
Fundamenta Informaticae 91 (2009) 1–40 1

DOI 10.3233/FI-2009-0008

IOS Press

Handling Inconsistency In Distributed Software Requirements
Specifications Based On Prioritized Merging

Kedian Mu∗

School of Mathematical Sciences
Peking University
Beijing 100871, P.R.China
mukedian@math.pku.edu.cn

Weiru Liu
School of Electronics, Electrical Engineering
and Computer Science
Queen’s University Belfast, BT7 1NN, UK
w.liu@qub.ac.uk

Zhi Jin †

School of Electronics Engineering and Comp. Sci.,
Peking University
Key Laboratory of High Confidence Software
Technologies, Ministry of Education
Beijing 100871, P.R.China
zhijin@sei.pku.edu.cn

Ruqian Lu‡

Academy of Mathematics and System Sciences
Chinese Academy of Sciences
Beijing 100080, P.R.China
rqlu@math.ac.cn

Anbu Yue
School of Electronics, Electrical Engineering
and Computer Science
Queen’s University Belfast, BT7 1NN, UK
a.yue@qub.ac.uk

David Bell
School of Electronics, Electrical Engineering
and Computer Science
Queen’s University Belfast, BT7 1NN, UK
da.bell@qub.ac.uk

Abstract. Developing a desirable framework for handling inconsistencies in software requirements
specifications is a challenging problem. It has been widely recognized that the relative priority of re-
quirements can help developers to make some necessary trade-off decisions for resolving conflicts.

Address for correspondence: Kedian Mu, School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China
∗Thanks to four anonymous referees for valuable comments andsuggestions on improving the paper. Funding was provided
in part by the National Natural Science Foundation of China under Grant No. 60703061, the National 863 High-tech Project
of China under Grant No. 2006AA01Z155, the Key Project of National Natural Science Foundation of China under Grant No.
90818026, and the NSFC and the British Royal Society China-UK Joint Project.
†Funding was provided in part by the National Natural ScienceFund for Distinguished Young Scholars of China under Grant
No. 60625204, the National Key Research and Development Program of China under Grant No. 2002CB312004, and the Key
Project of National Natural Science Foundation of China under Grant No. 90818026.
‡Funding was provided in part by the Key Project of National Natural Science Foundation of China under Grant No.60496324.

2 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

However, for most distributed development such as viewpoints-based approaches, different stake-
holders may assign different levels of priority to the same shared requirements statement from their
own perspectives. The disagreement in the local levels of priority assigned to the same shared
requirements statement often puts developers into a dilemma during the inconsistency handling
process. The main contribution of this paper is to present a prioritized merging-based framework for
handling inconsistency in distributed software requirements specifications. Given a set of distrib-
uted inconsistent requirements collections with the localprioritization, we first construct a require-
ments specification with a prioritization from an overall perspective. We provide two approaches to
constructing a requirements specification with the global prioritization, including a merging-based
construction and a priority vector-based construction. Following this, we derive proposals for han-
dling inconsistencies from the globally prioritized requirements specification in terms of prioritized
merging. Moreover, from the overall perspective, these proposals may be viewed as the most ap-
propriate to modifying the given inconsistent requirements specification in the sense of the ordering
relation over all the consistent subsets of the requirements specification. Finally, we consider ap-
plying negotiation-based techniques to viewpoints so as toidentify an acceptable common proposal
from these proposals.

Keywords: Inconsistency; Requirements Engineering; Prioritized Merging; Local Prioritization

1. Introduction

For any proposed software project, its software requirements specification1 plays a prominent role in the
development process. It provides a baseline for subsequentdevelopment stages including design, coding,
testing and maintenance. Consequently, a software requirements specification of good quality is crucial
for the project success.

However, poor requirements, incorrect specifications, andineffective requirements management are
still identified as major sources of problems in the development process [1, 2]. Errors being made during
the requirements stage account for 40 to 60 percent of all thedefeats found in a software project [3,
4]. To make matters worse, it is extremely expensive to correct these errors if they leaked into the
subsequent phases in the software development life cycle [5]. Thus developing the software requirements
specifications of good quality is still a very important but challenging issue.

Intuitively, to elicit authentic requirements for a system-to-be, it is advisable to advocate that each
stakeholder expresses his demands only from his own perspective rather than from a global perspective.
For any complex software system, the development of requirements typically involves many different
stakeholders with different concerns. Then the software requirements specifications are increasingly
developed in a distributed fashion.

Viewpoints-based approaches [6, 7, 8] may be considered as notable examples of distributed specifi-
cations development. We focus on the inconsistency handling in the Viewpoints framework in this paper.
The Viewpoints framework has been developed to represent and analyze the different perspectives and
their relationships during the requirements stage. A viewpoint is a description of system-to-be from the
perspective of a particular stakeholder, or a group of stakeholders. It reflects the concerns of a particu-
lar stakeholder. The requirements specification of the system-to-be comprises a structured collection of
loosely coupled, locally managed, distributable viewpoints, with explicit relationships between them to

1The term software requirements specification is referred toas requirements descriptions mostly in requirements community.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 3

represent their overlaps [9]. These viewpoints may overlap, complement, or contradict with each other,
then it makes inconsistency management more necessary during the requirements stage.

Generally speaking, inconsistency management may be divided into two parts, i.e. consistency
checking and inconsistency handling. Consistency checking is a pervasive issue in requirements vali-
dation and verification. It focuses on techniques for detecting inconsistencies in a collection of require-
ments, including logic-based approaches [10, 11, 12] and consistency-rule-based approaches [13, 14].
For logic-based approaches, the term ofinconsistencyis defined as any situation in which some fact and
its negation can be simultaneously derived from the same requirements collection. That is, inconsistency
is referred to as thelogical contradiction. Then the logic-based approaches have a theoretical basis.In
contrast, the term ofinconsistencyin consistency-rule-based approaches is viewed as any situation in
which two parts of a specification do not obey some relationship that should have been held between
them. Some researchers argued that this definition of inconsistency is too general to be informative [12].

“ Inconsistency Implies Actions” is recognized as a meta-rule for inconsistency handling [15, 11].
That is, when inconsistencies are detected, some actions should be performed to modify the inconsistent
requirements. However, identifying appropriate actions is still a difficult, but important issue [11]. The
choice of an inconsistency-handling action always dependson the nature and context of inconsisten-
cies [15, 16]. But the context of inconsistency is rather complex. Many factors such as inappropriate
description of requirements, misunderstanding between customers and requirements analysts, conflicting
intentions of different stakeholders can all result in inconsistencies during the requirements stage.

Merging techniques have been considered in managing inconsistent viewpoints. For example, East-
erbrook et al [34] presented a framework termedχbel for merging and reasoning about inconsistent
state machine models using multi-valued logics. Their framework was intended to highlight the sources
of inconsistency and to tolerate inconsistencies between viewpoints during model checking. It did not
consider how to resolve these inconsistencies. Barragáns Mart́inez et al [35] defined a merging operator
aiming to get a model which best reflects the combined knowledge of all the stakeholders (viewpoints)
without first resolving inconsistencies and incompleteness. Although their methodology has envisioned
two kinds of possible revision procedures to modify the original viewpoints, useful guidance on how to
resolve these inconsistencies by using these revision procedures is not yet provided in [35]. These exist-
ing merging frameworks used in managing inconsistent viewpoints focused on tolerating inconsistency
rather than resolving inconsistency in merged results.

It has been recognized that the relative priority of requirements can help requirements analysts re-
solve conflicts and make some necessary trade-off decisionsduring requirements elicitation and analysis
stage [17, 18]. Given an inconsistent set of prioritized requirements, desirable actions should disengage
most requirements with higher priority from inconsistency. Consequently, it may be desirable to manage
inconsistent viewpoints to combine the relative priority of requirements and merging techniques.

However, prioritized merging [19] takes the relative priority of information into account when merg-
ing inconsistent information. Informally speaking, suppose that there are a stream or a sequence of pos-
sibly conflicting observations2 with different reliability degrees about the same static world, prioritized
merging aims to extract anoptimalconsistent view about the world by incorporating these observations
based on a prioritized merging operator. Given an inconsistent requirements specification with prioriti-
zation, each requirements statement may be considered as anobservation about the system-to-be.

2An observation is referred to as an item of information aboutthe world.

4 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Moreover, the priority level of an individual requirementsstatement may be considered as the relative
importance of that requirements statement with regard to the system-to-be. Then the prioritized merging
may be applied to identifying the consistent requirements appropriate to the system-to-be from the given
requirements specification.

Note that we assume that the priority of each requirements statement implies its relative importance
with regard to the whole system-to-be. That is, the requirements specification mentioned above should be
prioritized from a global perspective. However, in the Viewpoints framework, the requirements always
are only prioritized locally. For each viewpoint, the requirements of the viewpoint are prioritized from
the perspective of the viewpoint rather than from the globalperspective. Moreover, different viewpoints
may adopt different scales of priority levels in local prioritization. Therefore, different viewpoints may
assign different levels of priority to the same shared requirements statement. For a shared requirements
statement, each priority given by a viewpoint is a measure ofits relative importance with regard to this
viewpoint. The disagreement in these local priorities assigned to the same shared requirements statement
often puts developers into a dilemma.

To address these problems, we present a prioritized merging-based framework to handle inconsis-
tency in the Viewpoints framework in this paper. First, we consider two methods for constructing a glob-
ally prioritized requirements specification from a set of requirements collections with the local prioriti-
zation, including the priority vector-based constructionand the merging-based construction. Informally,
the priority vector-based construction focuses on how to get the global priority of each requirements
statement by integrating its existing local priorities. Itis appropriate to the special cases that the view-
points at the same level adopt the the same scale of local prioritization. In contrast, the merging-based
construction considers each requirements collection withthe local prioritization as a stratified knowledge
base. The requirements specification with the global prioritization is constructed by merging these strat-
ified knowledge bases based on the merging operator presented in [20]. It is appropriate for merging
any viewpoints, especially for merging viewpoints with different scales of local prioritization. Follow-
ing this, we map this requirements specification to a set of its consistent subsets by using a prioritized
merging operator. The prioritized merging operator used inthe mapping provides a relation over all the
consistent subset of the requirements specification. Moreover, each consistent subset of the requirements
specification in the prioritized merging result may be considered as optimal with regard to this relation.
Then we derive some appropriate proposals for handling inconsistencies from the global perspective.
Finally, we consider negotiation as a group making decisionmechanism for identifying an acceptable
common proposal from these proposals.

The rest of this paper is organized as follows. Section 2 gives an introduction to the Viewpoints
framework, prioritized merging and the merging operator presented in [20], respectively. Section 3
provides a general framework for prioritized merging-based approach to handling inconsistency in the
Viewpoints framework. Section 4 generalizes our previous work [32] on merging-based approaches to
constructing a globally prioritized requirements collection. Section 5 presents a priority vector-based
approach to constructing a globally prioritized requirements collection. The corresponding prioritized
merging-based frameworks are also specified respectively in this two sections. Section 6 uses a case
study to illustrate how to apply the prioritized merging-based approaches to handling inconsistency in
requirements development. Section 7 discusses some issuessuch as comparison of the two approaches to
constructing a globally prioritized requirements collection in the prioritized merging-based framework.
Section 8 compares our work with related work. Finally, we conclude this paper in Section 9.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 5

2. Preliminaries

2.1. Logical representation of Viewpoints

We consider the use of classical logic-based language in representation of viewpoints in this paper.
Although heterogeneity of representation allows different viewpoints to use different notations and tools
to represent their requirements during the requirements stage [9], first order logic is appealing for formal
representation of requirements statements since most tools and notations for representing requirements
could be translated into formulas of first order logic [11]. That is, first order logic may be considered
as a promising tool to represent different viewpoints and their relationships uniformly. Moreover, in a
logic based framework for representing requirements, reasoning about requirements is always based on
some facts that describe a certain scenario [11]. It impliesthat checking the consistency of requirements
collections only considers ground formulas3 rather than unground formulas. Furthermore, if we restrict
the first order language to propositional case, it may renderconsistency checking decidable. This gives
some computational advantages. For these reasons, we assume a classical first order language without
function symbols and existential quantifiers. This classical first order logic is the most convenient to
illustrate our approach, as will be shown in the rest of the paper.

LetLΦ0 be the language composed from a set of classical atomsΦ0 and logical connectives{∨,∧,¬,
→} and let` be the classical consequence relation. LetS1, · · · , Sn be a disjoint sequence of sets
of formulas inLΦ0 , we use〈S1, · · · , Sn〉 to denote a stratified set of formulas, in which there is the
following pre-order relation�, over these formulas:∀α ∈ Si, β ∈ Sj,

• α � β 4 if and only if i ≤ j;

• α ' β if and only ifα � β andβ � α;

• α ≺ β if and only ifα � β andβ 6� α.

If Si 6= ∅ for eachi, we also use(S1, · · · , Sn) instead of〈S1, · · · , Sn〉.
Let α ∈ LΦ0 be a classical formula and∆ ⊆ LΦ0 a finite set of formulas inLΦ0 . In this paper,

we call ∆ a set of requirements statements (or a requirements collection) while each formulaα ∈ ∆
represents a requirements statement. For example, given a requirement of “if Alice requests to borrow
the book of Algorithm and the book is available, then Alice can borrow the book” in a certain scenario,
we can represent the requirement by

require(Alice,Algorithm) ∧ available(Algorithm) → borrow(Alice,Algorithm).

Generally, prioritization over a requirements collection∆ is just a strategy for differentiating require-
ments of∆ at a coarse granularity by its importance and urgency from some perspective. A common
approach to prioritizing a requirements collection is to group requirements statements into several pri-
ority categories, such as the most frequent three-level scale of “High”, “ Medium”, “ Low” [21] and the
five-level scale of priorities used in [18].

