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Abstract

In this paper we investigate the relationship between two prioritized knowl-
edge bases by measuring both the conflict and the agreement between them.
First of all, a quantity of conflict and two quantities of agreement are defined.
The former is shown to be a generalization of the well-known Dalal distance
which is the hamming distance between two interpretations. The latter are,
respectively, a quantity of strong agreement which measures the amount of
information on which two belief bases “totally” agree, and a quantity of weak
agreement which measures the amount of information that is believed by one
source but is unknown to the other. All three quantity measures are based on
the weighted prime implicant, which represents beliefs in a prioritized belief
base. We then define a degree of conflict and two degrees of agreement based
on our quantity of conflict and quantities of agreement. We also consider the
impact of these measures on belief merging and information source ordering.
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1. Introduction

Multiple agents need to interact and cooperate with each other to achieve
the common goals or to resolve conflict. So it is important to know the
relationship between knowledge bases of these agents, for example, whether
their knowledge bases are in conflict with each other and to what extent their
knowledge bases are in conflict. In the belief revision and belief merging
literature, the well-known Dalal distance known as the Hamming distance
between interpretations [11], plays a key role in the notion of minimal change.
The Dalal distance between two interpretations models how many atoms are
in conflict, so it measures only the quantity of conflict between them. Later,
Hunter defined a degree of conflict between two knowledge bases based on
the Dalal distance to define the believability of an argumentation tree [18].

In recent years, some measures of information and contradiction have
been proposed. These measures can be used to define some ordering rela-
tions between two knowledge bases. In [23], a degree of contradiction and a
degree of ignorance were defined and they can be used to order the sources
of information. If a knowledge base has a high degree of contradiction and a
low degree of ignorance, then it has a low order. In [16], a pre-order relation
between two knowledge bases, called a compromise relation, was defined ac-
cording to the quantities of conflicting information and total information in
them.

In all the work described above, the quantity of conflicting information in
a single knowledge base or between two knowledge bases was the main focus.
However, in reality, when establishing the relationships between knowledge
bases of two agents, not only information in conflict, but also information in
agreement should be considered. The quantities of conflict and agreement
can affect each other. Considering two agents with low quantity of conflict
between their knowledge bases, our perception of the degree of conflict be-
tween their knowledge bases will be further weakened if they have a lot in
common. Furthermore, when two agents have no conflict, it is useful to
consider the amount of agreement between them.

We use two quantities of agreement; one is called the quantity of strong
agreement which measures the information that both agents “totally” agree
with, and the other is called the quantity of weak agreement which measures
the information that is believed by one source but is unknown to the other.
Both quantities will influence the degree of conflict, but their influences are
different. Intuitively, the quantity of strong agreement will have more in-
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fluence on the degree of conflict than the quantity of weak agreement. To
illustrate, let us consider the following three knowledge bases: B1 = {p, q},
B2 = {¬p, q}, and B3 = {¬p}. B1 is in conflict with both B2 and B3. B1 and
B2 strongly agree on q, whilst B1 only weakly agrees with B3 on q. Clearly
the degree of conflict between B1 and B2 should be smaller than that be-
tween B1 and B3 because there is a topic that both B1 and B2 agree opon.
However, when defining the degree of conflict [18], Hunter did not distinguish
the influences of strong agreement and weak agreement. To accompany the
definition of degree of conflict, we define a degree of strong agreement and a
degree of weak agreement.

It is well-known that priorities or orderings (either implicit or explicit)
play an important role in inconsistency handling [1]. The handling of prior-
ities has been shown to be completely in agreement with possibilistic logic
[14]. Possibilistic logic [13] is a weighted logic which attaches to each propo-
sitional (or first-order) logic formula with a weight belonging to a totally
ordered scale, such as [0, 1]. An ordering between two formulas is then ob-
tained by comparing the weights attached to them. Possibilistic logic is also
known to be a good logical framework for reasoning under inconsistency and
uncertainty when only partial information is available. When the weights at-
tached to formulas are all equal to 1, possibilistic logic is reduced to proposi-
tional logic. Some measures of information and contradiction in possibilistic
logic were also proposed (see [12]). These measures are applied to a single
knowledge base in possibilistic logic. In this paper, we consider measures of
conflict and agreement between knowledge bases in possibilistic logic. Our
measures are defined by generalized prime implicants in possibilistic logic
which can be viewed as partial models of a possibilistic knowledge base.

The main contributions of the paper are summarized as follows.

• First, we generalize the notion of a prime implicant to a weighted prime
implicant in possibilistic logic. We show that weighted prime implicants
can be used to compile a possibilistic knowledge. A method is given to
compute weighted prime implicants of a possibilistic knowledge base.

• Second, we define the notions of quantity of conflict, quantity of strong
agreement and quantity of weak agreement using the notion of a weighted
prime implicant. We show that these measures satisfy some intuitive
properties. When classical knowledge bases are considered, our quan-
tity of conflict coincides with the Dalal distance in propositional logic.
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Relationships between two knowledge bases are explored using these
measures.

• Third, we define the degree of conflict and two degrees of agreement.
We compare our definition of degree of conflict with that given by
Hunter in [18] and show that ours is more reasonable in that it takes
degree of agreement into account when assigning degree of conflict.

• Finally, we consider two applications of our measures of conflict and
agreement to the choice of different combination operators and to the
ordering of different knowledge bases.

The rest of the paper is organized as follows. We first give preliminaries on
possibilistic logic in Section 2. We then define the notion of a weighted prime
implicant in Section 3. Our measures of conflict and agreement between two
possibilistic knowledge bases are defined in Section 4. Following this, we
discuss the impact of our measures in Section 5. Section 6 discusses related
work. In Section 7, we conclude the paper and present some ideas for future
work.

2. Preliminaries

2.1. Classical logic

In this paper, we consider a propositional language LPS from a finite set
PS of propositional symbols. The classical consequence relation is denoted
as ⊢. An interpretation is a total function from PS to {true, false}. Ω is
the set of all possible interpretations. An interpretation w is a model of a
formula ϕ iff w(ϕ) = true. p, q, r,... represent atoms in PS. A literal is an
atom p or its negation ¬p. We denote literals by l, l1, .. and formulae in LPS

by ϕ, ψ, γ,... For each formula ϕ, we use M(ϕ) to denote its set of models.
A classical knowledge base B is a finite set of propositional formulae. B is
consistent iff there exists an interpretation w such that w(ϕ) = true for all
ϕ∈B. A clause C is a disjunction of literals: C = l1∨...∨ln and its dual
clause, or term D, is a conjunction of literals: D = l1∧...∧ln. We sometimes
also consider a term D as a set of literals. A formula ϕ can be represented
by its conjunctive normal form (CNF), which is a conjunction of clauses (or
equivalently, a set of clauses), i.e., CNFϕ = C1∧...∧Cm.
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2.2. Possibilistic logic

Possibilistic logic [13] is a weighted logic where each classical logic formula
is associated with a level of priority.

The semantics of possibilistic logic is based on the notion of a possibility
distribution which is a mapping π from Ω to the unit interval [0,1]. The
unit interval can be replaced by any totally ordered scale. π(ω) represents
the degree of compatibility of the interpretation ω with the available beliefs
about the real world. π(ω) = 0 means that the interpretation ω is impossible
to be the real world, and π(ω) = 1 means that nothing prevents ω from being
the real world, while 0 < π(ω) < 1 means that ω is only somewhat possible
to be the real world. When π(ω) > π(ω′), ω is preferred to ω′ for being the
real world.

From a possibility distribution π, two measures defined on a set of propo-
sitional formulae can be determined. One is the possibility degree of formula
ϕ, and is defined as Ππ(ϕ) = max{π(ω) : ω |= ϕ}. The other is the necessity
degree of formula ϕ, and is defined as Nπ(ϕ) = 1− Ππ(¬ϕ). The possibility
degree of ϕ evaluates to what extent ϕ is consistent with knowledge expressed
by π and the necessity degree of ϕ evaluates to what extent ϕ is entailed by
the available knowledge. Nπ(ϕ) = 1 means that ϕ is a totally certain piece
of knowledge, while Nπ(ϕ) = 0 expresses the complete lack of knowledge of
priority about ϕ, but does not mean that ϕ is or should be false. We have
Nπ(true) = 1 and Nπ(ϕ∧ψ) = min(Nπ(ϕ), Nπ(ψ)) for all ϕ and ψ.

At the syntactic level, a formula, called a possibilistic formula, is repre-
sented by a pair (ϕ, a) where ϕ is a formula and a ∈ [0, 1]. The possibilistic
formula (ϕi, ai) means that the necessity degree of ϕi is at least equal to ai, i.e.
N(ϕi) ≥ ai. Pieces of uncertain information from a source are represented
by a possibilistic knowledge base which is a finite collection of possibilistic
formulas of the form B = {(ϕi, ai) : i = 1, ..., n}. In this paper, we only
consider possibilistic knowledge bases where every formula ϕ is a classical
propositional formula. The classical base associated with B is denoted as
B∗, namely B∗ = {ϕi|(ϕi, ai) ∈ B}. A possibilistic knowledge base B is
consistent if and only if its classical base B∗ is consistent. In this paper,
we consider a classical knowledge base as a particular possibilistic knowledge
base where every formula has weight 1.

Given a possibilistic knowledge base B, a unique possibility distribution,
denoted as πB, can be obtained by the principle of minimum specificity. For
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all ω ∈ Ω,

πB(ω) =

{
1 if ∀(ϕi, ai) ∈ B,ω |= ϕi,
1−max{ai|ω ̸|= ϕi} otherwise.

