulas are clauses by the
min-decomposability of necessity measures, i.e.,N(∧i=1,kφi)≥m⇔∀i,N(φi)≥m [DKP03].

Let B = {(φ1, α1), ..., (φn, αn)} be a PKB whereφi are clauses. A weighted implicant ofB is
D = {(ψ1, β1), ..., (ψk, βk)} (which is also a PKB), such thatD `π B, whereψi are literals such that
no two complementary literals exist. LetD andD′ be two weighted implicants ofB, D is said to be
subsumedby D′ iff D 6=D′, D′∗⊆D∗ and∀(ψi, αi)∈D, ∃(ψi, βi)∈D′ with βi≤αi (βi is 0 if ψi ∈ D∗ but
ψi 6∈ D′∗).

Definition 4.1. Let B = {(φ1, α1), ..., (φn, αn)} be a PKB whereφi are clauses. A weighted prime
implicant (WPI ) of B is D such that

1. D is a weighted implicant ofB

2. 6 ∃ D′ of B such thatD is subsumed byD′.

Let us look at an example to illustrate how to construct WPIs.

Example 4.1. Let B = {(p, 0.8), (q∨r, 0.5), (q ∨ ¬s, 0.6)} be a PKB. The WPIs of B areD1 =
{(p, 0.8), (q, 0.6)}, D2 = {(p, 0.8), (r, 0.5), (¬s, 0.6)}, andD3 = {(p, 0.8), (q, 0.5), (¬s, 0.6)}.

Definition 4.2. Let B1 andB2 be two PKBs, andC andD be WPIs ofB1 andB2 respectively, then the
quantity of conflict betweenC andD is defined as

qCon(C,D) =
∑

(l,α)∈C and (∼l,β)∈D

min(α, β). (5)

the quantity of strong agreement betweenC andD is defined as

qSA(C, D) =
∑

(l,α)∈C, (l,β)∈D

min(α, β), (6)
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and the quantity of weak agreement betweenC andD is defined as

qWA(C, D) =
∑

(li,αi)∈C∪D,li 6∈C∗∩D∗ and ∼li 6∈C∗∪D∗
αi. (7)

When the weights associated with all the formulas are 1,qCon(C, D) is the cardinality of the set of
literals which are in conflict inC∪D; qSA(C, D) is the cardinality of the set of literals that are in bothC
andD; qWA(C, D) is the cardinality of the set of literals which are in eitherC or D but not both.

We now define the degree of conflict.

Definition 4.3. Let B1 andB2 be two PKBs. LetC andD be WPIs ofB1 andB2 respectively. Let
AtomC(C, D) denote the cardinality of the set of atoms which are in conflict inC∪D, then the degree
of conflict betweenC andD is defined as

dCon(C, D) =
qCon(C, D)

AtomC(C, D) + qSA(C,D) + λqWA(C, D)
(8)

Let AtomSA(C, D) denote the cardinality of the set of atoms which are included in bothC andD, then
the degree of strong agreement betweenC andD is defined as

dSA(C, D) =
qSA(C, D)

AtomSA(C, D) + qCon(C,D) + λqWA(C, D)
(9)

whereλ ∈ (0, 1] is used to weaken the influence of the quantity of weak agreement on the degree of
conflict and on the degree of strong agreement. In the following, we always assume thatλ = 0.5, that
is, the quantity of weak agreement only has “half” as much the influence on the degree of conflict (or on
the degree of strong agreement) as the quantity of strong agreement.

Definition 4.4. Let B1 andB2 be two PKBs. SupposeC andD are the sets of WPIs ofB1 andB2

respectively, then the degree of conflict betweenB1 andB2 is defined as

DCon(B1, B2) = min{dCon(C,D)|C∈C, D∈D}, (10)

and the degree of strong agreement betweenB1 andB2 is defined as

DSA(B1, B2) = max{dSA(C, D)|C∈C, D∈D}. (11)