3There is no variable symbol appearing in the ground formula.For example,user(John) is a ground atom, anduser(x) is
not a ground atom.
4α is more preferable toβ.

6 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Another technique for prioritizing requirements specifications is based on numerical estimations of
value, cost and risk of each requirements statement, such ascost-value approach [22] and Quality Func-
tion Deployment [23](QFD for short). However, K. Wiegers has pointed that few software organizations
are willing to undertake the rigor of QFD in his experience [17].

In this paper, we adopt the common kind of prioritization to group requirements into several priority
categories. Letm, a natural number, be the scale of the priority level andLm be{l1, · · · , lm}, a totally
ordered finite set ofm symbolic values of the priorities, i.e.li < lj iff i < j. Generally,li < lj means
thatrequirements withli are more preferable to requirements withlj. We also say thatrequirements with
li have a higher priority than that of requirements withlj . That is, a high value inLm signifies a lower
priority. Furthermore, each symbolic value inLm could associate with a linguistic value. For example,
for a three-level priority set, we have a totally ordered setL3 asL3 = {l1, l2, l3} where

l1 : High, l2 : Medium, l3 : Low

For example, if we assignl1 to a requirements statementα, it means thatα is one of the most important
requirements statements. In the rest of paper, we adopt thisthree-level priority set in most examples,
though it is not obligatory. From a given particular perspective, prioritization over∆ is in essence to
establish a prioritization functionP : ∆ 7−→ Lm by balancing the business value of requirements
against its cost and risk. Actually, prioritizing a set of requirements statements∆ is to group∆ into
m priority categories. That is, for every∆, prioritization provides a partition of∆, 〈∆1,∆2, · · · ,∆m〉,
where∆k = {α|α ∈ ∆, P (α) = lk}, for k = 1, · · · ,m. We then use〈∆1,∆2, · · · ,∆m〉 to denote a
prioritized requirements collection in this paper. Just for convenience, we abbreviate〈∆1,∆2, · · · ,∆m〉
asP � ∆ in some discussion below.

In the Viewpoints framework, a viewpoint is a description ofconcerns of a particular group of stake-
holders. Given a software project, letV = {v1, · · · , vn} (n ≥ 2) be the set of viewpoints. Suppose that
Lmi is the scale of priority levels adopted byvi for all i. Let ∆i be the set of requirements statements
of viewpoint vi andPi the prioritization mapping from∆i to Lmi for each1 ≤ i ≤ n. Then the re-
quirements specification could be represented by an + 1 array[P1 � ∆1, · · · , Pn � ∆n, R], whereR is
the set of relationships for consistency checking between these viewpoints, such as the relationships to
represent their overlaps.

Because we use the classical logic as the uniform representation of viewpoints, an individual relation
betweenvi andvj could also be explicitly represented by formulas involvingsome notations in∆i ∪∆j.
For example, we may usea ↔ b to denote that notation (or formula)a of vi andb of vj overlap totally
[24]. Such notations should be added to the requirements set∆i ∪ ∆j to check consistency of∆i ∪ ∆j

if necessary. Furthermore, for the sake of simplicity, we useR(i1, · · · , ik) to represent the relationship
among viewpointsvi1 , · · · , vik . We should check the consistency ofR(i1, · · · , ik) ∪ (

⋃k
j=1 ∆ij) if

R(i1, · · · , ik) ∈ R.
We callvi a supporting viewpointof α if α ∈ ∆i. LetV (α) denote a set of supporting viewpoint of

α, thenV (α) = {vi|α ∈ ∆i, i ∈ [1, n]}. |V (α)| > 1 means thatα is a shared requirements statement of
at least two viewpoints.

Different stakeholders play different roles during the software development. It is not surprising
that some stakeholders are more important than others. Similar to prioritization of requirements, we
prioritize viewpoints by group them into several priority categories. LetLr

V be ar-level priority set used
in prioritizing viewpoints. Then prioritizing viewpointsis to establish a prioritization mappingPV :
V 7−→ Lr

V in essence. Just for convenience, we also adopt the three-level priority set used in prioritizing

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 7

requirements to prioritize the viewpoints in the examples.Similar to requirements prioritization,PV

provides a partition ofV , 〈V 1, V 2, · · · , V r〉, whereV k = {v|v ∈ V, PV (v) = lk} for each1 ≤ k ≤ r.
In the rest of this paper, we abbreviate the prioritized viewpoints〈V 1, V 2, · · · , V r〉 asPV � V .

As mentioned earlier, the term ofinconsistencyhas different definitions such as consistency rule-
based definition and logical contradiction in requirementsengineering [12]. Most logic-based works
such as [11, 12, 10] concentrated on a particular kind of inconsistency, i.e.the logical contradiction:
any situation in which some factα and its negation¬α can be simultaneously derived from the same
requirements collection∆. In this paper, we shall also be concerned with the logical contradiction. Let
Consequence(∆) = {α|∆ ` α}. It is the set of all the consequences derived from∆. If there is a
formulaα such thatα ∈ Consequence(∆) and¬α ∈ Consequence(∆), then we consider∆ to be
inconsistentand abbreviateα ∧ ¬α by⊥ (read inconsistency).

For the simplicity of discussion below, we use the classicalformulas such asα andβ to stand for any
unspecified requirements statement in the examples in subsequent sections.

2.2. Knowledge bases merging

Merging is a common approach to fusing a set of heterogeneousinformation. Given a set of knowledge
bases, the gist of knowledge base merging is to derive an overall knowledge base which best reflects the
combined knowledge of all the original knowledge bases. A flat knowledge baseK is a set of formulas
in LΦ0. An interpretation is a total function fromΦ0 to {0, 1}, denoted by a bit vector whenever a strict
total order onΦ0 is specified.Ω is the set of all possible interpretations. An interpretation ω is a model
of a formulaϕ, denotedω |= ϕ, iff ω(ϕ) = 1. ThenK is consistent iff there is at least a model ofK.

A stratified knowledge base is a finite setK of formulas inLΦ0 with a total pre-order relation�
onK. Intuitively, if ϕ � ψ thenϕ is regarded as more preferred or more important thanψ. From the
pre-order relation� onK,K can be stratified asK = (S1, · · · , Sn), whereSi contains all the minimal

propositions of set
n⋃

j=i

Sj with regard to�. EachSi is called a stratum ofK and is non-empty.We denote

⋃
K =

n⋃
j=i

Sj. A knowledge profileE is a multiset5 of knowledge bases, i.e.E = {K1, · · · ,Kn}.

Many model-based as well as syntax-based merging operatorshave been presented to merge either
flat or stratified knowledge bases. Informally, syntax-based operators aim to pick some formula in the
union of the original bases. It may result in loss of some implicit beliefs during merging. In contrast,
model-based merging operators aim to select some interpretations that are the closest to the original
bases. They may also introduce external formulas. Most merging operators just generate a flat knowledge
base as the result. At present, only the merging operators presented in [20] can be used to construct a
stratified merged knowledge base. In this paper, we adopt thesyntax-based operators presented in [20]
to merge inconsistent requirements collections.

Given a stratified knowledge baseK = (S1, · · · , Sn), its models are defined as minimal interpreta-
tions with regard to a total pre-order relation�X on interpretations that is induced fromK by an ordering
strategyX. The three widely used ordering strategies are defined as follows:

5A multiset is a set in which different occurrences of the sameknowledge base are distinguished. For instance,E =
{K1, K1, K2} comprises of three knowledge bases,K1, K1, andK2. It allows us to represent a scenario that two differ-
ent stakeholders (viewpoints) have the same set of requirements.

8 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

• Best out ordering[25]: let rBO(ω) = min{i : ω 6|= Si} for ω ∈ Ω, wheremin function returns
the minimum value ofi such thatω 6|= Si . By convention,min{∅} = +∞. Then the best out
ordering�bo onΩ is defined as:

ω �bo ω
′ iff rBO(ω) ≥ rBO(ω′).

Note that for each interpretationω, rBO(ω) gives the highest priority of formulas that cannot be
satisfied byω. Then the best out ordering focuses on the most preferred stratum ofK that cannot
be satisfied byω.

• Maxsat ordering[26]: let rMO(ω) = min{i : ω |= Si}, for ω ∈ Ω. Then the maxsat ordering
�mo onΩ is defined as:

ω �mo ω
′ iff rMO(ω) ≤ rMO(ω′).

Essentially, for eachω, rMO(ω) gives the highest priority that all the formulas with this priority
are satisfied byω. So, contrary to the best out ordering, the maxsat ordering concerns with the
most preferred stratum ofK satisfied byω.

• Leximin ordering[25]: let Ki(ω) = {ϕ ∈ Si : ω |= ϕ}, for ω ∈ Ω. Then the leximin ordering
�lo onΩ is defined as:ω �lo ω

′ iff

(1) |Ki(ω)| = |Ki(ω′)| for all i, or

(2) there is ani such that|Ki(ω)| > |Ki(ω′)|, and for allj < i, |Kj(ω)| = |Kj(ω′)|, where
|Ki(·)| denotes the cardinality of setKi(·).

Generally, we useK(ω) to denote(K1(ω), · · · ,Kn(ω)). Actually, the leximin ordering overΩ
is based on the lexicographical relation{K(ω), ω ∈ Ω}. Compared to the two ordering strategies
above, it considers the number of all formulas satisfied by a given interpretationω as well as the
priority of each formula satisfied byω.

Given a stratified knowledge baseK, from the pre-order relation�X induced fromK on Ω, the
interpretations inΩ can also be stratified asΩK,X = (Ω1, · · · ,Ωm).

Yue et al [20] have presented an approach to deriving a stratified knowledge baseK as a merged
result of given knowledge profileE = {K1, · · · ,Kn}, which is more appropriate to scenarios that there
is no common stratification scale among different original knowledge bases. They argued that if the
knowledge bases are designed independently, then only the relative preference between interpretations
induced from a knowledge base by some ordering strategy is meaningful in a merging process.

Definition 2.1. (Relative Preference Relation [20])
Given a knowledge ProfileE = {K1, · · · ,Kn}, let {ΩK1,X1 , · · · ,ΩKn,Xn} be a multi-set of stratifica-
tions ofΩ. A binary relative preference relationR ⊆ Ω×Ω is defined as:R(ω, ω′) iff |{ΩKi,Xi

s.t. ω ≺i

ω′}| > |{ΩKi,Xi
s.t. ω′ ≺i ω}|, where≺i is the strict partial order relation induced fromΩKi,Xi

.

Note thatR(ω, ω′) means that more knowledge bases preferω thanω′.

Definition 2.2. (Undominated Set [20])
Let R be a relative preference relation overΩ and letQ be a subset ofΩ. Q is called an undominated
set ofΩ, if ∀ω ∈ Q, ∀ω′ ∈ Ω − Q, R(ω′, ω) does not hold. Undominated setQ is called a minimal
undominated set if none of its proper subsets is an undominated set.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 9

In other words,Q is an undominated one if no interpretation outsideQ dominates some interpretation
in Q via relative preference relationR. We denote the set of minimal undominated sets ofΩ w.r.t
R asUR

Ω . Then we can stratify the interpretationsΩ asΩ = (Ω1, · · · ,Ωn), whereΩi = ∪Q, and
Q ∈ UR

Ω−∪
i−1
j=1Ωj

. Following this, we may defineX dominated construction as the stratified merged

result of given knowledge profileE.

Definition 2.3. (X dominated construction [20])
Let Ω = (Ω1, · · · ,Ωn) be a stratification of interpretation andS be a set of formulas. LetX be an

ordering strategy. A stratified knowledge baseKX,Ω
S = (S1, · · · , Sm) is anX dominated construction

from S w.r.t Ω if
m⋃

i=1
Si ⊆ S andΩ

K
X,Ω
S

,X
= Ω.

Essentially, anX dominated construction fromS w.r.tΩ is a subset ofS that stratifiesΩ as(Ω1, · · · ,Ωn).
In this sense, it can be considered as a stratified knowledge base which reflects the combined preference
as well as knowledge of original knowledge bases inE.

The following proposition [20] shows how to construct anX dominated construction as a stratified
merged result from the original bases based on the stratification of Ω obtained fromR.

Proposition 2.1. Let Ω = (Ω1, · · · ,Ωn) be a stratification of interpretation andS be a set of proposi-
tions.

• If there exists a stratified knowledge baseK s.t. ΩK,bo = Ω and
⋃
K ⊆ S, thenKbo,Ω

S =
(S1, · · · , Sn−1) is a best out dominated construction fromS w.r.t Ω, where

Si = {ϕ ∈ S|∀ω ∈ Ωj, ω |= ϕ,∀j ∈ [1, n − i]} −
i−1⋃

j=1

Sj andSi 6= ∅.

• If there exists a stratified knowledge baseK s.t. ΩK,mo = Ω and
⋃
K ⊆ S, thenKmo,Ω

S =
(S1, · · · , Sn) is a maxsat-dominated construction fromS w.r.t Ω, where

Si = {ϕ ∈ S|∀ω ∈ Ωi, ω |= ϕ} −
i−1⋃

j=1

Sj andSi 6= ∅.

• If there exists a stratified knowledge baseK = (S1, · · · , Sn) s.t. eachSi is a singleton set,
ΩK,lo = Ω and

⋃
K ⊆ S, thenK lo,Ω

S = (S1, · · · , Sn) is a leximin dominated construction from
S w.r.t Ω, where

Si = {ϕ ∈ S|∀ω ∈ Ωi, ω |= ϕ where∀j > i,∀ω ∈ Ωj, ω 6|= ϕ} andSi 6= ∅.