(1)

The inconsistency degree of B, which defines the level of inconsistency of
B, is defined by

Inc(B) = 1−maxωπB(ω).

Definition 1. [13] Let B be a possibilistic knowledge base, and a ∈ [0, 1].
We call the a-cut (respectively strict a-cut) of B, denoted as B≥a (respectively
B>a), the set of classical formulas in B having a necessity degree at least equal
to a (respectively strictly greater than a).

Let B and B′ be two possibilistic knowledge base, B and B′ are said to be
equivalent, denoted B ≡s B

′, if and only if ∀ a ∈ (0, 1], B≥a≡B′
≥a.

The inconsistency degree of B in terms of the a-cut can be equivalently
defined as [13]:

Inc(B) = max{ai|B≥ai is inconsistent}.

Definition 2. [13] Let B be a possibilistic knowledge base. Let (ϕ, a) be a
possibilistic formula with a>Inc(B). (ϕ, a) is said to be a consequence of B,
denoted by B ⊢π (ϕ, a), iff B≥a ⊢ ϕ. Given two possibilistic knowledge bases
B1 and B2, B1⊢πB2 iff B1 ⊢ (ϕ, a) for all (ϕ, a) ∈ B2.

3. Weighted Prime Implicant

In this section, we first define the notion of a weighted prime implicant
of a possibilistic knowledge base and discuss its properties. We then propose
an algorithm for computing the weighted prime implicants of a possibilis-
tic knowledge base. In the following, we assume that knowledge bases are
individually consistent.

3.1. Definition and properties

A term D is an implicant of formula ϕ iff D⊢ϕ and D does not contain
two complementary literals. D is an implicant of a knowledge base B if it is
an implicant of ∧ϕi∈Bϕi.
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Definition 3. [9] A prime implicant of knowledge base B is an implicant D
of B such that for every other implicant D′ of B, D ̸⊢D′.

Prime implicants are often used in knowledge compilation [9] to make the
deduction tractable. Suppose D1, ..., Dk are all the prime implicants of B,
we have B⊢ϕ, for any ϕ iff for every prime implicant Di, Di⊢ϕ.

Now we define weighted prime implicants of a possibilistic knowledge
base. Let us first define weighted prime implicants for possibilistic knowl-
edge base B = {(ϕ1, a1), ..., (ϕn, an)} where ϕi are clauses. For a more general
possibilistic knowledge base, we can decompose it to an equivalent possibilis-
tic knowledge base whose formulas are clauses by the min-decomposability of
necessity measures, i.e., N(∧i=1,kϕi)≥m⇔∀i, N(ϕi)≥m. For example, a pos-
sibilistic formula of the form (ϕ1∧ ...∧ϕn, a) can be equivalently decomposed
into a set of formulas (ϕ1, a),...,(ϕn, a).

Let B = {(ϕ1, a1), ..., (ϕn, an)} be a possibilistic knowledge base where
ϕi are clauses. A weighted implicant of B is D = {(ψ1, b1), ..., (ψk, bk)}2, a
possibilistic knowledge base, such thatD ⊢π B, where ψi are literals such that
no two complementary literals exist inD and ψi ̸= ψj for i ̸= j. Let D and D′

be two weighted implicants of B, D is said to be subsumed by D′ if and only
if D ̸=D′, D′∗⊆D∗ and for any (ψi, ai)∈D′,∃(ψi, bi)∈D with ai≤bi. In other
words, D is subsumed byD′ if and only ifD ̸= D′, and every literal appearing
in D′ must appear in D with higher or same necessity degree. Alternatively,
this subsumption relation can be defined by possibilistic inference. This is
shown as follows.

Proposition 1. Let D and D′ be two weighted implicants of B. D is sub-
sumed by D′ if and only if D ̸= D′ and D ⊢π D

′.

Example 1. Let B = {(q∨r, 0.9), (p∧q, 0.8), (q, 0.8), (q∨¬s, 0.6)} be a possi-
bilistic knowledge base. It is easy to check that D = {(p, 0.8), (q, 0.9), (r, 0.9)}
and D′ = {(p, 0.8), (q, 0.8), (r, 0.9)} are two weighted implicants of B, and D
is subsumed by D′.

According to Example 1, a weighted implicant can be logically too strong,
that is, it may be subsumed by another weighted implicant. In the following,

2In this paper, to simplify notations, we use D to denote both a term and a set of
literals attached with necessity degree.
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we define a weighted prime implicant which generalizes the notion of a prime
implicant.

Definition 4. Let B = {(ϕ1, a1), ..., (ϕn, an)} be a possibilistic knowledge
base where ϕi are clauses. A weighted prime implicant of B is a possibilistic
knowledge base D such that

1. D is a weighted implicant of B
2. There does not exist other weighted implicant D′ of B such that D is

subsumed by D′.

A weighted prime implicant of a possibilistic knowledge base is one of its
weighted implicants that is not subsumed by another weighted implicant of
it.

Example 2. (Continue Example 1) The weighted prime implicants of B are
D1 = {(p, 0.8), (q, 0.9)}, D2 = {(q, 0.8), (r, 0.9)} and D3 = {(r, 0.8), (q, 0.9)}.

We are able to show the following corollary by Proposition 1.

Corollary 1. Let B be a possibilistic knowledge base. Then D is a weighted
prime implicant of B if and only if it satisfies the following two conditions.

1. D is a weighted implicant of B
2. For every other weighted implicant D′ of B, D ̸⊢πD

′.

The proof of Corollary 1 is easy to establish. It shows that a weighted
prime implicant can be equivalently defined as a logically weakest weighted
implicant.

We show that the weighted prime implicant generalizes the prime impli-
cant.

Proposition 2. Let B = {(ϕ1, 1), ..., (ϕn, 1)} be a possibilistic knowledge
base which contains formulas with weight 1, i.e., B is a classical knowledge
base. Then D is a weighted prime implicant of B iff D is a prime implicant
of B.

However, given possibilistic knowledge base B, if D is a weighted prime
implicant of B, then D∗ is not necessarily a prime implicant of B∗. A coun-
terexample can be found in Example 2, where D2 is a weighted prime impli-
cant, but D∗

2 = {p, q, r} is not a prime implicant of B∗.
The following proposition says that weighted prime implicants can be

used to compile a possibilistic knowledge base.
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Proposition 3. Let B be a possibilistic knowledge base. If D1,...,Dn are all
the weighted prime implicants of B, then for any formula ϕ and any weight
a ∈ [0, 1], we have,

B⊢π(ϕ, a) iff Di⊢π(ϕ, a), for all Di.

Our method of compiling possibilistic knowledge bases is different from other
methods given in [5] and [6]. Our method compiles a possibilistic knowledge
base into a set of weighted prime implicants which are also possibilistic knowl-
edge bases. In contrast, their methods transform a possibilistic knowledge
base to a propositional knowledge base by introducing some new proposi-
tional symbols.

Next we give some justification for the weighted prime implicants.
First of all, to measure information in a single classical knowledge base

(this knowledge base may be inconsistent), most of the current methods are
based on the models of the knowledge base [16, 25]. In [16], the degree of
inconsistency is measured based on the model of an inconsistent knowledge
base in the framework of quasi-classical logic. In [25], a quasi-model of an
inconsistent knowledge base, which is a maximal consistent subbase of the
knowledge base, is defined to measure information for inconsistent sets. By
Definition 4, each weighted prime implicant can be interpreted as a partial
truth assignment. Suppose p is an atom and D is a weighted prime implicant,
then (p, a)∈D means that there is an argument for p in D with certainty
degree a, and (¬p, b)∈D means that there is an argument against p in D with
certainty degree b, while ϕ̸∈D∗ means the truth value of ϕ is undetermined in
D. By Proposition 3, a weighted prime implicant can be viewed as a partial
model of a possibilistic knowledge base. This is consistent with the methods
in [16, 25].

Second, when all the formulas in a possibilistic knowledge base have the
same weight 1, a weighted prime implicant is a prime implicant. In classical
logic, a classical model is often used to define the relationships between two
knowledge bases, such as the distance between two knowledge bases [11].
However, classical models are not suitable for us to define the quantities of
agreement between knowledge bases because a classical model must assign a
truth value to every atom in the knowledge bases. Let us look at the example
in the introduction again. The only model for B1 is w = {p, q} and there are
two models for B3, i.e., w1 = {¬p, q} and w2 = {¬p,¬q}. B1 and B3 weakly
agree on q because only B1 supports q. However, by comparing w with w1 or
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comparing w with w2 we cannot get such a conclusion. In contrast, a prime
implicant can be viewed as a partial truth assignment. That is, only some
of the atoms are assigned truth values. Given a prime implicant D of B, a
three-value semantics can be associated with it as follows:

vD(p) =


true if D ⊢ p,
false if D ⊢ ¬p,

undetermined otherwise.
(2)

That is, if an atom does not appear in a prime implicant, then its truth value
w.r.t. the three-valued interpretation associated with the prime implicant is
undetermined. Thus, a prime implicant does not specify the truth values of
some atoms. Given two prime implicants D1 and D2, if an atom appears in a
prime implicant and does not appear in another one, then it has truth value
true w.r.t. vD1 and has true value unknown w.r.t. vD2 . Since the truth value
of the atom w.r.t. vD2 can be either true or false, we can say that D1 and
D2 weakly agrees on p. In previous example, B1 has one prime implicant
D1 = {p, q} and B3 has one prime implicant D2 = {¬p}, where D2 does not
contain any information on q; so the quantity of weak agreement between D1

and D2 is 1. As a consequence, the weak agreement between B1 and B3 is 1,
which is consistent with our analysis above.