Example 4.2. LetB1 = {(p, 0.8), (q∨r, 0.4), (p → s, 0.5)} andB2 = {(p∨¬r, 0.8), (q, 0.6), (¬s, 0.7)}.
The WPIs ofB1 are C1 = {(p, 0.8), (q, 0.4), (s, 0.5)} and C2 = {(p, 0.8), (r, 0.4), (s, 0.5)}, and
the WPIs ofB2 areD1 = {(p, 0.8), (q, 0.6), (¬s, 0.7)} andD2 = {(¬r, 0.8), (q, 0.6), (¬s, 0.7)}. So
dCon(C1, D1) = 0.22, dCon(C1, D2) = 0.22, dCon(C2, D1) = 0.217, dCon(C2, D2) = 0.33. There-
fore,DCon(B1, B2) = 0.217. Furthermore,dSA(C1, D1) = 0.48, dSA(C1, D2) = 0.17, dSA(C2, D1) =
0.4, dSA(C2, D2) = 0. Therefore,DSA(B1, B2) = 0.48.
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4.2. Ordering knowledge bases

Given a PKBB as a background knowledge base which is called a reference PKB, we can define an
ordering relation between two PKBs in relation to referenceB.

Definition 4.5. Let B, B1 andB2 be three PKBs which are self-consistent. A binary distance relation
betweenB1 andB2 with referenceB, denoted as¹B, is defined asB1¹BB2 when one of the following
conditions holds:

(a) B∪Bi (i = 1, 2) are consistent andDSA(B, B1)≥DSA(B,B2);

(b) Inc(B∪B1)≤Inc(B∪B2);

(c) Inc(B∪B1) = Inc(B∪B2) andDCon(B,B1)≤DCon(B, B2).

As usual, we useB1≺BB2 to denoteB1¹BB2 butB2 6¹BB1, and we useB1∼BB2 to denoteB1¹BB2

andB2¹BB1. B1¹BB2 means that the distance betweenB andB1 is not greater than that betweenB
andB2, soB1 is more close toB thanB2 is.

4.3. Generating largely partially maximal consistent subsets (LPMCSs)

Definition 4.6. LetB = {B1, ..., Bn} be a set of PKBs. A subsetSB ⊆ B is called a LPMCS ofB if the
PKBs inSB can be merged conjunctively or advised to be merged conjunctively, but PKBs inSB∪{Bi}
cannot, whereBi∈(B\SB).

Example 4.3. (Continuing Example 3.3) Suppose a fourth PKBB4 = {(¬p, 0.6), (¬q, 0.6)} is given in
addition to the three PKBs in Example 3.3. ThenS1

B = {B1, B2, B3} andS2
B = {B4} are two LPMCSs.

Definition 4.7. Let B, B1, ..., Bn ben + 1 PKBs which are self-consistent andB be the reference PKB.
Thepreferred sequence of mergingwith referenceB is defined as(B, Bi1 , ..., Bij , Bij+1 , ..., Bin) such
that for any1≤j<n, Bij¹Bj−1Bit when j < t≤n, whereBj−1 is the union of firstj PKBs in the
sequence, and whenj = 1, B0 = B. ThenSB = {B,Bi1 , ..., Bij} is the LPMCS with referenceB such
that the PKBs inSB can be merged conjunctively or advised to be merged conjunctively, but PKBs in
SB∪{Bit} cannot, wherej < t≤n.

In Definition 4.7, we order the PKBs in a way such that ifBi is closer thanBi+1 is to the unions of KPBs
that are already ordered, thenBi is ordered in front ofBi+1. A reference PKB is chosen according to
the non-specificity of each knowledge base. Usually, we start with a PKB that is more specific than other
PKBs. If there are several candidates, we choose the one that is provided by the most reliable source.

Example 4.4. (Continuing Example 4.3) In Example 4.3,B1 has the least non-specificity, so it is chosen
as the reference. By Definition 4.7, the preferred sequence of merging with referenceB1 is (B1, B2, B3,
B4) and the corresponding LPMCS isSB = {B1, B2, B3}, since we haveInc(B1∪B2∪B3) = 0.3,
CoherenceQΠ (B1∪B2∪B3) = 0.85 andDiffBcm

Bdm
= −1.32, whilst Inc(B1∪...,∪B4) = 0.6 > 0.3.