Note that Proposition 2.1 only addresses the leximin dominated construction in which each stratum is
a singleton set. In general, we may also construct a stratified merged resultK according to the approach
presented in Proposition 2.1 from(Ω1, · · · ,Ωn), i.e.,K = (Sn1, · · · , Snm), whereSn1, · · · , Snm are
given by deleting all∅ from sequenceS1, · · · , Sn. But we cannot guarantee thatK satisfiesΩK,X =
(Ω1, · · · ,Ωn) if some stratum ofK is not a singleton set. It needs further verification.

Now we give an example to illustrate the merging process.

10 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Example 2.1. ConsiderE = {K1,K2,K3}, whereK1 = ({p ∧ q}, {p}), K2 = ({p ∧ q}, {p}, {¬q}),
K3 = ({p}, {q}, { ¬p}). If we adopt the leximin ordering strategy, we can stratify the interpretations
Ω = {ω1 = 11, ω2 = 10, ω3 = 01, ω4 = 00} as follows:

ΩK1, lo = ({ω1}, {ω2}, {ω3, ω4});

ΩK2, lo = ({ω1}, {ω2}, {ω4}, {ω3});

ΩK3, lo = ({ω1}, {ω2}, {ω3}, {ω4}).

Evidently, all the three stratifications preferω1 thanω2, thenR(ω1, ω2) holds. We may get other similar
relations such asR(ω2, ω3) andR(ω2, ω4).

Further, we have{ω1} as a minimal undominated set ofΩ. {ω2} is a minimal undominated set of
Ω\{ω1}. Then we stratifyΩ based on relative preference relationR as follows:

Ω = ({ω1}, {ω2}, {ω3, ω4}).

LetS = {p ∧ q, p, q,¬p,¬q}, then we can construct the following differentX dominated constructions:

K
bo,Ω
S = ({p}, {p ∧ q, q}),

K
mo,Ω
S = ({p ∧ q, p, q}, {¬q}, {¬p}),

K
lo,Ω
S = ({p ∧ q}, {p}, {¬p}).

Each can be viewed as a stratified merged result.

Actually, if there is an integrity constraintµ during the merging process, all the models not satisfying
µ are meaningless to the merged result. We need to useΩµ instead ofΩ in the definitions above, where
Ωµ is the set of all the models ofµ.

2.3. Prioritized merging

Given a knowledge profileE = {K1, · · · ,Kn}, we can get a stratified knowledge baseK = (S1, · · · , Sm)
as the merged result. However, the merged operator presented in [20] cannot guarantee thatK is a con-
sistent knowledge base. We need another merging operator such as prioritized merging to get a consistent
knowledge base which best reflects the knowledge inK.

Prioritized merging is considered as an appropriate merging operator for incorporating a stream or a
sequence of (possibly conflicting) observations with an attached reliability degree about the same static
world [19]. An observation is referred to as an item of information about the world. For example, the
requirements collection with a global prioritization could be considered as a stream of observations about
the same system-to-be.

Some concrete prioritized merging operators have been proposed in the literature. Delgrande et al
surveyed existing prioritized merging operators and provided postulates for prioritized merging in [19].

We start with a brief introduction to the prioritized merging with a definition of a prioritized obser-
vation base.

Definition 2.4. (A prioritized observation base (POB) [19])
An observationα is defined as a consistent formula ofLΦ0. A prioritized observation base (POB) is
defined as a set of observations with an attached reliabilitydegree:

σ = 〈σ(1), · · · , σ(n)〉, for somen ≥ 1,

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 11

where eachσ(i) is a (possibly empty) set of propositional formulas, namely, the observations of reliabil-
ity level i.

Evidentally, every stratified knowledge base is also a prioritized observation base. Note that we use a
total pre-order relation≺σ onσ in this paper. That is, for any two observationsβ ∈ σ(i) andβ′ ∈ σ(j),
β ≺σ β′ if and only if i < j. It means thatβ is viewed asmore reliablethanβ′. Actually, for each
viewpoint vi, Pi � ∆i = 〈∆1

i , · · · ,∆
m
i 〉 may be viewed as a prioritized observation base, moreover,

each of requirements statements of∆k
i can be viewed as an observation of priority levellk about the

system-to-be from the perspective ofvi for eachk.
We also adopt the following notations used in [19]. IfS ⊆LΦ0 then

∧
(S) is the conjunction of

all formulas inS, with the usual convention
∧

(∅) = >. In particular,
∧
σ(i) is the conjunction of all

formulas inσ(i) and
∧

(σ) =
n∧

i=1

∧
σ(i). We abbreviate〈σ(i), · · · , σ(j)〉 asσi→j, for 1 ≤ i ≤ j ≤ n.

σ̂ is the multiset
n⋃

i=1
σ(i).

Definition 2.5. (Concatenation Operator [19])
If σ = 〈σ(1), · · · , σ(n)〉 andσ′ = 〈σ′(1), · · · , σ′(p)〉 thenσ ◦ σ′ is theconcatenationof σ andσ′,
defined byσ ◦ σ′ = 〈σ(1), · · · , σ(n), σ′(1), · · · , σ′(p)〉.

If σ = 〈σ(1), · · · , σ(n)〉 andσ′ = 〈σ′(1), · · · , σ′(n)〉 are two prioritized observation bases, we
write σ′ ⊆ σ iff for every i, σ′(i) ⊆ σ(i), where⊆ is here multiset inclusion, and we simply say thatσ′

is a subset ofσ.
Cons(σ) is the set of consistent subsets ofσ, that is, the set of all POBsS = 〈S1, · · · , Sn〉 such that

S ⊆ σ and
∧

(S) is consistent.
Let≺ be a strict pre-order on a setX. For anyY ⊆ X, we useMin(≺, Y) to denote the undominated

subset ofY with respect to≺, i.e.,

Min(≺, Y) = {y ∈ Y |there is noz ∈ Y such thatz ≺ y}.

A prioritized merging operator? maps any POBσ to a propositional formula?(σ). The three rep-
resentative prioritized merging operators areBest-out(?b), Discrimin (?d), andLeximin(?l). They are
given as follows:

• Best-out[25]. Letκ(σ) = max{i,
∧
σ1→i consistent}. Then?b(σ) =

∧
σ1→κ(σ).

Essentially, the Best-out operator does not consider any observations less preferred thanσκ(σ). In
this sense, it conforms with the best out ordering strategy mentioned above.

• Discrimin [27, 28, 25]. ForS, S′ ∈ Cons(σ), defineS′ ≺d S iff ∃k such that

(a) σ1→k ∩ S′ ⊃ σ1→k ∩ S, and

(b) for all i < k, σ1→i ∩ S
′ = σ1→i ∩ S.

Then?d(σ) =
∨

{
∧
S, S ∈Min (≺d, Cons(σ))}.

• Leximin[25, 29]. ForS, S′ ∈ Cons(σ), defineS′ ≺l S iff ∃k such that

12 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

(a) |σ1→k ∩ S′| > |σ1→k ∩ S|, and

(b) for all i < k, |σ1→i ∩ S
′| = |σ1→i ∩ S|.

Then?l(σ) =
∨
{
∧
S, S ∈Min(≺l, Cons(σ))}.

Note that both the Discrimin operator and the Leximin operator depend on lexicographical ordering
relations overCons(σ). Informally, the lexicographical ordering relation used in the Discrimin operator
is based on set inclusion. In contrast, the lexicographicalordering relation used in the Leximin operator
conforms with the leximin ordering strategy mentioned above.

Now we give an example to illustrate these prioritized merging operators.

Example 2.2. Considerσ = 〈σ(1), σ(2)〉, whereσ(1) = {α, β} andσ(2) = {γ, γ → ¬ψ,ψ}. Then

(a) κ(σ) = 1, and?b(σ) =
∧
σ(1) = α ∧ β.

(b) Min(≺d, Cons(σ)) = {S, S′, S′′}, where

S = 〈{α, β}, {γ, γ → ¬ψ}〉,

S′ = 〈{α, β}, {γ, ψ}〉,

S′′ = 〈{α, β}, {γ → ¬ψ,ψ}〉.

Then

?d(σ) = (α ∧ β ∧ γ ∧ (γ → ¬ψ))

∨ (α ∧ β ∧ γ ∧ ψ)

∨ (α ∧ β ∧ (γ → ¬ψ) ∧ ψ).

(c) Min(≺l, Cons(σ)) = Min(≺d, Cons(σ)), then

?l(σ) = (α ∧ β ∧ γ ∧ (γ → ¬ψ))

∨ (α ∧ β ∧ γ ∧ ψ)

∨ (α ∧ β ∧ (γ → ¬ψ ∧ ψ)).

Note that the Discrimin operator and the Leximin operator may give different results. For example,
Considerσ = 〈{p}, {¬p ∨ q,¬q}, {q}〉, then〈{p}, {¬q}, ∅〉 is an undominated element ofCons(σ)
with regard to the discrimin ordering≺d. But it is not an undominated element with regard to≺l, since
〈{p}, {¬p ∨ q}, {q}〉 ≺l 〈{p}, {¬q}, ∅〉.

Just as mentioned in [19], the outcome of a merging operator can be defined as a closed theory
equivalently. However, we can also define the equivalent outcome of these merging operators as a set of
consistent subsets ofσ:

• Best-out: ?b(σ) = {S = 〈σ(1), · · · , σ(κ(σ)), ∅, · · · , ∅〉}, where∅ means that there are no formu-
las at corresponding levels.

• Discrimin: ?d(σ) = Min(≺d, Cons(σ)).

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 13

• leximin: ?l(σ) = Min(≺l, Cons(σ)).

In the rest of this paper, we use this equivalent definitions of prioritized merging operators. Evidently,
given a prioritized observation baseσ, ≺d (resp.≺l) provides an intuitive ordering relation on a set of
all the consistent subsets ofσ. In particular, eachS ∈ ?d(σ) (resp.?l(σ)) can be viewed as anoptimal
consistent subset in the sense of≺d (resp.≺l).

However, there are some constraints between these observations about the same world in many cases.
For example, the relationship between viewpoints can be viewed as constraints between requirements
about the same system-to-be. In such case, we need to integrate the constraints into prioritized merging.

Let σ = 〈σ(1), · · · , σ(n)〉 be a prioritized observation base andµ be a consistent set of constraints
between these observations. A constraint is referred to as aconsistent formula ofLΦ0. Then we define

Consµ(σ) = {S|S ⊆ σ,
∧
S ∧

∧
µ is consistent.}

It is the set of subsets ofσ that are consistent withµ. Furthermore, we define the prioritized merging
under constraints as follows:

Definition 2.6. (prioritized merging under constraints)
Let σ be a prioritized observation base andµ be a consistent set of constraints onσ, then

• Best-out. ?µ
b (σ) = {S = 〈σ(1), · · · , σ(κµ(σ)), ∅, · · · , ∅〉}, whereκµ(σ) = max{i,

∧
σ1→i ∧∧

µ consistent}.

• Discrimin. ?µ
d (σ) = Min(≺d, Cons

µ(σ)).

• leximin. ?µ
l (σ) = Min(≺l, Cons

µ(σ)).

3. A General Prioritized Merging-based Framework for Handling Incon-
sistent Requirements

The gist of this paper is to provide prioritized merging-based approaches to handling inconsistency in
the Viewpoints framework. We assume that there is no shortcoming during the requirements elicitation
process. That is, the requirements are correctly elicited,stated, and represented from the perspective of
corresponding stakeholders. All the stakeholders affirm totheir demands. We start these approaches with
a general framework for handling inconsistency based on prioritized merging, as shown in Figure 1.

Given an inconsistent requirements specification[P1 � ∆1, · · · , Pn � ∆n, R], let ∆G be a multiset
of all the requirements statements. We usePG � ∆G to denote the globally prioritized requirements
collection constructed from[P1 � ∆1, · · · , Pn � ∆n, R]. Let ?R(PG � ∆G) be the prioritized merging
result ofPG � ∆G using the operator? under constraintsR. LetA be a set of formulas. We useA\B
to denote the set of formulas outsideB if B ⊆ A. In contrast, we useA − B to denote a proposal to
abandonB in A. Then according to this framework, developers may adopt thefollowing steps to handle
the inconsistency:

(1) Globally Prioritizing :

• prioritize the whole requirements collection from the global perspective, i.e., provide a priority-
based partition of the requirements collection∆G, PG � ∆G;

14 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Requirements of Viewpoints

Globally Prioritized Requirements Collection

Proposals Generated

An Acceptable Common Proposal

?

(1) Globally Prioritizing

?
(2) Prioritized Merging

?
(3) Decision Making

-

(4) Modifying

?

Inconsistent Requirements of Viewpoints

Input

-

Output

Figure 1. A General Framework of Prioritized Merging-basedApproaches

(2) Prioritized Merging :

• map the requirements collection with the global prioritization PG � ∆G into a set of its con-
sistent subsets by a prioritized merging operator? under constraintsR;

• derive some proposals for handling inconsistency in the requirements collection from the
result of prioritized merging. Generally, ifS ∈ ?R(PG �∆G), then we may derive a proposal
π(S) to resolve the inconsistency as follows:

π(S): abandon the requirements outsideS.

(3) Decision Making:

• identify a common proposal acceptable to all the viewpointsinvolved in the inconsistency;

(4) Modifying :

• modify [P1 � ∆1, · · · , Pn � ∆n, R] according to the acceptable common proposal;

The union of modified requirements of each viewpoint involved in inconsistency becomes consistent.
Then we output the modified requirements of viewpoints finally.