3.2. A method for computing weighted prime implicants

We give another important property of weighted prime implicants. We
first define a new notion of prime implicants. Given a propositional knowl-
edge base B and a term D that does not contain two complementary literals,
a term Di is called a D-extended implicant of B if and only if D ∪ Di ⊢ ϕ
for any ϕ ∈ B, and Di does not contain two complementary literals. A D-
extended prime implicant Di of B is a D-extended implicant of B such that
for every other D-extended implicant Dj of B, D ∪ Di ̸⊢ D ∪ Dj. When
D = ∅, then a D-extended prime implicant of a propositional knowledge B is
simply a prime implicant of B. So, any algorithm for computing D-extended
implicants of a propositional knowledge base can be used to compute prime
implicants of a propositional knowledge base. Given a possibilistic knowledge
base B, we define B=a = {ϕi : (ϕi, a) ∈ B}.

Proposition 4. Given a possibilistic knowledge base B, suppose D is a set of
weighted literals such that no two complementary literals exist in D. Suppose
b1, ..., bk are all the distinct weights appearing in D such that bi > bj for
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i < j. Then D is a weighted prime implicant of B if and only if D=bi is a
D>bi-extended prime implicant of B=bi for 1 ≤ i ≤ k.

According to Proposition 4, we are able to provide an algorithm for comput-
ing weighted prime implicants.
Algorithm 1
Input: a possibilistic knowledge base B = {(ϕ1, a1), ..., (ϕn, an)}.
Output: a set of weighted prime implicants of B.
begin
1. Let b1, ..., bk be all the distinct weights appearing in D such that bi > bj
for i < j;
2. h := 1; W := {∅}; Wtemp := ∅;
3. while h≤k do
4. for each D ∈ W

WD := {Di : Di is a D∗-extended prime implicant of B=bh}
Wtemp := Wtemp ∪ {D ∪ {(ψi, bh) : ψi ∈ Di} : Di ∈ WD}

5. h = h+ 1;
6. W := Wtemp;
7. Wtemp := ∅;
8. end-while
9. return W.
end

Assume that B = {(ϕ1, a1), ..., (ϕn, an)} and b1, ..., bk are all the distinct
weights appearing in B such that bi > bj for i < j. We stratify B as
B = B=b1 ∪ ... ∪ B=bk , where B=bi = {ϕj : (ϕj, bi) ∈ B for i = 1, ..., k}.
In Algorithm 1, we first find all prime implicants of B=b1 and all literals in
each of these prime implicants are attached with weight b1. For each of these
prime implicants D, we find all the D-extended prime implicants of B=b2

and all the literals in any of these D-extended prime implicants are attached
with weight b2. A D-extended prime implicant can be considered as an in-
complete weighted prime implicant. We continue this process to extend each
incomplete weighted prime implicant until B=bk . According to Proposition
4, it is not difficult to verify that Algorithm 1 will return all weighted prime
implicants of B. In the i-th iteration of the while loop, we need to compute
all D-extended prime implicants of B=bi for any D ∈ W. Since computing
D-extended prime implicants of a propositional knowledge base is at least as
hard as computing prime implicants of a propositional knowledge base, com-
puting weighted prime implicants of a possibilistic knowledge base using our
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algorithm is at least as hard as computing prime implicants of a propositional
knowledge base.

Now the problem is that, given a term D, how to compute all D-extended
prime implicants of a propositional knowledge base K. This problem can be
solved by adapting existing methods for computing prime implicants of a
propositional knowledge base. We adapt the syntactic method given in [8],
where a dual transformation algorithm was proposed to compute the set
of prime implicants of a propositional formula ϕ represented by CNFϕ. A
conjunctive quantum is defined as a pair (l, F ), where l is a literal and F is
its set of conjunctive coordinates w.r.t. CNFϕ that contains the subset of
clauses in CNFϕ to which l belongs. Note that if l does not occur in CNFϕ,
then F = ∅. For simplicity, each quantum is denoted as lF .

We now adapt the method given in [8]. Let ϕ = ∧ϕi∈Kϕi and D =
l1∧...∧ln. Suppose D′ = ln+1∧...∧ln+m is a term of CNFϕ. Remember that a
term can be equivalently taken as a set of literals. D∪D′ can be represented
as D ∪ D′ = {lF 1

1 , ..., lF
n+m

n+m }, where F i is the set of conjunctive coordinates
of li w.r.t. CNFϕ. It is not difficult to see that D′ is a D-extended implicant
of ϕ if ∪n+m

i=1 F
i = CNFϕ and there is no pair of contradictory literals in

{li : i = 1, ..., n + m}. Let us define F̂ i = F i − ∪n+m
j=1,j ̸=iF

i. Then D′ is a
D-extended prime implicant of ϕ if it satisfies the non redundancy condition,
i.e. ∀i∈{n+ 1, ..., n+m}, F̂ i ̸= ∅.

The modified dual transformation algorithm first calculates the conjunc-
tive coordinates of all the literals of CNFϕ and D, and then begins a search
in a state space where each state is represented by a set of quanta that rep-
resents an incomplete D-extended prime implicant. The initial set of states

is {D1, ..., Dk}, where Di = {lF 1

1 , ..., lF
n

n , (l
′
)F

l
′

i }, where l′i belongs to one spe-
cific clause C∈CNFϕ with C = (l

′
)1 ∨ ... ∨ (l

′
)k. Successor of each state in

the state space is generated by adding a new conjunctive quantum to the
state which is consistent with the quanta in the state and the new state still
satisfies the non redundancy condition. For each state Dq = {lF 1

1 , ..., lF
m

m }
for m > n, we define GDq = CNFϕ \ ∪m

i=1F
i. For each state space, if we get

a state Dq such that GDq = ∅, then Dq \D is a D-extended prime implicant
of ϕ and we call Dq a final state. It is clear that all of the D-extended prime
implicants of ϕ can be found after we get all the final states.

Let us look at an example to illustrate Algorithm 1.

Example 3. (Continue Example 1) There are three different weights ap-
pearing in B, so k = 3, and b1 = 0.9, b2 = 0.8 and b3 = 0.6. Let h = 0
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and W={∅}. We have h ≤ k. It is easy to check that W∅ = {{q}, {r}}
and Wtemp = {{(q, 0.9)}, {(r, 0.9)}}. Next, h = 1 and we go to the second
iteration of the while loop. There are two sets in W. We show how to get
W{(q,0.9)}, i.e. the set of {q}-extended prime implicants of B=0.8. It is easy
to see that B=0.8 = {p ∨ r, q}. Let D = {q} and ϕ = (p ∨ r) ∧ q, which is in
CNF form. Let C1 = p ∨ r and C2 = q. The literals that occur in ϕ and D
can be represented by the following conjunctive quanta:

p{C1}, q{C2}, r{C1}.

The initial set of states is {D1, D2}, where D1 = {q{C2}, p{C1}} and D2 =
{q{C2}, r{C1}}. Since GDi

= ∅ for i = 1, 2, we conclude that both D1 and D2

are final states and there are no other final states. So we return D1 \D and
D2 \D as two D-extended prime implicants of B=0.8. Therefore, W{(q,0.9)} =
{{p}, {r}} and Wtemp = {{(q, 0.9), (p, 0.8)}, {(q, 0.9), (r, 0.8)}}. Similarly, we
can get W{(r,0.9)} = {{p}, {q}} and Wtemp = {{(q, 0.9), (p, 0.8)}, {(q, 0.9), (r, 0.8)},
{(r, 0.9), (q, 0.8)}} and W = Wtemp. h = 2 and we go to the third iteration
of the while loop. It is easy to check that for any D ∈ W, WD = ∅. So W is
not changed when h = 3. So we get all the weighted prime implicants of B:
{(q, 0.9), (p, 0.8)}, {(q, 0.9), (r, 0.8)}, {(r, 0.9), (q, 0.8)}. This result coincides
with the result obtained in Example 2.

4. Measures of Conflict and Agreement Between Two Possibilistic
Knowledge Bases

4.1. Quantity of conflict and quantities of agreement

In this subsection, we measure the quantities of conflict and agreement
between two possibilistic knowledge bases based on the weighted prime im-
plicant. We then define the corresponding degree of conflict and degrees of
agreement in the next subsection.

Before defining the quantity of conflict between two knowledge bases,
we need to define the quantity of conflict between two weighted prime im-
plicants. This is inspired by the definition of Dalal distance between two
knowledge base [11] which is defined by the Hamming distance between two
interpretations.

We use a notation given in [16]. Let p be a propositional symbol, and ∼
be the complementation operation defined as ∼p is ¬p and ∼(¬p) is p. This
operation is not in the object language but will be used to make definitions
clearer.
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Given two possibilistic knowledge bases B1 and B2, suppose C and D
are weighted prime implicants for B1 and B2 respectively, then the quan-
tity of conflict between C and D is computed as follows. For each pair of
complementary literals which belong to C and D respectively, we take the
minimum of their necessity degrees. We then sum up all the values taken
from the minimum of necessity degrees of the complementary literals. More
formally, we have the following definition.