In this example, if we setε0 = 0 in Definition 3.10 and we still chooseB1 as the reference, then the two
LPMCSs areS1

B = {B1, B2} andS2
B = {B3, B4} which are both in fact maximal consistent subsets.
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5. Context Dependent Merging

In this section, we propose an adaptive merging algorithm which deals with multiple LPMCSs and their
maximal consistent subsets using different merging operators.

5.1. Degree of strong agreement among multiple knowledge bases

We extend the definition of the degree of strong agreement between two WPIs to multiple WPIs in order
to define the degree of strong agreement among multiple PKBs.

Definition 5.1. Let B = {B1, ..., Bn} be a set ofn PKBs such that∪n
i=1Bi is consistent. LetCi be

a WPI of Bi (i = 1, ..., n), andC = {Ci : i = 1, ..., n}. Let AtomSA(C) = | ∩i C∗
i |, qSA(C) =

Σ(l,a1)∈C1&(l,a2)∈C2&...&(l,an)∈Cn,∀i,ai 6=0min(ai) andqWA(C) = Σ(l,ai)∈Ci,∃j,aj=0min{ai : ai 6=0}. Let
qCon(C) = Σl,∃i,j, such that (l,ai)∈Ci and (∼l,aj)∈Cj

min(ai : (φi, ai) ∈ Ci, φi = l or ∼ l ). Then the
degree of strong agreement amongCi is defined as

dSA(C) =
qSA(C)

AtomSA(C) + qCon(C) + λqWA(C) , (12)

whereλ ∈ (0, 1] is used to weaken the influence of the quantity of weak agreement on the degree of
strong agreement. As usual, we takeλ = 0.5.

It is easy to check that we have the following result.

Proposition 5.1. Let B1, B2 be two PKBs. LetC1, C2 be WPIs ofB1, B2 respectively, andC =
{C1, C2}. Let dSA(C1, C2) anddSA(C) be the degrees of strong agreement obtained by Equation 9
and Equation 12 respectively. ThendSA(C1, C2) = dSA(C).

Definition 5.2. Let B = {B1, ..., Bn} be a set ofn PKBs such that∪n
i=1Bi is consistent. LetCi be the

set of WPIs ofBi respectively. Then the degree of strong agreement amongBi is defined as

DSA(B) = max{dSA(C1,j1 , ..., Cn,jn)|C1,j1∈C1, ...Cn,jn∈Cn} (13)

It is clear that Definition 5.2 generalizes Definition 4.4 when the set of knowledge bases are consistent.

Example 5.1. Suppose we are given a set of three PKBs:B1 = {(p, 0.5), (q, 0.6), (r, 0.8)}, B2 =
{(p, 0.6), (q∨r, 0.7)}, B3 = {(p, 0.8), (¬p∨r, 0.4)}. The WPI forB1 isC1 = {(p, 0.5), (q, 0.6), (r, 0.8)}.
The WPIs forB2 are D1 = {(p, 0.6), (q, 0.7)} and D2 = {(p, 0.6), (r, 0.7)}. The WPIs forB3

areS1 = {(p, 0.8), (¬p, 0.4)} andS2 = {(p, 0.8), (r, 0.4)}. Therefore,dSA({C1, D1, S1}) = 0.23,
dSA({C1, D1, S2}) = 0.33, dSA({C1, D2, S1}) = 0.22, anddSA({C1, D2, S2}) = 0.39, as a conse-
quence,DSA(B1, B2, B3) = 0.39.
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5.2. Merging operators selection criteria

Given a set of consistent PKBs, if the degree of strong agreement between them is very high, then they
share beliefs on most of the topics. In this case, it is advisable to combine them using an operator with
higherreinforcementeffect, for example, the linear productmax(0, α + β − 1). However, if the degree
of strong agreement among them is low, it is advisable to combine them using the minimum operator
which does not have anyreinforcementeffect.

Definition 5.3. Let the merging operators be the minimum operatormin, the product operator×, and
the linear product, then we have the following criteria to choose an operator.

If DSA(B1, ..., Bn)≥0.8, the merging operator is the linear product;
If DSA(B1, ..., Bn) ∈ (0.3, 0.8), the merging operator is the product operator;
If DSA(B1, ..., Bn≤0.3, the merging operator is the minimum operator.