Two issues are important to this general framework, i.e. globally prioritizing ∆G and prioritized
mergingPG � ∆G. Global Prioritization will be discussed in subsequent sections. Now we discuss the
prioritized merging operators appropriate to this framework.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 15

Generating proposals for resolving inconsistency based onprioritized merging. As mentioned ear-
lier, there are three representative prioritized merging operators, including?b, ?d, and?l. Suppose that
we adopt thebest-outoperator?b andS ∈ ?R

b (PG � ∆G), then according to the proposalπ(S), the
requirements with the global priority level greater thanκR(PG � ∆G) should be abandoned, no matter
whether these requirements are involved in inconsistencies or not. It may be considered as a disadvantage
to using thebest-outoperator. In contrast, if we use?d and?l, the proposals may conform to the inten-
tion of disengaging major requirements with higher priorities from the inconsistencies. Consequently,
we adopt?d and?l in this paper.

Now we discuss how to compute?d(σ) and?l(σ) givenσ. Generally, to compute?d(σ) (resp.?l(σ)),
each subset ofσ, denotedσ′, should be checked whether it is consistent and whether it isan undominated
element ofCons(σ) with regard to≺d (resp.≺l). Since we restrict the first order logic representation
of requirements to the propositional case, then consistency checking ofσ′ is a SAT problem. Many SAT
solvers have been developed to solve the SAT problem efficiently for practical problem instances. Espe-
cially, the CDCL (Conflict-Driven Clause Learning) SAT algorithms can solve instances withhundreds
of thousand(propositional) variables andtens of millionsof clauses. For example, Siege [36] can solve
a problem with 0.25 million (propositional) variables in less than 30 seconds. Thus we can adopt an
available SAT solver to check consistency of a large-scale requirements collectionσ′.

If σ′ is consistent, we need also to check whether it is an undominated element ofCons(σ). Some
algorithms with optimization about this kind of problem have been developed. Informally, these al-
gorithms first constructed a binomial tree of the boolean lattice of subsets ofσ [37]. For example, if
σ = 〈{α, β,¬α}〉, then the boolean lattice and binomial tree are shown in Fig.2.

∅

�
�

�
�

�
�

P
P

P
P

P
P

{¬α} {β} {α}

�
�

�
�

�
�

P
P

P
P

P
PP

P
P

P
P

P

�
�

�
�

�
�

{β,¬α} {α,¬α} {α, β}

�
�

�
�

�
�

P
P

P
P

P
P

{α, β,¬α}

∅

{¬α} {β} {α}

{β,¬α} {α,¬α} {α, β}

{α, β,¬α}

Figure 2. Boolean lattice and its binomial tree

Then the algorithms performed a breadth-first search of the subset lattice ofσ since a breadth-first
search of the binomial tree will consider all larger sets before considering any smaller ones. The al-
gorithms with an important optimization (root pruning) presented by Grover et al. [38] proved that the
branches rooted by a consistent subset can be pruned from thesearch space, because no descendants of
a consistent set can be undominated. For example,{β,¬α} is consistent, then its subtree is pruned. We
get the locally undominated elements as{β,¬α}, {α, β}, and{α}. Furthermore, a final post-check for
set inclusion (resp. lexicographical relation for≺l) can remove pseudo-undominated results like{α}
from the set of locally undominated consistent subsets in their branch of the binomial tree. However,

16 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Malouf [39] argued that the organization of the search spaceinto a binomial tree allows another valu-
able optimization, i.e, leaf pruning. Roughly speaking, ifthe foot of a subtree is inconsistent then no
node in the tree can be consistent, and the entire tree can be skipped. Then the only subtrees which
contain a undominated consistent subset are those whose roots are inconsistent but whose deepest leafs
are consistent. Malouf also pointed out that keeping track of leftmost children allows us to avoid a
substantial number of redundant consistency checks [39]. Moreover, as|σ| increases, leaf pruning can
offer substantial improvements. These techniques for optimizations makes identification of undominated
subsets efficient [39]. This means we can adopt the techniques described by Malouf [39] to find all the
undominated elements ofCons(σ).

On the other hand, requirements free from any inconsistencyare always included in allS in ?R
d (PG �

∆G) (resp.?R
l (PG �∆G)). Then these requirements do not appear in any proposal derived from?R

d (PG �
∆G) (resp. ?R

l (PG � ∆G)). Thus, we focus on the viewpoints involved in the inconsistencies rather
than all the viewpoints. Suppose thatv1, · · · , vm are the viewpoints involved in the inconsistencies and
R(v1, · · · , vm) ∈ R, let ∆ be a multiset of all the requirements of viewpointsv1, · · · , vm. Then we use
∆G = ∆ andµ = R(v1, · · · , vm) instead of∆G andR in the framework above, respectively.

Based on the prioritized merging operators, the proposals for handling inconsistent requirements can
be derived as follows:

• If we use?d as prioritized merging operator, then we may derive a set of proposals for inconsis-
tency handling, denotedΠd = {π(S)|S ∈ ?

µ
d (PG � ∆G)}, as follows:

• for eachS, π(S) is a proposal that the requirements outsideS should be abandoned, i.e.
π(S) : PG � ∆G − PG � ∆G\S.

• If we use?l as prioritized merging operator, then we may derive a set of proposals for inconsistency
handling, denotedΠl = {π(S)|S ∈ ?µ

l (PG � ∆G)}, as follows:

• for eachS, π(S) is a proposal that the requirements outsideS should be abandoned.

Note that a requirement statementα being abandoned by viewpointvi is only referred to as disap-
pearance ofα in the modification of∆i. That is,vi may deleteα or replaceα by other new requirements.

The proposals derived from the result of prioritized merging ?µ(PG � ∆G) provide possible ways
of modifying the distributed requirements specification. We need to argue that each ofΠ? is the most
appropriate to modifying?µ(PG � ∆G) in some sense from the globally perspective.

Given an inconsistent collection of globally prioritized requirements,PG � ∆G, let Π be a set of all
the possible proposals to modifyingPG � ∆G. An intuitive criteria of appropriateness of an individual
proposalπ ∈ Π to modification is precedence of the consistent subset ofPG � ∆G resulted fromπ. Let
π(S) be a proposal derived fromS ∈ ConsR(PG �∆G). ThenS is the result of modification ofPG �∆G

by using the proposalπ(S). We define a relation onΠ termed asmore appropriate thanas follows.

Definition 3.1. (The relation of more appropriate than)
Let Π be a set of all the possible proposals to modifyingPG �∆G. A binary relation onΠ, denoted�G,
is defined as follows:

∀π(S1), π(S2) ∈ Π, π(S1) �G π(S2) iff S1 ≺? S2,

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 17

where≺? is an ordering relation overConsµ(PG � ∆G) adopted in prioritized merging. Furthermore,
we say thatπ1 is more appropriate thanπ2 to modifyingPG � ∆G if π1 �G π2.

Note that the relationmore appropriate thanon Π is defined with regard to the ordering relation on
Cons(PG � ∆G).

Example 3.1. Suppose thatPG � ∆G = 〈{α}, {β}, {¬α}〉. ConsiderS1 = 〈{α}, {β}, ∅〉 andS2 =
〈∅, {β}, {¬α}〉. Obviously,S1, S2 ∈ Cons(PG � ∆G). Let π(S1) andπ(S2) be proposals for resolving
inconsistency inPG � ∆G derived fromS1 andS2, respectively. Then the proposalπ(S1) argues that
¬α should be abandoned so as to resolve inconsistency, i.e, theresult of modification isS1. In contrast,
π(S2) argues thatα should be abandoned. Evidently,π(S1) is more appropriate thanπ(S2) with regard
to≺l sinceS1 ≺l S2.

Evidently, we can conclude the following result.

Proposition 3.1. Let Π be a set of all the possible proposals to modifyingPG � ∆G. Let Π? be a set of
proposals derived from the prioritized merging result?µ(PG � ∆G). Then

∀π? ∈ Π?, there is noπ ∈ Π such thatπ �G π?.

That is, eachπ? may be viewed as the most appropriate to modifyingPG � ∆G with regard to≺?.

Identifying acceptable common proposals. In the sense of≺?, the proposals derived from the priori-
tized merging result may be considered as the most appropriate ones for handling inconsistencyfrom the
global perspective. Moreover, it is possible that at least two different proposals may be derived from the
same prioritized merged result.These proposals are equivalent to each other in the sense of some ordering
relation (such as≺d) from the global perspective. That is, we can not differentiate these proposals from
the global perspective.

However, it does not mean that all these proposals are the most appropriate to each viewpoint in-
volved in inconsistencies. For an individual viewpoint, different proposals may have different impact
on the requirements change with regard to the viewpoint. Thus, different viewpoints may have different
preferences over these proposals. The identification of acceptable common proposals for inconsistency
handling also depends on the context of the inconsistency. Many factors such as the stakeholder’s in-
tention, expectation of benefit from the system-to-be and communication skills of developers have influ-
ences on making a trade-off decision. Therefore, it is needed to involve some social behaviors such as
argumentation, negotiation and vote between viewpoints during the inconsistency handling process.

The proposals derived from the prioritized merging result can be considered as recommendations to
viewpoints or stakeholders. Some projects developers would like to negotiate over these proposals, whilst
other projects may prefer votes rather than argumentation.Whatever methods that the viewpoints adopt,
identifying acceptable common proposals should consider the preference over the derived proposals of
each viewpoint.

An acceptable proposal to a given viewpoint should disengage its major requirements from inconsis-
tencies by abandoning minor requirements. Thus, for each viewpoint, the local priority of requirements
plays a prominent role in making a trade-off decision about these proposals.

18 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Let Π? = {π1, · · · , πd} be a set of derived proposals. Letπk ◦ [Pi � Γi] be a set of requirements that
should be abandoned byvi according to the proposalπk for all k = 1, · · · , d. For each viewpointvi, we
provide a preference relation�i overΠ? from the perspective ofvi as follows:

∀πl, πk ∈ Π?, πl �i πk if and only if πk ◦ [Pi � Γi] �L πl ◦ [Pi � Γi],

whereπk ◦ [Pi � Γi] �L πl ◦ [Pi � Γi] defined as

(1) πk ◦ [Pi � Γi] = πl ◦ [Pi � Γi]; or

(2) ∃j such that|(Pi � ∆i)1→j ∩ πk ◦ [Pi � Γi]| > |(Pi � ∆i)1→j ∩ πl ◦ [Pi � Γi]|, and for allp < j,
|(Pi � ∆i)1→p ∩ πk ◦ [Pi � Γi]| = |(Pi � ∆i)1→p ∩ πl ◦ [Pi � Γi]|.

Essentially,πl �i πk means that viewpointvi prefersπl to πk if the number of requirements with higher
local priority to be abandoned byπk is greater than that to be abandoned byπl.

Based on the set of preference relations onΠ?, {�1,�2, · · · ,�m}, viewpoints may adopt a group
decision making mechanism to identify an acceptable commonproposal. In our previous paper [30], we
discussed an approach to reaching an agreement over viewpoints based on combinatorial voting [31] and
stakeholders goals.

Negotiation is also considered as a useful way to resolving inconsistency during the requirements
stage [35, 40, 41]. In this paper, we may also consider negotiation as a group decision making mechanism
in our general framework. When a proposal for handling inconsistency is presented by a viewpoint, the
negotiation for a common acceptable proposal starts. For proceeding the negotiation process, we may
use a negotiation meta-language for Multi-agent automatedsystem defined in [42]. This language is
richer for talking about proposals than negotiation languages designed for special scenarios [42], since it
includes the following illocutions for describing the speech acts of conveying intentions:

• request(i, j, π) : a request from viewpointvi to viewpointvj for proposalπ;

• offer(i, j, π): a proposal ofπ from vi to vj;

• accept(i, j, π): vi accepts proposalπ made byvj ;

• reject(i, j, π): vi rejects proposalπ made byvj ;

• withdraw(i, j): vi withdraws from negotiation withvj.

Hereπ is a formula of the negotiation language. If we use a predicate formulaAbandon(A,B) instead
of A−B, thenπ(S) can be represented asAbandon(PG � ∆G, PG � ∆G\S).

Generally, a negotiation begins when one agent makes anoffer to another, or when one makes
a request to another. Negotiation ceases when one agentaccept an offer or withdraw from nego-
tiation [42]. We adopt the protocol used in [43], which has been shown that the protocol guarantees
success in [42]. For example, at thek-th step of the negotiation, ifvi saysoffer(i, j, π), thenvj replies
offer(j, i, π′), or accept(j, i, π), or reject(j, i, π), orwithdraw(j, i).

Generally,vi always puts forward the most preferred proposal with regardto �i at first. To respond
to proposalπ presented byvi, viewpointvj needs to consider the following aspects:

• If some the most important requirements of∆j are involved inπ, thenvj may reject the proposal
π, or offer a more preferred proposalπ′ w.r.t�j to vi, or withdraw from negotiation withvi.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 19

• Forvj, if the proposalπ will disengage more preferred requirements of∆j from inconsistency by
making some minor concession, thenvj may accept the proposalπ, or offer a more preferredπ′ to
vi in general case.

However, some subjective factors may also have influence on the preference relation overΠ? and
decision making on resolving inconsistency. It is a really context-based issue beyond this paper.

In the next two sections, we will provide two approaches to specializing the general framework.

4. A Merging-based Framework for Handling Inconsistency inthe Man-
ner of Prioritized Merging

Both the relative importance of requirements statements with regard to their supporting viewpoints and
the priority of viewpoints have been paid attention in managing inconsistency in requirements engi-
neering [35]. If we merge these different viewpoints as an overall viewpoint of the system-to-be, it is
necessary to assign a relative priority to each requirements statement from an overall or global perspec-
tive. Moreover, the global priority of an individual requirements statement should be an integration of
the priorities of the supporting viewpoints of the requirements statement and the local priorities of the
requirements statement.