Definition 5. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is a weighted prime implicant of B1 and D is a weighted prime implicant
of B2, then the quantity of conflict between C and D is defined as

qCon(C,D) =
∑

(l,a)∈C and (∼l,b)∈D

min(a, b). (3)

When the weights associated with all the formulas are 1, qCon(C,D) is the
cardinality of the set of atoms which are in conflict in C∪D. In this case,
the quantity of conflict is similar to the Hamming distance between two
interpretations.

The quantity of conflict between two possibilistic knowledge base is the
minimal quantity of conflict between their respective weighted prime impli-
cants.

Definition 6. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is the set of weighted prime implicants of B1 and D is the set of weighted
prime implicants of B2, then the quantity of conflict between B1 and B2 is
defined as

QCon(B1, B2) = min{qCon(C,D)|C∈C, D ∈ D}. (4)

The quantity of conflict between B1 and B2 measures how much information
is in conflict betweenB1 andB2. In Equation 4, we use the minimum operator
to aggregate the quantities of conflict between weighted prime implicants in
C and weighted prime implicants in D. That is, a knowledge base B1 is
in conflict with another one B2 to the degree QCon(B1, B2) if for each pair
of weighted prime implicants in B1 and B2 respectively, their quantity of
conflict is at least QCon(B1, B2).
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Example 4. Let B1 = {(¬p, 0.8), (¬q ∨ r, 0.6)} and B2 = {(p ∨ ¬r, 0.7),
(q, 0.5)} be two possibilistic knowledge bases. The set of weighted prime im-
plicants of B1 is C1 = {(¬p, 0.8), (¬q, 0.6)} and C2 = {(¬p, 0.8), (r, 0.6)},
and the set of weighted prime implicants of B2 is D1 = {(p, 0.7), (q, 0.5)}
and D2 = {(¬r, 0.7), (q, 0.5)}. It is easy to calculate that qCon(C1, D1) =
1.2, qCon(C1, D2) = 0.5, qCon(C2, D1) = 0.7, qCon(C2, D2) = 0.6. Therefore,
the quantity of conflict between B1 and B2 is 0.5.

It happens that the quantity of conflict between B1 and B2 in Example 4 is
the same as the inconsistency degree of B1∪B2, which is the maximal weight
a in B1 ∪ B2 such that the a-cut of B1 ∪ B2 is inconsistent. However, this
result does not hold in general. Consider B1 = {(¬p, 0.8), (r, 0.7)} and B2 =
{(p, 0.7), (¬r, 0.6)}, we have QCon(B1, B2) = 1.3 but Inc(B1 ∪B2) = 0.6.

We consider some properties of the measure QCon.

Proposition 5. Let B1 and B2 be two possibilistic knowledge bases. Then
B1 ∪B2 is consistent iff QCon(B1, B2) = 0.

According to Definition 6 and Proposition 5, two knowledge bases B1 and B2

are inconsistent with each other if and only if each weighted prime implicant
of B1 is inconsistent with each weighted prime implicant of B2.

Proposition 6. Let B, B1 and B2 be three possibilistic knowledge bases. If
B2 ⊢π B1, then QCon(B,B1) ≤QCon(B,B2).

Proposition 6 tells us that the quantity of conflict between two knowledge
bases increases when one of them has been replaced by a logically stronger
possibilistic knowledge base.

We have shown in [30] that function QCon is syntax-independent.

Proposition 7. Given four possibilistic knowledge bases B1, B
′
1, B2 and B′

2,
suppose B1 ≡s B

′
1 and B2 ≡s B

′
2, then QCon(B1, B2) = QCon(B

′
1, B

′
2).

When we consider knowledge bases in classical propositional logic, the
quantity of conflict is consistent with the Dalal distance between two knowl-
edge bases [11]. The Dalal distance between two models wi, wj of a clas-
sical formula is the Hamming distance between them, i.e., Dalal(wi, wj) =
|wi − wj| + |wj − wi|. The Dalal distance between two knowledge bases is
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the minimal value of distances between all the pairs of models, one for each
knowledge base.

Let X be a set of classical propositional formulas. Let I(X) be the set
of interpretations of X delineated by the atoms used in X (i.e. I(X) =
2Atoms(X), where Atom(X) denotes the set of atoms appearing in X). Let
M(X,Y ) be the set of models of X that are in I(Y ). That is, M(X,Y ) =
{w|= ∧X|w∈I(Y )}.

Proposition 8. Let B1 and B2 be two classical propositional knowledge bases
that are consistent. Let Dalal (B1, B2) = min{Dalal(wi, wj)|wi∈M(B1, B1∪
B2), wj∈M(B2, B1∪B2)}. Then we have

QCon(B1, B2) = Dalal(B1, B2).

Proposition 8 is very important, because it tells us that our quantity of con-
flict coincides with the Dalal distance in classical propositional logic. There-
fore, the quantity of conflict QCon(B1, B2) in prioritized case can be taken as
a generalization of the Dalal distance between two knowledge bases.

There are two different kinds of quantities of agreement: the quantity
of strong agreement and the quantity of weak agreement. Intuitively, the
quantity of strong agreement measures how much information is supported
by both knowledge bases and the quantity of weak agreement measures the
information supported by only one knowledge base and is unknown to the
other. We first define the quantity of strong agreement.

Definition 7. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is a weighted prime implicant of B1 and D is a weighted prime implicant
of B2, then the quantity of strong agreement between C and D is defined as

qSA(C,D) =
∑

(l,a)∈C, (l,b)∈D

min(a, b). (5)

When the weights associated with all the formulas are 1, qSA(C,D) is the
cardinality of the set of literals which are in both C and D.

Definition 8. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is the set of weighted prime implicants of B1 and D is the set of weighted
prime implicants of B2, then the quantity of strong agreement between B1

and B2 is defined as

QSA(B1, B2) = max{qSA(C,D)|C∈C, D ∈ D}. (6)
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The quantity of strong agreement between B1 and B2 is the maximal quan-
tity of strong agreement between weighted prime implicants of B1 and B2

respectively. Dual to the quantity of conflict, we use the maximum to aggre-
gate the quantities of strong agreement between weighted prime implicants
in C and weighted prime implicants in D.

Example 5. Let B1 = {(p∨q, 0.7), (s, 0.6)} and B2 = {(p, 0.8), (s∨r, 0.6)} be
two possibilistic knowledge bases. B1 has two weighted prime implicants C1 =
{(p, 0.7), (s, 0.6)} and C2 = {(q, 0.7), (s, 0.6)}, and B2 has two weighted prime
implicants D1 = {(p, 0.8), (s, 0.6)} and D2 = {(p, 0.8), (r, 0.6)}. By Equation
5, we have qSA(C1, D1) = 1.3, qSA(C1, D2) = 0.7, qSA(C2, D1) = 0.6, and
qSA(C2, D2) = 0. Therefore, the quantity of strong agreement between B1

and B2 is QSA(B1, B2) = 1.3.

There exist B, B1 and B2 such that B2 ⊢π B1 but QSA(B,B1) > QSA(B,
B2). This is because if an agent gets more information, some information
that it strongly agrees with another agent may be lost. For example, suppose
B = {(p, 0.9)}, B1 = {(p ∨ q, 0.8)} and B2 = {(p ∨ q, 0.8), (¬p, 0.7)}. Then
we have QSA(B,B1) = 0.8 and QSA(B,B2) = 0. Therefore, if one agent gets
more information, the quantity of strong agreement between its knowledge
base and that of another agent may decrease.

The function QSA is also syntax-independent.

Proposition 9. Given four possibilistic knowledge bases B1, B
′
1, B2 and B′

2,
suppose B1 ≡s B

′
1 and B2 ≡s B

′
2, then QSA(B1, B2) = QSA(B

′
1, B

′
2).

Proof of Proposition 9 is similar to that of Proposition 7.
The quantity of strong agreement measures the information that both

agents “totally” agree with. Alternatively, we may want to measure the
information that is believed by one source but is unknown to the other. This
is achieved by defining the quantity of weak agreement.

Definition 9. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is a weighted prime implicant of B1 and D is a weighted prime implicant
of B2, then the quantity of weak agreement between C and D is defined as

qWA(C,D) =
∑

(li,ai)∈C∪D,li ̸∈C∗∩D∗ and ∼li ̸∈C∗∪D∗

ai. (7)
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That is, the quantity of weak agreement between weighted prime implicants
C and D of B is the sum of weights of literals appearing in either C or D
which do not appear in both C and D and whose complements appear in
neither C nor D. When the weights associated with all the formulas are 1,
qWA(C,D) is the cardinality of the set of literals which are in only one of C
and D but not both.

Definition 10. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is the set of weighted prime implicants of B1 and D is the set of weighted
prime implicants of B2, then the quantity of weak agreement between B1 and
B2 is defined as

QWA(B1, B2) = max{qWA(C,D)|C∈C, D ∈ D}. (8)

The quantity of weak agreement between B1 and B2 is the maximal quan-
tity of weak agreement between weighted prime implicants of B1 and B2

respectively.

Example 6. (Continue Example 4) By Equation 7, we have qWA(C1, D1) =
0, qWA(C1, D2) = 1.5, and qWA(C2, D1) = 1.1, qWA(C2, D2) = 1.3. We
illustrate how to compute qWA(C1, D2). q belong to both C1 and D2, so we
do not consider it. Both p and ¬r only appear in one of C1 and D2 and
their complements do not appear C1 ∪ D2. Therefore, qWA(C1, D2) is the
sum of their weights, i.e., 1.5. According to Definition 10, the quantity of
weak agreement between B1 and B2 is QWA(B1, B2) = 1.5.