That is, we choose the linear product when the degree of strong agreement amongBi is high; we choose
the minimum operator when the degree of strong agreement among them is low; and we choose the
product operator otherwise.

When considering two sets of PKBs, we use the following criterion to decide which set of PKBs
should use what operator.

Definition 5.4. Let B1 = {B1
1 , ..., B1

n}, andB2 = {B2
1 , ..., B2

m} be two sets of PKBs where both∪iB
1
i

and∪iB
2
i are consistent. WhenDSA(B1) < DSA(B2), the operators⊕1 and⊕2 selected for merging

PKBs inB1 andB2 should satisfy⊕1(α, β)≥⊕2 (α, β) for all α, β∈[0, 1].

This definition says that an operator applied to a set of PKBs which are in strong agreement should have
more reinforcement effect than an operator applied to a set of PKBs which are less agreeable with each
other.

5.3. The algorithm

We now propose an adaptive algorithm to merge multiple PKBs. The basic idea of the algorithm is
described as follows. LetB = {B1, ..., Bn} be a knowledge profile, a set of PKBs. We first select a
PKB Bi with the least non-specificity. This step is a competition step. The PKB which contains more
information than other PKBs wins the game and is selected. In the second step, we generate a LPMCS
with a chosen referenceBi. That is, wew.r.t Bi find a group of PKBs such that these belief bases can be
merged withBi conjunctively or are advised to be merged withBi conjunctively. We then find the unique
maximal consistent subset of the LPMCS. The PKBs in this maximal consistent subset are merged by
a chosen conjunctive operator based on their degree of strong agreement. The result of merging is then
merged with other PKBs in the LPMCS using the minimum operator. Those PKBs in the PLMCS are
then deleted from the knowledge profileB and the remaining PBKs inB are dealt with the above steps
repeatedly, untilB is empty.

Adaptive Algorithm: B = {B1, ..., Bn} is a set of PKBs;ε0, ε1∈[0, 1], assumeε0 = 0.3 andε1 = 0.6.
Begin
m=1.
while |B| > 0 do
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Step 1SelectBi with the least non-specificity inB (choose the one with the best quality if there are
several candidates);

Step 2Generate the LPMCS with referenceBi Sm = {Bi, Bi1 , ..., Bij} (PKBs inSm are at least
advised to be merged conjunctively);

Step 3Find l (l ≤ j) such thatBi∪Bi1∪...∪Bil is consistent andBi∪Bi1∪...∪Bil∪Bil+1
is not;

Step 4πm(ω) = min{πi(ω)⊕πi1(ω)⊕...⊕πil(ω), πil+1
(ω), ..., πij (ω)}, where⊕ is the conjunctive

operator chosen according toDSA(Bi, Bi1 , ..., Bil) in Definition 5.3;
LetB = B\Sm, m = m + 1.

End while
πn(ω) = max{π1(ω), ..., πm−1(ω)}.

LPMCS(B) = m.
End
πn is the possibility distribution of the final merge result of all the PKBs inB.

The syntactical counterpart of the adaptive algorithm can be easily defined based on Equation 3.
In Step 4, suppose⊕ is the chosen conjunctive operator, then the syntactical counterpart ofπm(ω) is
B⊕ ∪ Bil+1

∪ ... ∪ Bij , whereB⊕ is the syntactically merged base ofBi, Bi1 ,..., andBil by Equation
3. SupposeBi (i = 1, ..., m− 1) are the syntactical counterparts ofπi respectively, then the syntactical
counterpart ofπn is Bn = {(φ1 ∨ ... ∨ φm−1,min(α1, ..., αm−1)) : (φi, αi) ∈ Bi, i = 1, ..., m− 1}.

It is clear that the algorithm is nondeterministic if we have several choices in Step 1, that is, the
selection of reference PKB in Step 1 can influence subsequent PLMCSs. When several PKBs have the
least non-specificity in this step, we need to make use of the knowledge of reliability of each source
[DP94]. In this case, a source with a higher degree of reliability should be selected. Therefore, given a
knowledge profile and necessary knowledge about the reliability of some sources, this merging algorithm
should have a unique output.