As mentioned earlier, both the priority level of each viewpoint and the local priority level of each
requirements statement are qualitative values rather thannumerical weights. It seems to be difficult to
integrate these qualitative values directly.

However, we have presented a merging-based approach to globally prioritizing the requirements
in our previous paper [32]. Informally, we transform the locally prioritized requirements specification
into a knowledge profile consisting of stratified knowledge bases first. Then we get amaxsatdominated
construction based on the merging operator presented in [20], which may be considered as a globally pri-
oritized requirements specification in some sense. Along this line, here we further provide a mechanism
for generating proposals appropriate to resolving inconsistency based on the merged result.

In this section, we give a brief overview to the merging-based approach in [32] first. Then we will
discuss the problem of how to generate proposals by combining the merging-based approach and the pri-
oritized merging. The general prioritized merging-based framework is also specialized correspondingly.

4.1. Merging an ordered knowledge profile

Each of viewpoints involved in inconsistencies may be viewed as a stratified knowledge base. The knowl-
edge profile consisting of these knowledge bases should be ordered since viewpoints are also prioritized.

An ordered knowledge profileis a finite setE of knowledge bases with a total pre-order relation
≤E onE. Intuitively, if Ki ≤E Kj thenKi is regarded as more important thanKj . From the pre-order
relation≤E onE,E can be stratified asE = (T1, · · · , Tm), whereTi contains all the minimal knowledge

bases of set
m⋃

j=i

Tj with regard to≤E . In particular, a multiset of weighted knowledge bases [33]could

be viewed as a special kind of ordered knowledge profile, in which each knowledge base is associated
with a non-negative number.

The pre-order relation onE implies a difference in the relative importance of knowledge bases of
E. Then we should take this difference into account in definition of the relative preference relation

20 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

R(ω, ω′). Generally, with regard to prioritization in requirementsengineering, each viewpoint with a
higher priority is more important than all the viewpoints with lower priorities. Thus we adopt a vector
rather than a weight to capture the relative importance of each knowledge base in an ordered knowledge
profile.

Given a lexicographical ordering relation≤ on Nm as follows, wherem (m ≥ 2) is a natural number:

• ∀(a1, · · · , am), (b1, · · · , bm) ∈ Nm, (a1, · · · , am) ≤ (b1, · · · , bm) if and only if ai = bi for all i,
or ∃i s.tai > bi andaj = bj for all j < i.

• Further,(a1, · · · , am) < (b1, · · · , bm) if and only if (a1, · · · , am) ≤ (b1, · · · , bm) and(b1, · · · , bm)
6≤ (a1, · · · , am).

Based on the lexicographical ordering≤ on Nm, we defined the level vector function for an ordered
knowledge profile as follows:.

Definition 4.1. (Level Vector Function [32])
Let E = (T1, · · · , Tm) be an ordered knowledge profile. Level vector functions is a mapping fromE
to {0, 1}m such that∀K ∈ E, if K ∈ Ei (1 ≤ i ≤ m), thens(K) = (a1, · · · , am), whereai = 1 and
aj = 0 for all j ∈ [1,m], j 6= i.

Obviously,Ki ≤E Kj if and only if s(Ki) ≤ s(Kj). Moreover, the location of1 in level vector
functions(K) captures the relative preference ofK in E. It meanss(K) gives a numerical measure of
the relative importance ofK w.r.t≤E.

Then we presented an alternative definition of relative preference relation over interpretations as
follows:

Definition 4.2. (Relative Preference Relation [32])
LetE = {K1, · · · ,Kn} be an ordered knowledge profile and{ΩK1,X1 , · · · ,ΩKn,Xn} be a multi-set. A
binary relative preference relationRs ⊆ Ω × Ω is defined as

Rs(ω, ω
′) iff

∑
ΩKi,Xi

s.t. ω≺iω′

s(Ki) <
∑

ΩKj,Xj
s.t. ω′≺jω

s(Kj),

where≺i is the strict partial order relation induced fromΩKi,Xi
.

Essentially, by introducing a level vector functions, Rs considers≤E as well as≺i for eachi. In this
section, we adoptRs instead ofR to construct a stratified merged knowledge base from an ordered
knowledge profile.

Example 4.1. Consider an ordered knowledge profileE = (K1,K2), whereK1 = ({p}, {¬p}) and
K2 = ({¬p}, {p}). Then the set of interpretations isΩ = {ω1 = 1, ω2 = 0}. ThenrBO(ω), rMO(ω)
andKi(ω) are given in Table 1.

(1) Suppose that we do not consider the pre-order relation onE. We have shown that neitherR(ω1, ω2)
norR(ω2, ω1) holds if we adopt themaxsatordering strategy [32].

However, for anyX ∈ {bo,mo, lo}, we can getω1 ≺K1,X ω2 andω2 ≺K2,X ω1. Neither
R(ω1, ω2) norR(ω2, ω1) holds. ThenΩ = ({ω1, ω2}) signifies that there is no meaningful merged
result.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 21

Table 1. Ranks of interpretations

ω rBO(ω) rMO(ω) K(ω)

K1 K2 K1 K2 K1 K2

ω1 = 1 2 1 1 2 (1,0) (0,1)

ω2 = 0 1 2 2 1 (0,1) (1,0)

(2) If we consider the pre-order relation onE, thens(K1) = (1, 0) ands(K2) = (0, 1). Furthermore,
ω1 ≺K1,X ω2 andω2 ≺K2,X ω1, whereX ∈ {bo,mo, lo}. So,Rs(ω1, ω2) holds. The stratification
of interpretations isΩ = ({ω1}, {ω2}). From Proposition 2.1, we can get

(a) a best out dominated constructionK = ({p}).

(b) a maxsat-dominated constructionK = ({p}, {¬p}).

(c) a leximin-dominated constructionK = ({p}, {¬p}).

These merged results are intuitive.

4.2. Specifying the general prioritized merging-based framework

If we adopt the merging-based approach mentioned above to construct the globally prioritized require-
ments collection, the general prioritized merging-based framework can be specified as shown in Figure
3. Informally, we first transform each requirements collection with a local prioritization to a stratified
knowledge base (SKB). The relationship between corresponding viewpoints is viewed as an integrity
constraint during the merging process. Then we construct a stratified merged knowledge base (SMKB)
from an ordered knowledge profile consisting of these SKBs. The merged result can be considered as
an overall view of these viewpoints. Moreover, the orderingrelation over the merged knowledge base
could be viewed as a global prioritization on merged requirements collection. Finally, we derive propos-
als for handling inconsistency by incorporating the stratified merged knowledge base in the manner of
prioritized merging and identify acceptable common proposals.

(1). From Locally Prioritized Requirements Collections ToStratified Knowledge Bases. Let Pi �
∆i be a requirements collection of viewpointvi (1 ≤ i ≤ n). Then a stratified knowledge base induced
byPi � ∆i, denotedKi, is defined as follows:

• Ki = ∆i;

• A total pre-order relation�i onKi is presented as :

∀α, β ∈ Ki, α �i β iff Pi(α) ≤ Pi(β).

• Ki is stratified asKi = (Si1 , · · · , Sim), whereSi1, · · · , Sim is given by deleting all∅ from
∆1

i , · · · ,∆
mi

i .

22 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

P1 � ∆1
· · · Pi � ∆i

· · · Pm � ∆m

SKBK1
· · · SKBKi

· · · SKBKm

- �
?

constraintsµ = R(v1, · · · , vm)

�

�

⊕

Construction of Stratified Merged Knowledge BaseK

Proposals Generated

An Acceptable Common Proposal

?

(2) Merging

?
(3) Prioritized Merging

?
(4) Decision Making

? ? ?
(1) Transforming

(5) Modifying

�

Input

?
Input

Inconsistent Requirements
of Viewpoints

-

Output

?

Figure 3. A Merging-based Framework to Handling Inconsistent Requirements with Local Priorities

(2). Constructing A Stratified Merged Knowledge Base. Suppose thatv1,· · · , vm are the viewpoints
involved in inconsistency. LetE = {K1, · · · ,Km} be a knowledge profile, whereKi is the stratified
knowledge base induced byPi � ∆i for all 1 ≤ i ≤ m. Let Ω be the set of interpretations. Then

• we define a total pre-order relation≤E onE as follows:

Ki ≤E Kj iff PV (vi) ≤ PV (vj).

Then we compute the level vector functions based on the stratification ofE w.r.t≤E.

• Let µ = R(v1, · · · , vm) andΩµ = {ω ∈ Ω, ω |= µ}, that is, we consider the relationship between
viewpoints as an integrity constraint.

• Given an ordering strategy X (such asbest out, maxsat, andleximin), find Ωµ
Ki,X

for all i.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 23

• Based on{Ωµ
K1,X , · · · ,Ω

µ
Km,X}, construct a stratification of interpretationsΩµ = (Ωµ

1 , · · · ,Ω
µ
k)

by using relative preference relationRs overΩµ.

• GetX dominated constructionK based on Proposition 2.1 .

(3). Deriving Proposals To Handling Inconsistency. Here, we explain how to combine the merging-
based approach and the prioritized merging techniques to derive proposals.

LetK = (S1, · · · , Sk) be anX-dominated construction extracted from an ordered knowledge profile
E. Then the preference relation�K onK describes the relative importance of requirements from a global
perspective. Note thatK does not always consist of all the requirements statements of ∪m

i=1(∪Ki) since
we adopt the syntax-based merging operator. That is, it is possible that there exists some requirements
not appearing inK. For example, consider Example 2.1 again,¬q ∈ K2 but¬q 6∈ K

lo,Ω
S . We need to

extendK to the set of all the requirements.
If there exists some requirements not appearing inK, i.e. ∪m

i=1(∪Ki) \ ∪
k
i=1Si 6= ∅, then we define

an extension ofK, denotedK∗, as

K∗ = (S1, · · · , Sk, Sk+1),

whereSk+1 = ∪m
i=1(∪Ki) \ ∪

k
i=1Si and the ordering relation�K∗ is defined as

• ∀α, β ∈ K, α �K∗ β iff α �K β;

• ∀α ∈ K, α �K∗ ψ andψ 6�K∗ α for all ψ ∈ Sk+1;

• ∀ψ, φ ∈ Sk+1, φ �K∗ ψ andψ �K∗ φ.

The ordering relation�K∗ means that requirements inSk+1 are less preferred than requirements in
K. By the convention, we defineK∗ = K if ∪m

i=1(∪Ki) = ∪k
i=1Si. Essentially,K∗ consists of

all the requirements with different priorities involved inthe inconsistencies. Moreover, from a global
perspective,�K∗ provides a preference relation over all the requirements statements involved in the
inconsistencies. In this sense, the globally prioritized requirements collection is

PG � ∆G = K∗.

Finally, we may derive some proposals from?µ
d (K∗)(or ?µ

l (K∗)) as mentioned in Section 3. The rest
of this framework is the same as that of the general framework.

Now we give an example to illustrate the merging-based approach.

Example 4.2. Consider[P1 � ∆1, P2 � ∆2, P3 � ∆3, R], where

∆1 = {α, β}, P1 : ∆1 7−→ L3 such thatP1(α) = l1, P1(β) = l3,

∆2 = {α, γ}, P2 : ∆2 7−→ L4 such thatP2(α) = l1, P2(γ) = l2,

∆3 = {φ,¬γ}, P3 : ∆3 7−→ L3 such thatP3(φ) = l1, P3(¬γ) = l3,

R = {R(v1, v2, v3)}, whereR(v1, v2, v3) = {α ↔ φ}.

24 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

Table 2. Ranks of interpretations given by the best out ordering strategy

ω K1 K2 K3

1111 +∞ +∞ 2

1101 +∞ 2 +∞

1011 2 +∞ 2

1001 2 2 +∞

0110 1 1 1

0100 1 1 1

0010 1 1 1

0000 1 1 1

Note that viewpointv2 adopts the scale of priorityL4 = {l1, l2, l3, l4}, whilst v1 andv3 adopt the
scale of priorityL3 = {l1, l2, l3}. If we adopt the merging-based approach, then the stratifiedknowledge
bases induced by the three viewpoints are

K1 = ({α}, {β}), K2 = ({α}, {γ}), andK3 = ({φ}, {¬γ}).

We denote each model by a bit vector consisting of truth values of (α, β, γ, φ). Thenµ = {α↔ φ} and

Ωµ = {ω1 = 1111, ω2 = 1101, ω3 = 1011, ω4 = 1001

ω5 = 0110, ω6 = 0100, ω7 = 0010, ω8 = 0000}.

Suppose that we use the best out ordering strategy.rBO is given by Table 2.
Then the stratification ofΩ is given as follows:

Ωµ = ({ω1, ω2}, {ω3, ω4}, {ω5, ω6, ω7, ω8}).

LetS = ∆1∪∆2∪∆3, then according to Proposition 2.1, we may get a best-out dominated construction

K = ({α, φ}, {β}).

Furthermore, we can get
PG � ∆G = K∗ = ({α, φ}, {β}, {γ,¬γ}).

Suppose that we adopt the leximin operator?l in prioritized merging, then

?
µ
l (K∗) = {S1 = ({α, φ}, {β}, {¬γ}), S2 = ({α, φ}, {β}, {γ})}.

From these prioritized merged results, we can derive the following proposals for handling inconsistency
in PG � ∆G:

• πl(S1) means thatγ should be abandoned byv2, i.e. ∆2 − {γ};

• But πl(S2) means thatv3 should abandon¬γ, that is,∆3 − {¬γ}.

Generally, sincev3 assigned the lowest priority to¬γ, individual viewpoints would expect thatv3
makes some concession in negotiation over{π(S1), π(S2)}. Then it seems thatπ(S2) rather thanπ(S1)
will be accepted by viewpoints.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 25

5. A Priority Vector-based Framework for Handling Inconsistency in the
Manner of Prioritized Merging

The merging-based approach only assumes that each originalknowledge base to be merged is stratified.
It does not consider if all the knowledge bases use the same scale of prioritization. Thus it is appropriate
for merging viewpoints, especially for merging viewpointswith different scales of local prioritization.