Similar to the function QSA, there exist B, B1 and B2 such that B2 ⊢π B1

but QWA(B,B1) > QWA(B,B2). This can be explained intuitively as follows.
If an agent gets more information, her knowledge base B1 is changed to B2

which is logically stronger than B1, then some information that she weakly
agrees with another agent whose knowledge base isB may become conflicting.
For example, let B1 = {(p, 1)} and B = {(q, 1)}, then QWA(B,B1) = 2.
However, the quantity of weak agreement between B2 = {(p, 1), (p→ ¬q, 1)}
and B is QWA(B,B2) = 1, where B1⊆B2.

Proposition 10. Given four possibilistic knowledge bases B1, B
′
1, B2 and

B′
2, suppose B1 ≡s B

′
1 and B2 ≡s B

′
2, then QWA(B1, B2) = QWA(B

′
1, B

′
2).

Proof of Proposition 10 is similar to that of Proposition 7.
Based on the quantity of conflict and quantities of agreement, we can

define the following relationships between two knowledge bases.
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• two knowledge bases B1 and B2 are said to be totally in conflict if and
only if QCon(B1, B2) > 0 and QSA(B1, B2) = QWA(B1, B2) = 0. For
example, B1 = {(p, 0.5), (q, 0.6)} and B2 = {(¬p, 0.7), (¬q, 0.4)} are
totally in conflict.

• two knowledge bases B1 and B2 are totally in agreement if and only if
QCon (B1, B2) = QWA(B1, B2) = 0 and QSA(B1, B2) > 0. For example,
B1 = {(p, 0.7)} and B2 = {(p, 0.8)} are totally in agreement.

• two knowledge bases B1 and B2 are partially in conflict if and only if
QCon(B1, B2) > 0 and QSA(B1, B2) + QWA(B1, B2) > 0. In Example
4, B1 and B2 are partially in conflict.

4.2. Degree of conflict and degrees of agreement

In this subsection, we will define a degree of conflict and two degrees of
agreement between two possibilistic knowledge bases based on quantities of
conflict and agreement defined above.

The degree of conflict measures to what extent two knowledge bases are
in conflict. It was first introduced in [18] to measure the believability of
arguments.

Definition 11. Let B1 and B2 be two knowledge bases, and let Dalal(B1, B2)
be the Dalal distance between B1 and B2 defined in Proposition 8. The degree
of conflict between B1 and B2, denoted as C(B1, B2), is defined as follows:

C(B1, B2) =
Dalal(B1, B2)

log2(|I(B1∪B2)|)
(9)

Although this definition gives a method to measure the degree of conflict,
it can sometimes overestimate the degree of conflict between two knowledge
bases. The problem with Hunter’s definition is that it does not differentiate
the influence of quantity of strong agreement and quantity of weak agree-
ment. For example, let us consider two pairs of knowledge bases (B1, B2)
and (B′

1, B2), where B1 = {p, q, r}, B2 = {¬p, q, r} and B′
1 = {p}. Although

the quantity of conflict between B1 and B2 is 1, the quantity of strongly
agreement between them is 2. That means B1 and B2 have more opinion in
common than that in conflict. In contrast, the quantity of conflict betweenB′

1

and B2 is still 1, but now QSA(B
′
1, B2) = 0 and QWA(B

′
1, B2) = 2. The degree

of conflict between B′
1 and B2 should be higher than the degree of conflict
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between B1 and B2. However, by Equation 9, C(B1, B2) = C(B′
1, B2) = 1/3.

This is not reasonable.
According to the above analysis, the quantity of strong agreement and

quantity of weak agreement should have different influence on the degree of
conflict. We propose a degree of conflict as follows.

Definition 12. Let B1 and B2 be two possibilistic knowledge bases. Let C
be a weighted prime implicant of B1 and D be a weighted prime implicant of
B2. AtomCon(C,D) denotes the cardinality of the set of atoms which are in
conflict in C∪D. Then the degree of conflict between C and D is defined as

dCon(C,D) =
qCon(C,D)

AtomCon(C,D) + qSA(C,D) + λqWA(C,D)
, (10)

where λ ∈ (0, 1] is used to weaken the influence of the quantity of weak
agreement on the degree of conflict.

By default, we set λ = 0.5, that is, the quantity of weak agreement only has
“half” of the influence on the degree of conflict as the quantity of strong agree-
ment. The rationale for this setting is that when computing the quantity of
strong agreement between two weighted prime implicants, two appearances
of a literal in both weighted prime implicants are counted as 1, whilst when
computing the quantity of weak agreement between weighted prime impli-
cants, one appearance of a literal in each weighted prime implicant is counted
as 1.

Definition 13. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is the set of weighted prime implicants of B1 and D is the set of weighted
prime implicants of B2, then the degree of conflict between B1 and B2 is
defined as

DCon(B1, B2) = min{dCon(C,D)|C∈C, D ∈ D}. (11)

The degree of conflict measures to what extent B1 and B2 are in conflict with
each other.

Let us look at an example to illustrate the advantage of our degree of
conflict.
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Example 7. Let us consider the dialogue between three people John, Mary,
and Gary, they are discussing “whether Italy is the best football team in the
world ”(p) and “whether the best forwards are in Brazil” (q). John says “I
think Italy is the best football team in the world and the best forwards are in
Brazil”, Mary says “No, I think France is the best team, but I agree with you
that the best forwards are in Brazil”, and Gary says “No, I think France is the
best team”. Suppose all three people are certain of their beliefs. So the possi-
bilistic knowledge bases are John = {(p, 1), (q, 1)}, Mary = {(¬p, 1), (q, 1)}
and Gary = {(¬p, 1)}. To apply Equation 9, we consider the classical
knowledge bases corresponding to these possibilistic knowledge bases. We
then have C(John,Mary) = C(John,Gary) = 1/2. This is not reasonable,
because John and Mary agree on q so the degree of conflict between them
should be less than the degree of conflict between John and Gary. By con-
trast, we have DCon(John,Mary) = 1/2 and DCon(John,Gary) = 2/3, so
DCon(John,Mary) < DCon(John,Gary).

The relationship between our degree of conflict and that defined by Hunter
can be seen by the following proposition.

Proposition 11. Let B1, B2 be two classical knowledge bases. Suppose
C(B1, B2) and DCon(B1, B2) are degrees of conflict defined by Definition 11
and Definition 13 respectively. Then C(B1, B2)≤DCon(B1, B2).

The following example shows that the degree of conflict will not always
increase or decrease when one of them becomes logically stronger.

Example 8. Let B1 = {(p, 0.8), (q, 0.6)} and B2 = {(¬p, 0.5), (¬q, 0.7)} be
two possibilistic knowledge bases. So the degree of conflict between B1 and B2

is DCon(B1, B2) = 0.55. However, if B1 is revised to B′
1 = {(p, 0.8), (q, 0.6),

(r, 0.4)}, then DCon(B
′
1, B2) = 0.5. If B1 is revised to B′′

1 = {(p, 0.8), (q, 0.6),
(r, 0.9)} and B2 is revised to B′′

2 = {(¬p, 0.5), (¬q, 0.7), (¬r, 0.9)}, then
DCon(B

′′
1 , B

′′
2 ) = 0.67.

Two knowledge bases are not in conflict if and only if their degree of
conflict is 0.

Proposition 12. Let B1 and B2 be two possibilistic knowledge bases. Then
B1∪B2 is consistent if and only if DCon(B1, B2) = 0.
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The proof of Proposition 12 is similar to that of Proposition 5.
Similarly, we can define the degree of strong agreement between two possi-

bilistic knowledge bases. It is easy to see that the influences of the quantity of
conflict on the degree of strong agreement are more than that of the quantity
of weak agreement.

Definition 14. Let B1 and B2 be two possibilistic knowledge bases. Let C be
a weighted prime implicant of B1 and D be a weighted prime implicant of B2.
AtomSA(C,D) denotes the cardinality of the set of atoms which are included
in both C and D. Then the degree of strong agreement between C and D is
defined as

dSA(C,D) =
qSA(C,D)

AtomSA(C,D) + qCon(C,D) + λqWA(C,D)
, (12)

where λ ∈ (0, 1] is used to weaken the influence of the quantity of weak
agreement on the degree of strong agreement. As in Definition 12, we usually
take λ = 0.5.

Definition 15. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is the set of weighted prime implicants of B1 and D is the set of weighted
prime implicants of B2, then the degree of strong agreement between B1 and
B2 is defined as

DSA(B1, B2) = max{dSA(C,D)|C∈C, D ∈ D}. (13)

The degree of strong agreement measures to what extent B1 and B2 are in
strong agreement with each other. Dual to the degree of conflict, we use
the maximum to aggregate the degrees of strong agreement between two
weighted prime implicants in C and weighted prime implicants in D.

Example 9. Let B1 = {(p, 0.8), (q ∨ r, 0.4), (p → s, 0.5)} and B2 = {(p ∨
¬r, 0.8), (q, 0.6), (¬s, 0.7)}. The weighted prime implicants of B1 are C1 =
{(p, 0.8), (q, 0.4), (s, 0.5)} and C2 = {(p, 0.8), (r, 0.4), (s, 0.5)}, and the weighted
prime implicants of B2 are D1 = {(p, 0.8), (q, 0.6), (¬s, 0.7)} and D2 =
{(¬r, 0.8), (q, 0.6), (¬s, 0.7)}. So dSA(C1, D1) = 0.48, dSA(C1, D2) = 0.17,
dSA(C2, D1) = 0.4, dSA(C2, D2) = 0. Therefore, DSA(B1, B2) = 0.48.