WhenLPMCS(B) = 2 and the conjunctive operator is minimum in Step 4, thenπn(ω) = min{π1(ω),
..., πn(ω)}. WhenLPMCS(B) = n + 1, πn(ω) = max{π1(ω), ..., πn(ω)}. Clearly, we have the fol-
lowing two propositions.

Proposition 5.2. Suppose⊕ = min in Step 4 of the above algorithm, we have for eachω,

min(π1(ω), ..., πn(ω))≤πn(ω)≤max(π1(ω), ..., πn(ω)),

whereπi are possibility distributions ofBi respectively.

Proposition 5.3. Let ε0 = 0 in Definition 3.10. Thenπm(ω) = πi(ω)⊕πi1(ω)⊕...⊕πil(ω) in Step 4 of
the algorithm, where⊕ is the conjunctive operator chosen according toDSA(Bi, Bi1 , ..., Bil).

Proposition 5.3 says that when the degree of inconsistency toleranceε0 = 0, then each LPMCS in Step
2 is in fact a consistent subset, Step 3 is therefore redundant. When this happens and when operator⊕
is defined asmin, the algorithm is somehow equivalent to MCS-based approach discussed in Section 6.
Now we use an example to illustrate the algorithm.

Example 5.2. (Continuing Example 4.4) By Example 4.4 we know that the largely partially maximal
consistent subset is{B1, B2, B3}. SinceB1∪B2 is consistent andB1∪B2∪B3 is not, we combineB1

andB2 by the product operator becauseDSA(B1, B2) = 0.48. That is, the possibility distribution of the
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final merge result isπ(ω) = max(min(π1(ω) × π2(ω), π3(ω)), π4(ω)). The PKB associated withπ is
B = {(¬p∨q, 0.6), (¬p∨r, 0.6), (p∨¬q, 0.6), (¬q∨r, 0.6), (¬q, 0.3)}.
The output of the adaptive algorithm may be an inconsistent PKB. We have the following result for the
inconsistency degree of the resulting PKB.

Proposition 5.4. Let ε0 be the degree of inconsistency tolerance used in the adaptive algorithm. Suppose
in each iteration of Step 4, the minimum is chosen. LetB be the output PKB of theAdaptive Algorithm.
ThenInc(B)≤ε0.

The computational complexity of the algorithm is analyzed as follows.

Proposition 5.5. The computational complexity of the algorithm is in∆p
2, where∆p

2 is the class of all
languages that can be recognized in polynomial time by a deterministic Turing machine equipped with
anNPoracle.

Proposition 5.5 shows that the computation complexity of our algorithm is not much harder than propo-
sitional satisfiability.

6. Related Work

An adaptive rule in [DPT88] An adaptive rule was proposed which consideredj sources out of all
the sources, where it was assumed that thesej sources are reliable. Since it was not known whichj
sources were reliable, all the subsets with cardinalityj were considered. The intermediary conjunctively
merged results are then merged disjunctively. Given a set of PKBsB = {B1, ..., BN} with πi being the
possibility distribution ofBi, the adaptive rule is defined as, for eachω∈Ω,

π(j)(ω) = maxJ⊆N,|J |=j{mini∈J{πi(ω)}} (14)

A method to decide the value ofj was given in [DP94]: let

m = max{|T | : h(T ) = 1}, n = max{|T | : h(T ) > 0},
T⊆B andh(T ) = maxωminBi∈T πi(ω), then,j is defined asm andN is defined asn in Equation
14, wheren indicates that thesen sources at least partially consistent and among themj sources are
completely consistent.

The operator defined above suffers from several problems: First, once the valuej is decided, all the
subsets havingj as the cardinality are selected for separate conjunctive merges. However, some selected
subsets may contain sources which are in strong conflict and so it is not appropriate to merge them
conjunctively; Second, if the valuej is small, there may exists too many subsets with cardinalityj. In
this case, too much information will be lost after merging.