However, grouping requirements into three priority categories is viewed as a common approach to
prioritization in requirements engineering [17]. That is,most stakeholders are accustomed to use typical
3-level scale in local prioritization. Then it is worth considering the setting of all the viewpoints using
the same scale of local prioritization. In this section, we provide a more concise approach to globally
prioritizing requirements for such cases.

We start our approach with an alternative representation ofthe local priority levels. Suppose thatLmi

be the scale of priority levels adopted by viewpointvi for all i. Let Imi×mi
be the unit matrix and−→a k

thek-th row vector of Imi×mi
. For each viewpointvi, we provide an alternative prioritization mapping

P ′
i as follows:

∀α ∈ ∆i, P
′
i (α) = −→a k iff Pi(α) = lk.

Obviously,P ′
i (α) ≤ P ′

i (α) if and only if Pi(α) ≤ Pi(α). In the rest of this paper, we also termP ′
i

the priority vector functionof viewpoint vi. For example, consider∆1 = {α, β} andP1(α) = l1,
P1(β) = l3 underL3, thenP ′

1(α) = (1, 0, 0) andP ′
1(β) = (0, 0, 1).

The global priority of an individual requirements statement depends on the relative importance of its
supporting viewpoints as well as its local priority with regard to each supporting viewpoint. However,
for each requirements statement, the relative importance of its supporting viewpoints plays a dominating
role in prioritizing this statement with regard to the wholesystem-to-be.

Let PV be the prioritization mapping onV . We assume that all the viewpoints at the same priority
level adopt the same scale of priority levels to prioritize the requirements. That is,Lmi = Lmj if
PV (vi) = PV (vj). Let VIn = {v1, · · · , vm} be the set of viewpoints involved in a given inconsistency.
Suppose thatVIn can be stratified asPV �VIn = 〈V (1), · · · , V (r)〉. For eachi (1 ≤ i ≤ r), we construct
σi = PGi

� Γi as follows:

Γi =
⋃

vj∈V (i)

∆j; ∀α ∈ Γi, PGi
(α) =

∑

α∈∆j ,vj∈V (i)

P ′
j(α).

Essentially, thek-th component ofPGi
(α) is the number of supporting viewpoints at leveli of α, which

assignsk-th priority level toα. In this sense,PGi
(α) gives the relative importance with regard to all the

viewpoints at leveli.
Then we construct a requirements collection with a global prioritization as follows:

PG � ∆G = σ1 ◦ σ2 ◦ · · · ◦ σr,

where◦ is the concatenation operator.
If we adopt the priority vector function of each viewpoint toconstruct the globally prioritized require-

ments collection, the general prioritized merging-based framework can be specified as shown in Figure
4, in which the approach to constructing a globally prioritized requirements collection from inconsistent
viewpoints has been detailed as follows:

26 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

(1) Vectorizing the local priority. For each viewpoint involved in inconsistencies, we provide an equiv-
alent priority vector function to the original prioritization mapping.

(2) Stratifying the set of inconsistent viewpoints byPV . That is,

PV � VIn = 〈V (1), · · · , V (r)〉.

(3) Constructing a globally prioritized requirements collection. Firstly, for eachV (i), we construct
PGi

� Γi as follows:

Γi =
⋃

vj∈V (i)

∆j ; ∀α ∈ Γi, PGi
(α) =

∑

α∈∆j ,vj∈V (i)

P ′
j(α);

Then we concatenate allPGi
� Γi to construct a globally prioritized requirements collection, i.e.,

PG � ∆G = (PG1 � Γ1) ◦ (PG2 � Γ2) ◦ · · · ◦ (PGr � Γr).

The rest of this framework is the same as that of the general framework.
GivenPG � ∆G = 〈∆(1), · · · ,∆(l)〉, if there existsα such thatα ∈ ∆(i) ∩ ∆(j), i 6= j, then it is

evident to prove that for allS ∈ ?
µ
d (PG � ∆G) (or ?d(PG � ∆G)), α ∈ S(i) if and only if α ∈ S(j).

That is, we guarantee that the approach does not derive any unreasonable proposal of only abandoningα
in ∆(i) (or ∆(j)).

Now we give an example to illustrate the priority-vector based approaches to constructing a globally
prioritized requirements collection.

Example 5.1. consider[P1 � ∆1, P2 � ∆2, P3 � ∆3, P4 � ∆4, R],where

P1 � ∆1 = 〈{α}, {β}, {γ}〉,

P2 � ∆2 = 〈{β}, {α}, {ψ}〉,

P3 � ∆3 = 〈{γ}, {¬β}, {α}〉,

P4 � ∆4 = 〈{β}, {α}, {φ}〉,

R = {R(v1, v2, v3, v4)}, whereR(v1, v2, v3, v4) = {φ↔ γ, φ↔ ¬ψ}.

Suppose thatPV (v1) = PV (v3) = l1 andPV (v2) = PV (v4) = l2. It means that viewpointsv1 andv3
are more important thanv2 andv4.

ThenPV � V = 〈V (1), V (2), V (3)〉, whereV (1) = {v1, v3}, V (2) = {v2, v4} and V3 = ∅.
Furthermore,

Γ1 = ∆1 ∪ ∆3 = {α, β, γ,¬β},

PG1(α) = P ′
1(α) + P ′

3(α) = (1, 0, 0) + (0, 0, 1) = (1, 0, 1),

PG1(β) = P ′
1(β) = (0, 1, 0),

PG1(γ) = P ′
1(γ) + P ′

3(γ) = (0, 0, 1) + (1, 0, 0) = (1, 0, 1),

PG1(¬β) = P ′
3(¬β) = (0, 1, 0),

PG1(α) = PG1(γ) < PG1(β) = PG1(¬β).

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 27

Proposals Generated

An Acceptable Common Proposal

(4) Prioritized Merging

Globally Prioritized Requirements CollectionPG � ∆G

constraintsµ = R(v1, · · · , vr)
�

PG1 � Γ1
· · ·

PGi
� Γi

· · ·
PGr � Γr

V (1)
· · ·

V (i)
· · ·

V (r)
? ?

(2) Stratifying byPV

P ′
1 � ∆1, · · · , P

′
m � ∆m

P1 � ∆1, · · · , Pm � ∆m

(1) Vectorizing the local Priorities

? ? ?

Γi =
�

vj∈V (i)

∆j PGi
(α) = �

α∈∆j,vj∈V (i)

P ′
j(α)

- �
?⊙Concatenation

(3) Globally Prioritizing
?

?

?

?

?
(5) Decision Making

- -
Output

?
Input

Inconsistent Requirements of Viewpoints

(6) Modifying

Figure 4. A Priority Vector-based Framework of PrioritizedMerging-based Approaches

Then
σ1 = PG1 � Γ1 = 〈{α, γ}, {β,¬β}〉.

Similarly, we can get
σ2 = PG2 � Γ2 = 〈{β}, {α}, {ψ, φ}〉.

Evidently,
σ3 = ∅.

Finally, we get a requirements specification with the globalprioritization as follows:

PG � ∆G = σ = σ1 ◦ σ2 ◦ σ3 = 〈{α, γ}, {β,¬β}, {β}, {α}, {ψ, φ}〉.

Note thatβ appears in bothσ(2) = {β,¬β} andσ(3) = {β}. β ∈ σ(2) signifies that there exists at least
one supporting viewpoint ofβ having the highest priority, whilstβ ∈ σ(3) indicates that there also exists

28 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

at least one supporting viewpoint ofβ having the priority level of Medium. It embodies the dominant
role of the relative importance of viewpoints in globalizing the requirements.

If we considerµ = R(v1, v2, v3, v4), then

?
µ
d (PG � ∆G) = {S1, S2}, where

S1 = 〈{α, γ}, {β}, {β}, {α}, {φ}〉, S2 = 〈{α, γ}, {¬β}, ∅, {α}, {φ}〉,

Correspondingly, the proposal derived fromS1 is

πd(S1) : PG � ∆G − 〈∅, {¬β}, ∅, ∅, {ψ}〉

This proposal means that viewpointsv3 andv2 should abandon¬β andψ, respectively. In contrast, the
second proposal is

πd(S2) : PG � ∆G − 〈∅, {β}, {β}, ∅, {ψ}〉

This proposal means that viewpointsv1, v2 andv3 should abandonβ. Moreover,v2 should abandonψ.
The four viewpoints show different preferences over{π(S1), π(S2)}:

• for vi (i = 1, 2, 4), π(S1) �i π(S2);

• for v3, π(S2) �3 π(S1).

If they vote for an acceptable common proposal, thenπ(S1) should be considered as a winner.
If they negotiate over{π(S1), π(S2)}, v2 andv4 seem to make no concession in abandoningβ since

β is the most preferred requirement forv2 andv4, respectively. That is, it is very possible that they cannot
reach an agreement onπ(S2). But if v3 makes some concession in abandoning¬β, it is reasonable that
v2 acceptsπ(S1) sinceπ(S1) disengages the most preferred requirementβ of v2 from inconsistency by
making minor concession in abandoningψ.

If we adopt the leximin operator in prioritized merging, we may get?µ
d (PG � ∆G) = {S1} and only

one derived proposalπl(S1) = πd(S1).

6. A Case Study

This section uses a close residential area management system as an example to illustrate the feasibility
of the prioritized merging-based framework. This case study shows that the method can be conjuncted
with a host of other techniques in RE for handling inconsistency in the Viewpoints framework.

Example 6.1. Using the Viewpoints framework to elicit the requirements of a computer-aided close
residential area management system. The requirements document contains:

• Viewpoint 1: Vehicles Entrance Manager

(a) The vehicles without special authorization of the Management Board of the residential area
can not be allowed to enter the area;

(b) The system should trigger warning alarm if a vehicle without authorization enters the area.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 29

Viewpoint 1 assigned the priority level ofHigh to both (a) and (b).

• Viewpoint 2: Emergency Manager

(c) The fire engine should be viewed as the vehicle of emergency;

(d) The vehicle of emergency such as fire engines can enter thearea;

(e) The vehicle of emergency need not to be authorized by the Management Board of the resi-
dential area in advance.

(f) The system should trigger warning alarm when a vehicle without authorization enters the
area.

Viewpoint 2 assigned the priority level ofHigh to both (c) and (d). (e) and (f) were assigned to the
levels ofMediumandlow, respectively.

• Viewpoint 3: Authorization Manager

(g) The fire engine should be viewed as a special kind of vehicle;

(h) The special vehicle can enter the area;

(i) The special vehicle does not need to be authorized;

(j) The system should not trigger warning alarm if the special vehicle enters the area.

Viewpoint 3 assigned the priority level ofHigh to both (g) and (h). (i) and (j) were assigned to
MediumandLow, respectively.

Furthermore, Viewpoints 2 and 3 were assigned the priority level ofHigh. Viewpoint 1 was assigned the
priority level ofMedium.

We use logical representation to describe these requirements information. Suppose that we use

• aut(X) to denote thatX is authorized by the Management Board of the residential area;

• ent(X) to denote thatX can enter the residential area;

• eme(X) to denote thatX is a vehicle for emergency;

• ala(X) to denote that the system triggers alarm ifX enters the area;

• spe(X) to denote thatX is a special vehicle.

• constantFE to denote the fire engine.

If we consider a scenario about the entrance of the fire engine, then the requirements of the system-to-be
can be described as:

30 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

PV (v1) = l2, PV (v2) = PV (v3) = l1,

∆1 = {¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)},

P1(¬aut(FE) → ¬ent(FE)) = l1, P1(¬aut(FE) → ala(FE)) = l1.

∆2 = {eme(FE), eme(FE) → ent(FE), eme(FE) → ¬aut(FE),¬aut(FE) → ala(FE)},

P2(eme(FE)) = P2(eme(FE) → ent(FE)) = l1,

P2(eme(FE) → ¬aut(FE)) = l2, P2(¬aut(FE) → ala(FE)) = l3.

∆3 = {spe(FE), spe(FE) → ent(FE), spe(FE) → ¬aut(FE), spe(FE) → ¬ala(FE)},

P3(spe(FE)) = P3(spe(FE) → ent(FE)) = l1,

P3(spe(FE) → ¬aut(FE)) = l2, P3(spe(FE) → ¬ala(FE)) = l3.

Suppose that requirements analysts provide the following relation between the viewpoints:

R = {R(v1, v2, v3)}, whereR(v1, v2, v3) = {spe(FE) ↔ eme(FE)}.

Then we get the requirements specification[P1 � ∆1, P2 � ∆2, P3 � ∆3, R], where

P1 � ∆1 = 〈{¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)}, ∅, ∅〉,

P2 � ∆2 = 〈{eme(FE), eme(FE) → ent(FE)}, {eme(FE) → ¬aut(FE)},

{¬aut(FE) → ala(FE)}〉,

P3 � ∆3 = 〈{spe(FE), spe(FE) → ent(FE)}, {spe(FE) → ¬aut(FE)},

{spe(FE) → ¬ala(FE)}〉.

Moreover, we draw the following inconsistencies:

∆1 ∪ ∆2 ∪ ∆3 ∪R(v1, v2, v3) ` ent(FE) ∧ ¬ent(FE);

∆1 ∪ ∆2 ∪ ∆3 ∪R(v1, v2, v3) ` ala(FE) ∧ ¬ala(FE).

(A) First, we use the merging-based approach to constructing a globally prioritized requirements col-
lection. We get the following stratified knowledge bases induced byv1, v2, andv3, respectively.