The following example shows that the degree of strong agreement between
two possibilistic knowledge bases will not always increase or decrease when
one of them becomes logically stronger.

22



Example 10. Let B1 = {(p, 0.8), (q, 0.9)} and B2 = {(p, 0.6), (q, 0.8)}. Then
we have DSA(B1, B2) = 0.7. Suppose a new possibilistic formula (r, 0.8) is
added to B2 and the new possibilistic knowledge base is denoted as B′

2, then
we have DSA(B1, B

′
2) = 7/12. So DSA(B1, B

′
2) < DSA(B1, B2). However, if

we remove (q, 0.8) from B2 and get B′′
2 , then we have DSA(B1, B

′′
2 ) = 12/29.

Therefore DSA(B1, B2) > DSA(B1, B
′′
2 ).

The degree of conflict and the degree of strong agreement are related with
each other, which can be seen from the following proposition.

Proposition 13. Let B1 and B2 be two possibilistic knowledge bases. If
DCon(B1, B2) > 0.5, then DSA(B1, B2) < 0.5 and vice verse.

Proposition 13 says that for any two possibilistic knowledge bases, their de-
gree of conflict and degree of strong agreement cannot be greater than 0.5 at
the same time.

We can also define the degree of weak agreement.

Definition 16. Let B1 and B2 be two possibilistic knowledge bases. Let C be
a weighted prime implicant of B1 and D be a weighted prime implicant of B2.
AtomWA(C,D) denotes the cardinality of the set of atoms which are included
in only one of C and D but not both. Then the degree of weak agreement
between C and D is defined as

dWA(C,D) =
qWA(C,D)

AtomWA(C,D) + qCon(C,D) + qSA(C,D)
, (14)

In Definition 16, the quantity of conflict and quantity of strong agreement
have the same influence on the degree of weak agreement. When both B1 and
B2 are classical knowledge bases, then we have dWA(C,D) = AtomWA(C,D)

|Atom(C∪D)| .

Definition 17. Let B1 and B2 be two possibilistic knowledge bases. Suppose
C is the set of weighted prime implicants of B1 and D is the set of weighted
prime implicants of B2, then the degree of weak agreement between B1 and
B2 is defined as

DWA(B1, B2) = max{dWA(C,D)|C∈C, D ∈ D}. (15)

The degree of weak agreement measures to what extent B1 and B2 are in
weak agreement with each other.
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Example 11. (Continuing Example 9) By Definition 16, we have dWA(C1,
D1) = 0, dWA(C1, D2) = 0.55, dWA(C2, D1) = 0.3, dWA(C2, D2) = 0.48. So
the degree of weak agreement between B1 and B2 is 0.55.

The following example shows that the degree of weak agreement between
two possibilistic knowledge bases will not always increase or decrease when
one of them becomes logically stronger.

Example 12. (Continue Example 10) It is easy to check that DWA(B1, B2) =
0, DWA(B1, B

′
2) = 8/27 and DWA(B1, B

′′
2 ) = 9/16. So DSA(B1, B2) <

DSA(B1, B2) but DSA(B1, B
′′
2 ) > DSA(B1, B2).

It is possible that the degree of conflict and the degrees of agreement be-
tween two knowledge bases are less than 0.5 at the same time. For example,
letB1 = {p, q, r)} andB2 = {p,¬q}, thenDCon(B1, B2) = DSA(B1, B2) = 0.4
andDWA(B1, B2) = 1/3. It is also possible that the degree of conflict between
two possibilistic knowledge bases is greater than 1/2 and the degree of weak
agreement between them is also greater than 1/2. For example, let B1 =
{(p, 1), (q, 0.9), (r, 0.9)} and B2 = {(¬p, 1)}, then we have DCon(B1, B2) =
1/1.9 andDWA(B1, B2) = 1.8/2.8. Therefore, bothDCon(B1, B2) andDWA(B1,
B2) are greater than 1/2.

It is easy to check that functions DCon, DSA and DWA are all syntax-
independent.

Proposition 14. Given four possibilistic knowledge bases B1, B
′
1, B2 and

B′
2, suppose B1 ≡s B

′
1 and B2 ≡s B

′
2, then D(B1, B2) = DCon(B

′
1, B

′
2), where

D is either DCon or DSA or DWA.

5. Impact of Measures of Conflict and Agreement

In this section, we discuss some applications of the measures of conflict
and agreement. We first consider how the degree of conflict and degree of
strong agreement can be used to guide the choice of combination operators in
possibilistic logic. We then apply the degree of conflict to define an ordering
relation between two possibilistic knowledge bases.
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5.1. Choice of combination operators

Many combination rules in possibilistic logic have been proposed [3, 2].
Let B1 and B2 be two possibilistic knowledge bases, π1 and π2 be their as-
sociated possibility distributions. Semantically, a two place function ⊕ from
[0,1]×[0,1] to [0,1], is applied to aggregate π1 and π2 into a new possibility
distribution π⊕, i.e. π⊕(ω) = π1(ω) ⊕ π2(ω). Generally, the operator ⊕ is
very weakly constrained, i.e. the only requirements for it are the following
properties [2]:

1. 1⊕1 = 1, and

2. if a≥c, b≥d then a⊕b≥c⊕d, where a, b, c, d∈[0, 1] (monotonicity).

Two basic operators are the maximum and the minimum. Given two
possibility distributions π1 and π2, let πdm(ω) = max(π1(ω), π2(ω)) and
πcm(ω) = min(π1(ω), π2(ω)). The merging operators based on the maxi-
mum and the minimum have no reinforcement effect. That is, given an in-
terpretation ω, if expert 1 assigns possibility π1(ω) < 1 and expert 2 assigns
possibility π2(ω) < 1 to ω, then overall πdm(ω) = π2(ω) (or πcm(ω) = π1(ω))
if π1(ω) < π2(ω), regardless of the value of π1(ω) (or π2(ω)). To obtain a
reinforcement effect, we can use a triangular norm operator other than the
minimum for conjunctive combination, and a triangular conorm operator
other than the maximum for disjunctive combination.

Definition 18. A triangular norm (t-norm) tn is a two place real-valued
function tn : [0, 1]× [0, 1]→[0, 1] which satisfies the following conditions:

1. tn(0,0)=0, and tn(α,1)=tn(1,α)=α, for every α (boundary condition);

2. tn(α1,α2)≤tn(β1,β2) whenever α1≤β1 and α2≤β2 (monotonicity);

3. tn(α,β)=tn(β,α) (symmetry);

4. tn(α,tn(β,γ))=tn(tn(α,β),γ) (associativity).

A triangular conorm (t-conorm) is a two place real-valued function ct : [0, 1]×
[0, 1]→[0, 1] which satisfies the conditions 2-4 given in Definition 18 plus the
following revised boundary conditions:

1’. ct(1,1)=1,ct(α,0)=ct(0,α)=α.

Any t-conorm ct can be generated from a t-norm through the duality
transformation:

ct(α, β) = 1− tn(1− α, 1− β)
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and conversely.
It is easy to check that the maximum operator is a t-conorm and the min-

imum operator is a t-norm. Other frequently used t-norms are the product
operator αβ and the Lukasiewicz t-norm (max(0, α + β − 1)). The dual-
ity relation yields the following t-conorms respectively: the probabilistic sum
(α+ β − αβ), and the bounded sum (min(1, α + β)).

Suppose two possibilistic knowledge bases B1 and B2 are jointly consis-
tent, that is, B1 ∪B2 is consistent, then the degree of conflict between them
must be 0 and at least one of the degrees of agreement is greater than 0.
If the degree of strong agreement between B1 and B2 is very high, then B1

and B2 share beliefs on most of the topics. In this case, it is advisable to
combine them using an operator with higher reinforcement effect, for exam-
ple, the  Lukasiewicz t-norm max(0,a+b-1). However, if the degree of strong
agreement between B1 and B2 is low and the degree of weak agreement be-
tween them is very high, it is advisable to combine them using the minimum
operator which does not have any reinforcement effect.

Suppose B1 and B2 are in conflict, we usually use a t-conorm to combine
them. When the degree of conflict between B1 and B2 is very high, then B1

and B2 have mostly different beliefs and we can choose the “bounded sum”
operator which has a high counteract effect. On the other hand, if the degree
of conflict between B1 and B2 is very low, we can choose the maximum which
does not have any counteract effect.

More formally, we have the following criteria to choose different t-norms
(or t-conorms).
Merging operators selection criteria: Let ⊕1 and ⊕2 be two operators
applied to merge A and B, and C and D respectively, then for all a, b∈[0, 1],
(1) ⊕1(a, b)≤⊕2 (a, b) if 0 < DCon(A,B) < DCon(C,D)
(2) ⊕1(a, b)≥⊕2 (a, b) if DCon(A,B) = 0 and DSA(A,B) < DSA(C,D).

More precisely, given a set of knowledge bases which are consistent to-
gether, i.e., their union is consistent, we have the following criteria to choose
an operator by Equation (2) given above.

Definition 19. Let the merging operators be the minimum operator min,
the product operator ∗, and the Lukasiewicz t-norm ⊕L, then we have the
following criteria to choose an operator. Given n possibilistic knowledge bases
B1,...,Bn, suppose B1∪...∪Bn is consistent, let λ1 and λ2 be two real numbers
such that λ1 < λ2,

If DSA(B1, ..., Bn)≥λ2, the merging operator is the Lukasiewicz t-norm;
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If DSA(B1, ..., Bn) ∈ (λ1, λ2), the merging operator is the product operator;
If DSA(B1, ..., Bn)≤λ1, the merging operator is the minimum operator.