Example 6.1. (Continuing Example 4.4) It is easy to check thatm = 2 andn = 4. Let j = 2 in Equa-
tion 14, then there are six subsets ofB with cardinalityj. Among them the subset{B1, B4} contains
two PKBs which are in strong conflict (their degree of conflict is 0.34 and their degree of inconsis-
tency is 0.5). The result of merge isBDP1 = {(p ∨ ¬q∨r, 0.6), (¬p∨q∨r, 0.6), (p∨¬q, 0.5), (¬p ∨
¬q∨r, 0.4), (¬q∨r, 0.3)}, which drops much more important information than the resulting PKBs using
our algorithm.
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Another adaptive rule in [DP92]: the rule proposed in [DP92] utilizes the maximum and the minimum
operators. This operator is extended to more than two sources in [DP94] based on the adaptive rule in
Equation 14. It is defined as follows:

πAD(ω) = max(
π(n)(ω)
h(n)

, min(π(m)(ω), 1− h(n))), (15)

whereh(n) = max{h(T )||T | = n} as defined previously and letj = m andN = n in Equation 14.
This rule is more adaptive and context dependent than adaptive rule in Eq 14. However, it inherits the
first problem of Equation 14.

Example 6.2. (Continuing Example 6.1)h(π(n)) = 0.4. By Proposition 3 in [BDP97], the PKB associ-

ated with
π(n)(s)

h(n) is B′ = {(r, 0.5)}. We can also compute the PKB associated withmin(π(m)(s), 1 −
h(n)) which isB′′ = {(p∨¬q∨r, 0.6), (¬p∨q∨r, 0.6), (p∨¬q, 0.5), (¬p∨¬q∨r, 0.4)}. So the resulting
PKB merged by Equation 15 isBDP2 = {(¬p∨q∨r, 0.5), (p∨¬q∨r, 0.5), (¬p ∨ ¬q∨r, 0.4)}. Clearly,
this PKB deletes too much original information as well.

MCS-based adaptive merging in [DFP00]: an adaptive operator based on maximal consistent subsets
(MCS) ofB was proposed in [DFP00]. SupposeB1, ...,Bk are all the maximal consistent subsets ofB,
then the MCS-based operator is defined as

πMCS(ω) = maxi=1,...,kminBj∈BiπBj (ω) (16)

The MCS-based operator is more context dependent than the first two adaptive rules introduced in this
section. However, it is computationally very difficult because the computation of maximal consistent
subsets isΠp

2-hard. This operator is appropriate when the number of maximal consistent subsets is not
small and most original knowledge bases are not involved in conflict. In the case where most PKBs are
involved in conflict, the result of merge using the MCS-based operator may delete too much information.

Example 6.3. (Continuing Example 4.4) There are three maximal consistent subsets:B1 = {B1, B2},
B2 = {B2, B3} andB3 = {B3, B4}. So the resulting PKB of merging isBMCS = {(p∨¬q, 0.6),
(¬p∨q∨r, 0.6), (¬p∨r, 0.4), (¬p∨¬q∨r, 0.4), (¬p∨¬q∨r, 0.3), (¬q∨r, 0.3)}. Let B be the resulting
PKB of merging using our algorithm as shown in Example 5.2. It is easy to check thatB`πBMCS .

Split-combination approach in [QLG04]: we proposed a split-combination (S-C) merging method
which also integrates both conjunctive and disjunctive operators in [QLG04]. This method consists
of the following steps. Given a set of PKBs{B1, ..., Bn}, let B = B1∪...∪Bn, it first computes the
upper free degreeFreeupp(B1∪...Bn) of the union of original PKBs, which is the minimum value such
that formulas with weights greater than it are not involved in conflict inB1∪...∪Bn. Then each PKB
Bi is split into two subbasesCi andDi, whereCi = {(φ, α)∈Bi : α≤Freeupp(B1∪...∪Bn)} and
Di = Bi\Ci. After that, we combine allCi by the maximum operator (or a disjunctive operator) into
a PKB C and combine allDi by the minimum operator (or a conjunctive operator) into a PKBD.
Finally, the result of merging isC∪D. When the upper free degree is low, theS-C method would be
very desirable because it keeps most of the original information and weaken conflicting information.
However, when the upper free degree is high, then most of the original information will be lost.
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Table 1. Comparison of the merged results of the four methods discussed in this section and our approach for the
four PKBs given in Example 4.4.