K1 = ({¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)}),

K2 = ({eme(FE), eme(FE) → ent(FE)}, {eme(FE) → ¬aut(FE)},

{¬aut(FE) → ala(FE)}),

K3 = ({spe(FE), spe(FE) → ent(FE)}, {spe(FE) → ¬aut(FE)},

{spe(FE) → ¬ala(FE)}).

The integrity constraint isµ = {eme(FE) ↔ spe(FE)}. We denote each model by a bit vector
consisting of truth values of (eme(FE), ent(FE), aut(FE), ala(FE), spe(FE)). Then

Ωµ = {ω1 = 11111, ω2 = 11101, ω3 = 11011, ω4 = 11001, ω5 = 10111, ω6 = 10101,

ω7 = 10011, ω8 = 10001, ω9 = 01110, ω10 = 01100, ω11 = 01010, ω12 = 01000,

ω13 = 00110, ω14 = 00100, ω15 = 00010, ω16 = 00000.}.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 31

The level vector functions of E = ({K2,K3}, {K1}) is

s(K2) = s(K3) = (1, 0), s(K1) = (0, 1).

Suppose that we use thebest outordering strategy, then the corresponding ranks of interpretations
are given in Table 3.

Table 3. The ranks of interpretations

ω rBO(ω)

K1 K2 K3

ω1 = 11111 +∞ 2 2

ω2 = 11101 +∞ 2 2

ω3 = 11011 1 +∞ 3

ω4 = 11001 1 3 +∞

ω5 = 10111 +∞ 1 1

ω6 = 10101 +∞ 1 1

ω7 = 10011 +∞ 1 1

ω8 = 10001 1 1 1

ω9 = 01110 +∞ 1 1

ω10 = 01100 +∞ 1 1

ω11 = 01010 1 1 1

ω12 = 01000 1 1 1

ω13 = 00110 +∞ 1 1

ω14 = 00100 +∞ 1 1

ω15 = 00010 +∞ 1 1

ω16 = 00000 1 1 1

Then the stratification of interpretations is

Ωµ = ({ω3, ω4}, {ω1, ω2}, {ω5, ω6, ω7, ω8, ω9, ω10, ω11, ω12ω13, ω14, ω15, ω16}).

We get thebest-outconstruction

K = ({eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)}).

We extendK toK∗ :

K∗ = ({eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ spe(FE) → ¬ala(FE),¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)}).

32 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

ThenK∗ may be viewed as the globally prioritized requirements specification, i.e.,K∗ = PG�∆G.
If we use the discrimin operater?d, then?µ

d (PG � ∆G) = {S1, S2}, where

S1 = 〈{eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ spe(FE) → ¬ala(FE)}〉.

S2 = 〈{eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ ¬aut(FE) → ala(FE)}〉.

Further, we derive two proposalsπ(S1) andπ(S2) for resolving inconsistencies as follows:

π(S1) : PG � ∆G − 〈∅, ∅, ∅, {¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)}〉,

π(S2) : PG � ∆G − 〈∅, ∅, ∅, {¬aut(FE) → ¬ent(FE), spe(FE) → ¬ala(FE)}〉.

Essentially,π(S1) means thatv1 should abandon all the requirements, and meanwhilev2 should
abandon¬aut(FE) → ala(FE). π(S2) means thatv1 should abandon¬aut(FE) → ¬ent(FE),
and meanwhilev3 should abandonspe(FE) → ¬ala(FE). Although bothπ(S1) andπ(S2) are
the most appropriate to resolving inconsistencies from theglobal perspective, the three viewpoints
have different preferences over{π(S1), π(S2)}:

for v1 : π(S2) �1 π(S1);

for v2 : π(S2) �2 π(S1);

for v3 : π(S1) �3 π(S2).

Finally, the viewpoints may negotiate over{π(S1), π(S2)} as follows:

(1) At the beginning of negotiation,v3 puts forwardπ(S1) to v1 andv2:

offer(v3, v1, π(S1)), offer(v3, v2, π(S1)).

(2) Since bothv1 andv2 preferπ(S2) to π(S1), then they reject the proposalπ(S1):

reject(v1, v3, π(S1)), reject(v2, v3, π(S1)).

(3) v3 puts forwardπ(S2) to v1 andv2 again:

offer(v3, v1, π(S2)), offer(v3, v2, π(S2)).

(4) v1 andv2 may accept the proposalπ(S2):

accept(v1, v3, π(S2)), accept(v2, v3, π(S2)).

The negotiation ends.π(S2) is considered as an acceptable common proposal for resolving
inconsistencies.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 33

(B) Second, we use the priority vector-based approach to constructing a globally prioritized require-
ments collection. SincePV (v2) = PV (v3) = l1 andPV (v1) = l2, PV � V = 〈{v2, v3}, {v1}, ∅〉.
The corresponding priority vector functions are:

P ′
1(¬aut(FE) → ¬ent(FE)) = (1, 0, 0), P ′

1(¬aut(FE) → ala(FE)) = (1, 0, 0).

P ′
2(eme(FE)) = P2(eme(FE) → ent(FE)) = (1, 0, 0),

P ′
2(eme(FE) → ¬aut(FE)) = (0, 1, 0), P ′

2(¬aut(FE) → ala(FE)) = (0, 0, 1).

P ′
3(spe(FE)) = P3(spe(FE) → ent(FE)) = (1, 0, 0),

P ′
3(spe(FE) → ¬aut(FE)) = (0, 1, 0), P ′

3(spe(FE) → ¬ala(FE)) = (0, 0, 1).

We constructPG1 � Γ1 andPG2 � Γ2 as follows:

PG1 � Γ1 = 〈{eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ spe(FE) → ¬ala(FE), ¬aut(FE) → ala(FE)}〉,

PG2 � Γ2 = 〈{¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)}〉

Then we construct the globally prioritized requirements collectionPG � ∆G as follows:

PG � ∆G = PG1 � Γ1 ◦ PG2 � Γ2

= 〈{eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ spe(FE) → ¬ala(FE), ¬aut(FE) → ala(FE)},

〈{¬aut(FE) → ¬ent(FE), ¬aut(FE) → ala(FE)}〉

If we use the discrimin operater?d, then?µ
d (PG � ∆G) = {S′

1, S
′
2}, where

S′
1 = 〈{eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ spe(FE) → ¬ala(FE)},

∅〉.

S′
2 = 〈{eme(FE), eme(FE) → ent(FE), spe(FE), spe(FE) → ent(FE)},

{ eme(FE) → ¬aut(FE), spe(FE) → ¬aut(FE)},

{ ¬aut(FE) → ala(FE)},

{ ¬aut(FE) → ala(FE)}〉.

Further, we derive two proposalsπ(S′
1) andπ(S′

2) for resolving inconsistencies as follows:

π(S′
1) = π(S1), π(S′

2) = π(S2).

That is, we derive the same proposals by using the second approach to constructing a globally
prioritized requirements collection. The subsequent process of negotiation is the same as that
stated in (A).

34 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

As mentioned earlier,v1 abandoning¬aut(X) → ¬ent(X) does not mean thatv1 deletes the corre-
sponding requirements forever. For example,v1 may change¬aut(X) → ¬ent(X) into ¬aut(X) ∧
¬eme(X) → ¬ent(X). Anyway,¬aut(X) → ¬ent(X) disappears in a revised requirements set ofv1.

7. Discussion

In our prioritized merging-based framework for handling inconsistency, we

• construct a globally prioritized requirements collectionby using the merging-based approach or
the priority vector-based approach;

• derive proposals for handling inconsistency based on global prioritization by prioritized merging;

• define the relationmore appropriate than� and preference relation�i on the set of proposals to
help viewpoints reach a reasonable agreement on the final proposal for handling inconsistency.

In this section, we argue that both the local prioritizationand the global prioritization deserve consid-
eration in handling inconsistency in the Viewpoints framework first. Then we compare the two merging-
based approach with the priority vector-based approach. Finally, we point out that the relationmore
appropriate thanis associated with the given relation on the set of consistent subsets of globally priori-
tized requirements collection.

The disagreement in the local prioritization over shared requirements often puts inconsistency han-
dling in a dilemma. The prioritized merging-based approachto generating proposals aims to derivethe
most appropriateproposals to handling inconsistencyfrom the global perspectiverather than from a per-
spective of a particular viewpoint. But this does not mean that global prioritization is more crucial than
local prioritization. We argue that both the global prioritization and the local prioritization play important
roles in resolving inconsistency. In particular, the localprioritization of each viewpoint has a prominent
impact on identifying an acceptable common proposal.

To globally prioritize the inconsistent requirements fromdifferent viewpoints, we provide two ap-
proaches to constructing a requirements collection with the global prioritization, including the merging-
based approach and the priority vector-based approach. Theonly assumption of the merging-based
approach is that each original requirements collection is stratified. The different viewpoints do not need
to adopt the same scale of local priority levels. This conforms to the principle of heterogeneity in the
Viewpoints. On the other hand, we adopt the syntax-based merging operators presented in [20] dur-
ing merging process. The syntax-based merging operator aims to pick out some formulas from original
knowledge bases. Then the merged result can be explained clearly. But it is possible that there is no
merged result for some knowledge profiles with regard to someordering strategy. This means that we
can not get a globally prioritized requirements collectionin some case. However, introducing model-
based merging operators also leads to a problem of how to explain additional formulas in the merged
result in terms of viewpoints demands. It seems to be a dilemma.

In contrast, the priority vector-based approach assumes that all the viewpoints with the same impor-
tance level should adopt the same scale of local priority levels. Since most stakeholders consider the
three-level scale as a common scale of prioritization in requirements engineering [17], this assumption
of the priority vector-based approach is meaningful in requirements engineering. Moreover, the simplic-
ity of computation for getting the global priority of each requirements statement from its local priorities
makes the priority vector-based approach intuitive and acceptable to requirements engineering.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 35

The relation ofmore appropriate thanon the set of proposals for resolving inconsistency is associated
with the given relation (≺d or ≺l) onCons(PG � ∆G). It is a prioritized merging-based framework-
sensitive term. In this sense,the most appropriateproposalπ(S) is referred to as the proposals disengag-
ing the undominated elementS of Cons(PG � ∆G) with regard to≺d or ≺l from inconsistency rather
than absolutely perfect proposals. In our prioritized merging-base framework, each proposal is essen-
tially a recommendation of abandoning some requirements. However, it is difficult to derive other kinds
of proposal such as requirements change only based on the priority of requirements, since inconsistency
handling is really context-sensitive as mentioned in [15, 16]. Consequently, how to generate absolutely
perfect proposals to resolving inconsistency in requirements is still a challenging issue [11].

8. Related Work

Managing inconsistency in requirements has received considerable attention in requirements engineering
recently. In this section, we compare the prioritized merging-based framework presented in this paper
with some of closely related research.

As a common approach to fusing a set of heterogenous information, merging techniques have been
adopted to manage inconsistency in the Viewpoints framework. Easterbrook et al [34] presented the
multi-valued logics-based frameworkχbel for merging and reasoning about inconsistent viewpoints.
They formalized the viewpoints as state machine models. Thevariables used in the state machine
models are boolean variables. For example, suppose that a states1 in viewpoint v1 is represented by
{X = T, Y = F}. But in viewpointv2, s1 is represented by{X = F, Y = F}. Then in a merged
viewpoint, s1 will be represented by{X = TF, Y = FF}. Moreover,X = TF implies that the two
viewpoints disagree with each other onX. Their framework was intended to highlight the sources of
inconsistency or disagreement and to tolerate inconsistencies (e.g.X = TF) between viewpoints during
model checking. It did not consider how to resolve these inconsistencies. Barraǵans Mart́inez et al [35]
defined a merging operator whose aim was to get the model whichbest reflects the combined knowledge
of all the stakeholders (viewpoints) without first resolving inconsistencies and incompleteness. Although
their methodology has envisioned two kinds of possible revision procedures to modify the original view-
points, useful guidance on how to resolve these inconsistencies by using these revision procedures is
not yet provided in [35]. These existing merging frameworksused in managing inconsistent viewpoints
focused on tolerating inconsistency rather than resolvinginconsistency in merged results.

In contrast, our prioritized merging-based framework is intended to derive appropriate proposals for
resolving inconsistencies in requirements specification.Taking the priority of requirements into consider-
ation distinguishes our prioritized merging-based framework from the related works [34] [35]. We argue
that an appropriate proposal for resolving inconsistency in requirements should disengage more preferred
requirements from inconsistency by making minor concession in abandoning less preferred requirements.
Given a globally prioritized requirements collection, we identify the undominated consistent subsets of
the requirement collection by a prioritized merging operator (the discrimin operator [27, 28, 25] or the
leximin operator [25, 29]), and derive the proposals for resolving inconsistency from these undominated
consistent subsets. We also show that these proposals may beviewed as the most appropriate to resolving
inconsistency in the sense of the ordering relation over consistent subsets from the global perspective.
But we cannot guarantee that these proposals are the most appropriate to each viewpoint involved in
inconsistencies. Thus a group decision making mechanism such as vote and negotiation for identifying

36 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

an acceptable common proposal from these proposals is also discussed based on the local prioritization
of viewpoints.

To construct a globally prioritized requirements specification from a set of locally prioritized re-
quirements collection, we provide two approaches namely the merging-based approach and the priority
vector-based approach. The idea of merging-based approachwas first discussed and presented in our
previous paper [32]. In this framework, each locally prioritized requirements collection is considered
as a stratified knowledge base, whilst amaxsatdominated construction obtained from corresponding
stratified knowledge bases was viewed as the globally prioritized requirements specification. Here in
this paper, we extended the idea reported in [32] and considered an extension of the merged result of
the corresponding stratified knowledge bases rather than the merged result itself as a globally prioritized
requirements specification. Therefore, this method can be easily combined with the prioritized merging
in our new framework.