In Definition 19, λ1 and λ2 are thresholds that representing low and high
degree of strong agreement respectively. For example, we may take λ1 as
0.3 and λ2 as 0.8. According to Definition 19, we choose the Lukawiewicz
t-norm when the degree of strong agreement among Bi is high; we choose the
minimum operator when the degree of strong agreement among them is low;
and we choose the product operator otherwise. We have applied this selec-
tion criteria to define an adaptive algorithm to merge multiple possibilistic
knowledge bases in [24].

Example 13. Let B1 = {(p, 0.6), (q ∨ ¬r, 0.7), (s, 0.6)} and B2 = {(p, 0.5),
(q, 0.4), (s, 0.4)}, where DCon(B1, B2) = 0 and DSA(B1, B2) = 0.43. The
merging operator here should be the product operator, and the result of merg-
ing is B = {(p, 0.6), (q∨¬r, 0.7), (s, 0.6), (p, 0.5), (q, 0.4), (s, 0.4), (p, 0.8), (p∨q,
0.76), (p∨s, 0.76), (p∨q∨¬r, 0.85), (q∨¬r, 0.88), (q∨¬r∨s, 0.88), (p∨s, 0.8), (q
∨s, 0.76), (s, 0.76)}. However, if we use the Lukasiewicz t-norm, the result of
merging is B′ = {(p, 0.6), (q∨¬r, 0.7), (s, 0.6), (p, 0.5), (q, 0.4), (s, 0.4), (p, 1),
(p∨q, 1), (p∨s, 1), (p∨q∨¬r, 1), (q∨¬r, 1), (q∨¬r∨s, 1), (p∨s, 1), (q∨s, 1), (s, 1)
}. In B′, the weights of formulas p and s are reinforced to 1. However, the
certainty degrees of p and s are not high in both B1 and B2. Moreover, B1 and
B2 are not in strong agreement with each other because DSA(B1, B2) = 0.43.
So it is not reasonable to increase the weights of p and s to the highest cer-
tainty degree 1. In contrast, in B, p and s have certainty degrees of 0.8
and 0.76 respectively. Therefore the result of the product operator reflects
the reinforcement of B1 and B2 more accurately than that of the Lukasiewicz
t-norm.

5.2. Ordering sources

Measures of conflict and agreements can be used to rank knowledge bases.
In [30], we defined a distance-based ordering between two knowledge bases
in possibilistic logic based on the quantity of conflict, which is applied to
define a belief negotiation model used to deal with the problem of belief
merging. In [24], an ordering relation between two possibilistic knowledge
bases in relation to a reference knowledge base is defined by using the degree
of strong agreement, the inconsistency degree and the degree of conflict. This
ordering relation is then used to define an adaptive merging operator. In this
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section, we define an ordering relation to compare different knowledge bases
based on the degree of conflict.

Definition 20. Let Bi, Bj, B be three possibilistic knowledge bases. A close-
ness relation ≼B with regard to B is defined as.

Bi≼BBj iff DCon(Bj, B)≤DCon(Bi, B)

Bj is closer to B than Bi to B (Bi≼BBj) iff degree of conflict between Bj

and B is less than or equal to that between Bi and B. If Bi≼BBj, then we
may view Bj is less problematic or more reliable than Bi with regard to B.
It is clear that the closeness relation is a total pre-order. Given a possibilistic
knowledge base B, according to Proposition 5, any possibilistic knowledge
base which is consistent with B is closest to it. When using the closeness
relation, we may assume that the background knowledge base B is correct,
then rank other knowledge bases by the degrees of conflict between them and
B.

Example 14. Let B1 = {(¬p, 0.8), (¬q, 0.5), (¬r ∨ s, 0.7)}, B2 = {(¬p, 0.8),
(¬q, 0.5), (¬r, 1), (s, 0.7)}, and B = {(p∨q, 0.8), (¬s∨ r, 1)}. Since DCon(B1,
B) = 0.22 < 0.41 = DCon(B2, B), so B2≼BB1.

6. Related Work

We have discussed the relationship between our quantity of conflict with
Dalal’s distance between two knowledge bases and the relationship between
our degree of conflict with the degree of conflict defined by Hunter in [18].
Our measures of conflict are also related to the measure of contradiction [23]
or measures of inconsistency [21, 16, 22, 12, 19, 26]. The work in [12] ex-
tended some measures of information and conflict given in [16] and [17]. One
may think that we can measure the degree of conflict between two knowl-
edge bases by using measures of contradiction or measures of inconsistency
of their union. More specifically, to measure the degree of conflict between
two knowledge bases B1 and B2, we first concatenate them as B1 ∪ B2,
then take the degree of conflict between B1 and B2 as the degree of con-
tradiction or degree of inconsistency 3. However, this method is not de-

3When the knowledge bases are classical, we can use the measures defined on classical
knowledge base given in [23, 19]. Whilst for possibilistic knowledge bases, we can apply
the degree of inconsistency given in [12] or use the inconsistency degree defined in Section
2.2.
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sirable because it fails to distinguish between B1 and B2. Consider three
knowledge bases K = {(p, 0.6), (q, 0.8)}, K1 = {(¬p, 0.7), (r, 0.8)} and K2 =
{(¬p, 0.7), (q, 0.8), (r, 0.8)}. Since K ∪K1 = K ∪K2 = {(p, 0.6), (¬p, 0.7), (q,
0.8), (r, 0.8)}, if we apply the aforementioned method, such as those given in
[12], then the degree of conflict between K and K1 is the same as that be-
tween K and K2. This is counter-intuitive because there is more agreement
between K and K2 than there is between K and K1.

In contrast to much work on measures of conflict between two knowledge
bases and in a single knowledge base, there is relatively little work on mea-
sures of agreement between two knowledge bases. In [10], the authors define
degrees of agreement between users and between users and information sys-
tems. Their degree of agreement for a pair of users is equal to the number of
identical names chosen by two users divided by the number of names gener-
ated by each user, so it bears some similarity to our degree of strong agree-
ment between two knowledge bases. One of the coherence measures given by
Glass in [15] is closely related to our degrees of agreements. Suppose B1 and
B2 are propositional knowledge bases. He first define the agreement between
two classical interpretations ω1 and ω2 as C(ω1, ω2) =

|ω1∩ω2|
|n| , where n is the

number of atoms in the language and we treat interpretations as the set of
literals that are true in them. He then define a coherence measure C between
two knowledge bases B1 and B2 as follows:

C(B1, B2) =
|M(B1) ∩M(B2)|+ δ

|M(B1) ∪M(B2)|
,

where M(Bi) represents M(Bi, B1 ∪B2) and

δ =
Σω∈M1Σω′∈M2C(ω1, ω2)

|M(B2)|
+

Σω∈M1Σω′∈M2C(ω1, ω2)

|M(B1)|
with M1 =M(B1) \M(B2) and M2 =M(B2) \M(B1).
For example, we have C({p}, {p, q}) = 3/4, C({p}, {p ∨ q}) = 3/4,

C({¬p}, {p, q}) = 1/4 and C({p, q}, {¬p,¬q}) = 0. This measure does
not differentiate between strong agreement and weak agreement between two
knowledge bases. It can be considered as a measure of overall degree of agree-
ment between two knowledge bases. There is no clear relationship between
the degrees of strong agreement and weak agreement and degree of coher-
ence. In the above example, we have DSA({p}, {p, q}) = 2/3 < C({p}, {p, q})
and DSA({p}, {p∨ q}) = 1 > C({p}, {p∨ q}), and DWA({p}, {p, q}) = 1/2 <
C({p}, {p, q}) and DWA({¬p}, {p, q}) = 1 > C({¬p}, {p, q}).
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A couple of similarity measures on possibility distributions have been
given in the literature (see [20] for a survey). A set of natural properties of
a similarity measure is given in [20] where they also defines a new similarity
measure that satisfies all the properties. These measures can be adapted
to measure similarity between two possibilistic knowledge bases. One may
wonder if one of our degrees of agreement can be serve as a similarity measure.
We show that none of our degree of agreement is a similarity measure in the
sense that both of them do not satisfy a basic property adapted from a
property for a similarity measure given in [20]. We first state this adapted
property: If the range of a similarity measure s is the interval [0,1], then the
upper bound of s is equal to 1. For any possibilistic knowledge bases B1 and
B2, s(B1, B2) = 1 if and only if B1 ≡s B2. Our measure of strong agreement
does not satisfy this property. Consider B1 = {(p, 1)} and B2 = {(p∨ q, 1)},
we have DSA(B1, B2) = 1 but B1 and B2 are not equivalent. Our measure
of weak agreement does not satisfy this property as well. Consider B1 =
{(p, 1)} and B2 = {(q, 1)}, we have DWA(B1, B2) = 1 but B1 and B2 are not
equivalent.