Methods Merged PKB Conclusion

Adaptive rule in [DPT88] BDP1 = {(p ∨ ¬q∨r, 0.6), (¬p∨q∨r, 0.6), H(πB) < H(πBDP1
)

(p∨¬q, 0.5), (¬p ∨ ¬q∨r, 0.4),
(¬q∨r, 0.3)}

Adaptive rule in [DP92] BDP2 = {(¬p∨q∨r, 0.5), (p∨¬q∨r, 0.5), B `π BDP2

(¬p ∨ ¬q∨r, 0.4)}
MCS-based merging BMCS = {(p∨¬q, 0.6), (¬p∨q∨r, 0.6),

(¬p∨r, 0.4), (¬p∨¬q∨r, 0.4), B `π BMCS

(¬p∨¬q∨r, 0.3), (¬q∨r, 0.3)}
Split-combination method BS−C = {(p∨¬q, 0.3), (r, 0.8)} H(πB) < H(πBS−C

)

Our algorithm B = {(¬p∨q, 0.6), (¬p∨r, 0.6),
(p∨¬q, 0.6), (¬q∨r, 0.6), (¬q, 0.3)}

Example 6.4. (Continue Example 4.3) The upper free degree ofB1∪...∪B4 is 0.6. SoB1 is split
into C1 = {(p, 0.5), (q, 0.6)} and D1 = {(r, 0.8)}, B2 is split into C2 = {(p, 0.6)} and D2 =
{(q∨r, 0.7)}, B3 is split into C3 = {(¬p∨r, 0.4), (¬q, 0.3)} andD3 = ∅ andB4 is split into C4 =
{(¬p, 0.6), (¬q, 0.6)} andD4 = ∅. Ci are combined by the maximum operator asC = {(p∨¬q, 0.3)}
andDi are combined by the minimum operator asD = {(r, 0.8), (q∨r, 0.7)}. So the result of merging is
B′ = C∪D = {(p∨¬q, 0.3), (r, 0.8), (q∨r, 0.7)}, which is equivalent to{(p∨¬q, 0.3), (r, 0.8)}. Com-
pared withB in Example 5.2,B′ is better in preserving formulas whose necessity degrees are greater
than the upper free degree, for example,(r, 0.8). However,B′ loses too much information contained in
formulas whose necessity degrees are under the upper free degree, that is, only(p∨¬q, 0.3) is retained
in B′ after merging. In contrast, we have kept(¬p∨q, 0.6), (p∨¬q, 0.6) and(¬q, 0.3) in B.

The comparisons discussed above are summarized in Table 1 which shows that the merged result
from our algorithm is better than that from the other approaches mentioned in this section.

7. Conclusions and Further Work

In this paper, we proposed an adaptive algorithm for mergingn (n > 2) prioritized knowledge bases
which extends the algorithm in [HL05] to the possibilistic logic framework. The idea is that when most
of the sources are involved in conflict and it is not possible to get maximal consistent subsets that are
sufficiently large, we then look for largely partially maximal consistent subsets such that each of them
contains sources that are largely agreeable. These largely partially maximal consistent subsets of PKBs
can be merged with the relaxation of the minimum operator after the maximal consistent subset in each
of the LPMCSs is merged with a suitable conjunctive operator (maybe a reinforcement operator). In this
way, we do not have to merge all the sources with a disjunctive operator, and therefore, the merged result
should retain more information than a simple disjunctive merge. Compared with other merging methods,
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our method is more context dependent and may keep more important information when most PKBs are
involved in conflict.

The idea of generating LPMCSs for adaptive merging was first proposed in [HL05] in the context
of possibility theory where uncertain information was modelled with sets of weighted subsets. To apply
this idea in possibilistic logic, we have incorporate the measures of degrees of conflict and agreements
among multiple PKBs in [QLB05] and the measures of coherence of a merged PKB in [DKP03] in this
paper.
Acknowledgment: We would like to thank the anonymous reviewers for their helpful comments on the
paper.
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