Another particular point about the merging-base approach is that we define the level vector function
to capture the relative importance of viewpoints. A closelyrelated work is on weighted knowledge base
[33], in which the relative importance of each knowledge base is represented by a non-negative number.
Let w(K) be a weight of knowledge baseK. Generally, for anyKi andKj, Ki is regarded as more
important thanKj if w(Kj) < w(Ki). Then we may define relative preference relationRw with regard
to weighted knowledge bases as follows:

Definition 8.1. (Relative Preference RelationRw)
LetE = {K1, · · · ,Kn} be an ordered knowledge profile and{ΩK1,X1 , · · · ,ΩKn,Xn} be a multi-set. A
binary relative preference relationRs ⊆ Ω × Ω is defined as

Rs(ω, ω
′) if and only if

∑
ΩKi,Xi

s.t. ω≺iω′

w(Ki) >
∑

ΩKj,Xj
s.t. ω′≺jω

w(Kj),

where≺i is the strict partial order relation induced fromΩKi,Xi
.

If we want to use the weight-based relative preference relationRw instead of thelevel vector function-
based relative preference relationRs in requirements engineering, some additional problem willresult
from this replacement. First of all, how to find appropriate weights assigned to viewpoints is a difficult
problem to solve. Although some developers would like to use{3, 2, 1} instead of{High, Medium, Low}
in requirements development, it can not be viewed as a set of weights assigned to viewpoints. In re-
quirements engineering, each viewpoint with higher priorities prevail over all the viewpoints with lower
priorities. In terms of weighted knowledge bases presentedin [33], the knowledge base induced by
the viewpoint with highest priority should be considered asmaster knowledge base if there is only one
viewpoint with the highest priority. Thus, the weight assigned to the master knowledge base should
be greater than the combined weight of the other knowledge bases in the profile [33]. That is, given
E = (T1, T2, T3), suppose thatT1 = {K1} and|T2| > 1, then

w(K1) >
∑

K∈Ei,i≥2

w(K)

should be satisfied, wherew(K) is the weight ofK. Obviously,{3, 2, 1} is not competent for such
cases. Thus, it is necessary to design a set of weights for considering that each viewpoint with higher
priorities prevail over all the viewpoints with lower priorities. Moreover, the designed weights may not

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 37

be explained intuitively in many cases. For example, if we assign weight 9 to a viewpointvA at thehigh
level and weight 1 to a viewpointvB at thelow level, we do not think that the degree of importance of
vA is 9 times of that ofvB. Actually, we can also assign any number greater than 9 tovA.

In contrast, the level vector function can be obtained directly from the original priorities of view-
points. There is no need for other additional information. Moreover, it embodies that each viewpoint
with higher priorities prevails over all the viewpoints with lower priorities by different locations of el-
ement1 in the vectors. Consequently, it may be advisable to use the level vector function rather than
weights to capture the relative degree of importance of knowledge bases induced by viewpoints.

The priority vector-based approach is appropriate to the special cases that the viewpoints at the
same level adopt the the same scale of local prioritization.Given a requirements statement, both the
number of its supporting viewpoints and its local priorities with regard to its supporting viewpoints play
an important role in the global priority of the requirementsstatement. Roughly speaking, the priority
vector-based approach is similar to the social vote techniques [31] if we consider each viewpoint as a
voter. However, most social voting rules assume that no voter is more important than others. But the
priority vector-based approach takes the relative importance of viewpoints into account. It distinguishes
the priority vector-based approach from social choice theory such as [31].

With regard to the problem of how to identify an acceptable common proposals for resolving incon-
sistency, the closely related work is an approach to identifying acceptable common proposals presented
in [30], in which the combinatorial vote is adopted as a groupdecision making mechanism to choose the
common proposal. The preference over proposals of each viewpoints was associated with the preference
over the goals of the viewpoint rather than the priority of requirements in [30]. In contrast, we argue that
both the local priority of requirements and the group decision making mechanism used by viewpoints
have impact on the result of identifying an acceptable common proposal. For each viewpoint, its pref-
erence over proposals is associated with the local priorities of requirements involved in these proposals.
Moreover, we present a sketchy framework for negotiation over derived proposals, which is considered
as a part of the prioritized merging-based framework.

9. Conclusions

Developing desirable proposals for handling inconsistency is still a challenging issue in requirements
engineering. The relative priority of requirements is considered as a useful indication as how to resolve
conflicts and to make trade-off decisions. However, in distributed development of requirements specifica-
tions such as the Viewpoints framework, local prioritization with regard to a particular viewpoints is the
only available prioritization in many cases. The disagreement in local priorities of shared requirements
statements often leads inconsistency handling to a dilemma.

We presented a prioritized merging-based framework for handling inconsistency in the Viewpoints
framework in this paper. According to this framework, givena set of inconsistent viewpoints, we con-
structed a globally prioritized requirements specification from the original requirements collections with
the local prioritization firstly. We then mapped this requirements specification to a set of its consistent
subsets by using a prioritized merging operator. The prioritized merging operator used in the mapping
provides a relation over all the consistent subsets of the requirements specification. Moreover, according
to this relation, each consistent subset of the requirements specification in the prioritized merging result
is optimal. Following this, we derived some proposals for handling inconsistencies from the prioritized

38 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

merging result. These proposals may be considered as the most appropriate ones to handling inconsis-
tency from the global perspective in the sense of ordering relation used in the prioritized merging. But
we cannot guarantee that these proposals are the most appropriate to each viewpoint involved in inconsis-
tencies. For an individual viewpoint, different proposalsmay have different impact on the requirements
change with regard to the viewpoint. Therefore, a group decision making mechanism such as negotia-
tion for identifying an acceptable common proposal from these proposals has also been discussed in this
paper. Moreover, we argue that the local priorities of requirements play a prominent role in identifying
an acceptable common proposal.

We considered two methods for constructing a globally prioritized requirements specification from a
set of requirements collections with the local prioritization, including the priority vector-based construc-
tion and the merging-based construction. Informally, the priority vector-based construction focuses on
how to get the global priority of each requirements statement by integrating its existing local priorities in
the form of priority vector function. In contrast, merging-based construction considers each requirements
collection with the local prioritization as a stratified knowledge base. The requirements specification with
the global prioritization is constructed by merging these stratified knowledge bases. By using the two
methods, we also provided two special prioritized merging-based frameworks correspondingly.

If our prioritized merging-based approach is combined withtechniques for translating demands in
nature language to logical formulas, the integration may provide a basis for automated inconsistency
management in requirements engineering. This will be the main direction for our future work.

References

[1] CHAOS: Software Development Report by the Standish Group. Avaiable online at
http://www.standishgroup.com/chaos.html (1995).

[2] Ibanez, M.: European user survey analysis. Tech. rep. ESI report TR95104. Euro- pean Software Institute,
Zamudio, Spain. http://www.esi.es (1996).

[3] Davis, A.M.: Software Requirements:Objects,Functions, and States. Englewood Cliffs, NJ:PTR Prentice Hall
(1993).

[4] Leffingwell, D.: Calculating the return on investment from more effective require- ments management. Amer-
ican Programmer 10 (1997).

[5] Leffingwell, D. Widrig, D.: Managing Software Requirements: A Use Case Approach. Boston, MA: Addison-
Wesley (2003)

[6] Finkelsetin, A., J.Kramer, B.Nuseibeh, L.Finkelstein, M.Goedick, “Viewpoints: A Framework for Integrating
Multiple Perspectives in System Development”, International Journal of Software Engineering and Knowledge
Engineering, 2(1):31-58,1992.

[7] Kotonya, G., I.Sommerville: Viewpoints for requirements definition. IEE Software Eng.Journal 7 (1992) 375-
387.

[8] Andrade, J., Ares, J., Garcia, R., Pazos, J., Rodriguez,S., Silva, A.: A methodolog ical framework for
viewpoint-oriented conceptual modeling. IEEE Trans. Softw. Eng. 30 (2004) 282-294.

[9] Nuseibeh, B., Kramer, J., Finkelstein, A.: Viewpoints:meaningful relationships are difficult! In: Proceedings
of the 25th International Conference on Software Engineering. IEEE CS Press (2003) 676-681.

K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based... 39

[10] Gervasi, V., D.Zowghi: Reasoning about inconsistencies in natural language re quirements. ACM Transaction
on Software Engineering and Methodologies 14 (2005) 277-330.

[11] Hunter, A., B.Nuseibeh: Managing inconsistent specification. ACM Transactions on Software Engineering
and Methodology 7 (1998) 335-367.

[12] Zowghi, D., Gervasi, V.: On the interplay between consistency, completeness, and correctness in require-
ments evolution. Information and Software Technology 45 (2003) 993-1009.

[13] Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging inconsistency in software development. IEEE Com-
puter 33 (2000) 24-29.

[14] Nuseibeh, B., S.Easterbrook, A.Russo: Making inconsistency respectable in software development. Journal
of Systems and Software 58 (2001) 171-180.

[15] Gabbay, D., Hunter, A.: Making inconsistency respectable 2:meta-level handling of inconsistent data. In:
ECSQARU93,LNCS. Volume 747. Springer (1993) 129-136.

[16] Finkelstein, A., Gabbay, D., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency handling in multiperspective
specifications. IEEE Trans. on Software Engineering 20 (1994) 569-578.

[17] Wiegers, K.: First things first:prioritizing requirements. Software Development 7 (1999) 48-53.

[18] Davis, A.: Just Enough Requirements Management:WhereSoftware Development Meets Marking. Dorset
House (2005)

[19] Delgrande, J., Dubois, D., Lang, J.: Iterated revisionas priorited merging. In: KR 06. (2006) 210-220.

[20] Yue, A., Liu, W., Hunter, A.: Approaches to constructiing a stratified merged knowledge base. In: EC-
SQARU2007,LNCS. (2007).

[21] Wiegers, K.E.: Software Requirements,2nd ed. Microsoft Press (2003).

[22] Karlsson, J., Ryan, K.: A cost-value approach for prioritizing requirements. IEEE Software 14 (1997) 67-74.

[23] Pardee, J.: To Satisfy and Delight Your Customer:How toManage for Customer Value. New York:Dorset
House Publishing (1996).

[24] Spanoudakis, G., Finkelstein, A., Till, D.: Overlaps in requirements engineering. Automated Software Engi-
neering 6 (1999) 171-198.

[25] Benferhat, S., Cayrol, C., Dobois, D., Lang, J., Prade,H.: Inconsistency manage- ment and prioritized
syntax-based entailment. In: Proceedings of IJCAI93. (1993) 640-647.

[26] Brewka, G.: A rank-based description language for qualitative preferences. In: Proc. of ECAI’04. (2004)
303-307.

[27] Brewka, G.: Preferred subtheories: an extended logical framework for default rea- soning. In: Proc. of IJCAI
1989. (1989) 1043-1048.

[28] Nebel, B.: Belief revision and default reasoning: Syntax-based approaches. In: Proc. of KR91. (1991) 417-
428.

[29] Lehmann, D.: Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence
15 (1995) 61-82.

[30] Mu, K., Jin, Z.: Identifying acceptable common proposals for handling inconsistent software requirements.
In: FORTE2007, LNCS4754. (2007) 296-308.

[31] Lang, J.: From logical preference representation to combinatorial vote. In: Proceedings of 8th International
Conference on Principles of Knowledge Representation and Reasoning. Morgan Kaufmann (2002) 277-288.

40 K. Mu et al. / Handling Inconsistency in Distributed Software Requirements Specifications Based...

[32] Mu, K., Liu, W., Jin, Z., Lu, R., Yue, A., Bell, D.: A merging-based approach to handling inconsistency in
locally prioritized software requirements. In: KSEM2007,LNCS4798. (2007)10-114.

[33] Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83 (1996) 363-378.

[34] Easterbrook, S., M.Chechik: A framework for multi-valued reasoning over inconsistent viewpoints. In: Pro-
ceedings of International Conference on Software Engineering (ICSE’01), Toronto, Canada (2001) 411-420.

[35] Barraǵans Mart́inez, A. B, J. P. Arias, A.F. Vilas, J.G. Duque, M.L. Nores, R.P.D. Redondo, Y.B. Ferńandez:
On the interplay between inconsistency and incompletenessin multi-perspective requirements specification.
Information and Software Technology 50(2008) 296-321.

[36] Ryan, L. O.: “Efficient algorithms for clause learning sat solvers”,Masters Thesis, Simon Fraser University,
2004.

[37] Bird. R., and Hinze, R.:“Functional pearl:Trouble shared is trouble halved”,Proc. of the 2003 ACM SIGPLAN
Workshop on Haskell, pp. 1-6, 2003.

[38] Grover, C., Brew, C., Moens, M., and Manandhar,S.: “Priority union and generalization in dsicourse gram-
mar”. Proc. of the 32nd Annual Meeting of the Association for Computational Linguistics, pp. 17-24, 1994.

[39] Malouf,R.: Maximal consistent subsets,Computational Linguistics, vol.33, no.2,pp.153-160,2007.

[40] Robinson, W.N.: Negotiation behavior during requirements specification. In: ICSE1990, 268-276.

[41] Robinson, W.N., Volkov, V.: Supporting the negotiation life cycle. Communications of the ACM 41 (1998)
95-102

[42] Wooldridge, M., and Parsons, S.: Languages for negotiation. In Proceedings of ECAI2000, 393-397. 2000.

[43] Sierra,C., Jennings, N., Noriega, P., and Parsons, S.:A framework for argumentation-based negotiation. In
Intelligent Agents IV (LNAI Vol. 1365)(1998)177-192.