7. Conclusion and Future Work

In this paper, we proposed measures of conflict between two prioritized
knowledge bases and measures of agreement of two such bases. We defined
the quantity of conflict and two quantities of agreement. The quantity of
conflict is a generalization of the Dalal distance. We then defined the degree
of conflict and degrees of agreement based on both the quantity of conflict
and the quantities of agreement. We have shown that the definition of degree
of conflict is more reasonable than that defined in [18]. The measures of con-
flict and agreement can be very useful in many applications, such as belief
merging, argumentation and heterogeneous source integration and manage-
ment. We can also apply measures of conflict to belief revision. Dalal in
[11] proposed a revision operator which is defined by the so-called Dalal dis-
tance. As we have shown that the quantity of conflict generalizes the Dalal
distance, it is possible to generalize Dalal’s revision operator to possibilistic
logic. There are several applications of the notion of a weighted prime im-
plicant which generalizes the notion of a prime implicant. Prime implicants
have been show useful in consequence finding (see [27]), in belief revision
(see [7]) and in knowledge compilation (see [9]). Accordingly, we can apply
weighted prime implicants to deal with similar problems in possibilistic logic.
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When defining the measures of agreement and conflict, we assume that
two possibilistic knowledge bases share a common scale. This assumption
is also called the commensurability assumption. However, in practice, this
assumption does not always hold (see [4] and [29]). As a future work, we will
consider defining measures of agreement and conflict between two possibilistic
knowledge bases that use different scales.

8. Proofs

Proof of Proposition 1
Suppose D is subsumed by D′, then D ̸= D′, and every literal appearing

in D′ must appear in D with higher or same necessity degree. Therefore, it
is clear that D ̸= D′ and D ⊢π D

′.
Conversely, suppose D ̸= D′ and D ⊢π D

′. We only need to show that
every literal appearing in D′ must appear in D with higher or same necessity
degree. Suppose (l, a) is in D′. Since D ⊢π D′, we have D ⊢π (l, a). So
D≥a ⊢ l. It follows that l ∈ D≥a. Therefore, l appears in D with a necessity
degree greater than or equal to a.

Proof of Proposition 2
A possibilistic knowledge base D = {(ψ1, 1), ..., (ψk, 1)}, where ψj (j =

1, k) are literals, is a weighted implicant of B iffD ⊢π (ϕi, 1) for all (ϕi, 1) ∈ B
and there are no two complementary literals and ψi ̸= ψj for i ̸= j. According
to [13], D ⊢π (ϕi, 1) iffD ⊢ ϕi for all i. SoD is a weighted implicant of B iffD
is an implicant of B. According to the definition of subsumption between two
weighted implicants, it is easy to check that D is a weighted prime implicant
of B iff D is a prime implicant of B.

Proof of Proposition 3
“only if part”: Suppose B ⊢π (ϕ, a). Since Di ⊢π B, we have Di ⊢π (ϕ, a).

Therefore Di⊢π(ϕ, a), for all Di.
“if part”: Suppose Di ⊢π (ϕ, a) for all Di, then ∨n

i=1(Di)≥a ⊢ ϕ. For each
Di, Di ⊢ (ψ, b) for all (ψ, b)∈B such that b≥a. So (Di)≥a ⊢ ψ for all (ψ, b)∈B
such that b≥a. That is, (Di)≥a is an implicant of B≥a. For any prime
implicant D of B≥a, there must exist some (Di)≥a such that D ⊢ (Di)≥a.
Otherwise, we can construct a new weighted prime implicant of B from D.
So D ⊢ ∨n

i=1(Di)≥a. That is, D ⊢ ϕ. Therefore, we have B≥a ⊢ ϕ, i.e.
B ⊢π (ϕ, a).

Proof of Proposition 4
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“only if part”: Suppose D is a weighted prime implicant, we show the
only if part by induction over bi. We first prove thatD=b1 is a prime implicant
of B=b1 by absurdity. Suppose this does not hold, then there exists Di which
is a prime implicant of B=b1 such that Di ⊂ Db1 . So we can construct
D′ = (D \ {(li, b1) : li ∈ D=b1}) ∪ {(lj, b1) : lj ∈ Di}. It is easy to check
that D′ is a weighted implicant of B. However, D′ ̸= D and D ⊢π D′,
contradiction. Assume that the only if part holds for bi, where i ≤ k − 1.
Similarly, we can show that D=bk is a D>bk-extended prime implicant of B=bk

by absurdity.
“if part”: Suppose it holds that D=bi is a D>bi-extended prime implicant

of B=bi for 1 ≤ i ≤ k, we show that D is a weighted prime implicant of B.
It is easy to check that D is a weighted implicant of B. Suppose D is not a
weighted prime implicant of B. Then there exists another different weighted
implicant D′ of B such that D ⊢π D

′. So there exists i ∈ {1, ..., k} such that
D=bj = D′

=bj
for all j < i, but D′

=bi
⊆ D=bi . This infers that D=bi is not a

D>bi-extended prime implicant of B=bi , contradiction.

Proof of Proposition 5
Suppose B1 ∪ B2 is consistent, then there exist a model ω1 of (B1)

∗ and
a model ω2 of (B2)

∗ such that ω1 = ω2 (both ω1 and ω2 should assign truth
values to all the atoms appearing in (B1∪B2)

∗). Suppose QCon(B1, B2)̸=0.
Then for any weighted prime implicant D1 of B1 and any weighted prime
implicant D2 of B2, qCon(D1, D2)̸=0. According to Proposition 2, for any
prime implicant (D1)

∗ of (B1)
∗ and any prime implicant (D2)

∗ of (B2)
∗,

qCon((D1)
∗, (D2)

∗) ̸= 0. Since for any model ω of a classical knowledge base
B, there exists a prime implicant D of B such that ω |= D. If we consider
ω = {p ∈ PS|ω(p) = true} ∪ {¬p|p ∈ PS, ω(p) = false}, then we have
D ⊆ ω. Therefore, there does not exist a model ω1 of (B1)

∗ and a model
ω2 of (B2)

∗ such that ω1 = ω2. This is a contradiction. So we must have
QCon(B1, B2) = 0. Conversely, suppose QCon(B1, B2) = 0. Then there exist
a weighted prime implicant D1 of B1 and a weighted prime implicant D2 of
B2 such that QCon(D1, D2) = 0. By Proposition 2, QCon((D1)

∗, (D2)
∗) = 0.

Therefore, we can find a model ω1 of (B1)
∗ and a model ω2 of (B2)

∗ such
that ω1 = ω2. So B1 and B2 are not in conflict.

Proof of Proposition 6
We only need to prove that for any weighted prime implicant D of B

and weighted prime implicant D2 of B2, there exists a weighted prime im-
plicant D1 of B1 such that qCon(D,D1)≤qCon(D,D2). Since B2 ⊢π B1 and
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D2 ⊢π B2, we have D2 ⊢π B1. That is, D2 is a weighted implicant of B1.
So there exists a weighted prime implicant D1 of B1 such that D2 is sub-
sumed byD1. By Definition 5, we have qCon(D,D1)≤qCon(D,D2). Therefore,
QCon(B,B1)≤QCon(B,B2).

Proof of Proposition 8
Without loss of generality, we suppose that the formulas in B1 and B2

are clauses.
We first prove Dalal(B1, B2)≤QCon(B1, B2). Let C and D be prime

implicants of B1 and B2 respectively. Suppose w1 and w2 are two inter-
pretations such that w1|=p (w2|=p) if p∈C (p∈D) and w1|=¬p (w2|=¬p) if
¬p∈C (¬p∈D) and w1|=p (w2|=p) otherwise. We then have Dalal(ω1, ω2) =
QCon(C,D). Moreover, w1|=C and w2|=D and Dalal(w1, w2) = qCon(C,D).
Since C|=B1 and D|=B2, w1|=B1 and w2|=B2. So w1∈M(B1, B1∪B2) and
w2∈M(B2, B1∪B2). By the definition ofQCon(B1, B2), we haveDalal(B1, B2)
≤QCon(B1, B2).

Secondly, suppose w1∈M(B1, B1∪B2) and w2∈M(B2, B1∪B2). Then w1|=B1

and w2|=B2. Since B1 = C1∨...∨Cn, where Ci are the set of prime implicants
of B1, there must exist a prime implicant Ci of B1 such that w1|=Ci. Sim-
ilarly, there must exist a prime implicant Dj of B2 such that w2|=Dj. So
w1|=p (w2|=p) if p∈C (p∈D) and w1|=¬p (w2|=¬p) if ¬p∈C (¬p∈D). So
qCon(C,D)≤Dalal(w1, w2). Therefore, QCon(B1, B2)≤Dalal(B1, B2).

Therefore, we must have QCon(B1, B2) = Dalal(B1, B2).

Proof of Proposition 11
For any prime implicant C of B1 and any prime implicant D of B2, there

exist ω1 ∈ M(B1, B1∪B2) and ω2∈M(B2, B1∪B2) such that qCon(C,D) =
Dalal(ω1, ω2). Since AtomCon(C,D)≤log2(|I(B1∪B2)|), we have that

Dalal(ω1,ω2)
log2(|I(B1∪B2)|)≤dCon(C,D). So C(B1, B2)≤DCon(B1, B2).

Proof of Proposition 13
Suppose DCon(B1, B2) > 0.5, then for any weighted prime implicant

C of B1 and any weighted prime implicant D of B2, dCon(C,D) > 0.5.
That is, 2qCon(C,D) > AtomCon(C,D) + qSA(C,D) + λqWA(C,D). Suppose
DSA(B1, B2) > 0.5, then we have 2qSA(C,D) > AtomSA(C,D)+qCon(C,D)+
λqWA(C,D). We then have qCon(C,D) + qSA(C,D) > AtomCon(C,D) +
AtomSA(C,D) + 2λqWA(C,D). However, qCon(C,D) < AtomCon(C,D) and
qSA(C,D) < AtomSA(C,D). This is a contradiction. Therefore,DCon(B1, B2)
and DSA(B1, B2) cannot be great than 0.5 at the same time.
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