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Abstract. This paper discusses the relationship between incidence cal-
culus and the ATMS. It shows that managing labels for statements in an
ATMS is similar to producing the incidence sets of these statements in
incidence calculus. We will prove that a probabilistic ATMS can be im-
plemented using incidence calculus. In this way, we can not only produce
labels for all nodes in the system automatically, but also calculate the
probability of any of such nodes in it. The reasoning results in incidence
calculus can provide justifications for an ATMS automatically.

1 Introduction

The ATMS is a symbolic reasoning technique used in the artificial intelligence
domain to deal with problems by providing dependent relations among state-
ments during inference normally. This technique can only infer results with
absolutely true or false. It lacks the ability to draw plausible conclusions such
as that a conclusion is true with some degree of belief. However in many cases,
pieces of information from a knowledge base provide assumptions and premises
with uncertainties. It i1s necessary to let the ATMS have the ability to cope with
uncertainty problems.

In order to overcome this problem, some research on the association of nu-
merical uncertainties with ATMS has been carried out. In [8], De Kleer and
Williams use probability theory to deal with such associated with assumptions.
In [11, 15], the authors use possibilistic logic to handle this problem. In [11]
both assumptions and justifications are associated with uncertainty measures.
The uncertainty values associated with justifications are used to select the path
for deriving a node. Only those pathes with strong supporting relations are used
to infer the corresponding nodes. [15] continues the work carried out in [11] and
extends it to deal with a military data fusion application. [5, 6, 14, 16, 19, 20]
all use Dempster-Shafer theory of evidence to calculate beliefs in statements.
Among them [16] studies a formal relation between DS theory and ATMS. Tt is
proved in [16] that any belief network in DS theory can be translated into an
ATMS structure. In such a system, the inference is performed based on ATMS
techniques with a probability model on assumptions. One common limitation
in all these extensions of the ATMS! is that the probabilities assigned to as-
sumptions must be assumed probabilistically independent in order to calculate
the degree of belief in a statement. In this paper, we continue this research and

IExcept the discussion in [11, 15] in which the topic was not discussed.



intend to provide a general basis for constructing a probabilistic ATMS. The
uncertainty technique we have chosen is incidence calculus.

The main contributions of this paper are: We prove that incidence calculus
and the ATMS are equivalent at both the symbolic reasoning level and numerical
inference level if we associate proper probabilistic distributions on assumptions.
We show that the integration of symbolic and numerical reasoning patterns are
possible and incidence calculus itself is a typical example of this unification. The
result of investigating the relationship between incidence calculus and ATMS
can provide a theoretical basis for some results in [16]. We will show that
incidence calculus can be used to provide justifications for nodes automatically
without human involvement. Therefore a complete automatic ATMS system is
constructible.

The paper 1s organized as follows. Section 2 introduces the basics of incidence
calculus. In section 3 we introduce the ATMS notations and extend it by adding
probabilities to assumptions. In section 4 we will explore how to manipulate
labels of nodes and calculate degrees of belief in nodes in incidence calculus. In
the concluding section, we summarize our results.

2 Incidence Calculus

Incidence calculus [1, 2] starts with two sets, the set P contains propositions and
the set W consists of possible worlds with a probability distribution on them.
For each element w of W, the probability on w, g(w), is known and Xg(w) = 1.
From the set P, using logical operators A, V,—, —, a set of logical formulae are
formed which is called the language set of P, denoted as £(P). The elements in
the set W may make some formulae in £(P) true. For any ¢ € L(P), if every
element in a subset W; of W makes ¢ true and W; is the maximal subset of
this kind, then Wi is represented as i(¢) in an incidence calculus theory and it
is called the incidence set of ¢. Therefore, the supporting set of a formula ¢
is i(¢) and its probability is p(¢) = wp(W1) where wp(W1) = Zyew, o(w). Tt
is assumed that (L) = {} and i(T) = W where L, T represent false and true
respectively.

Definition 1: Incidence calculus theories: an incidence calculus theory is a
quintuple < W, o, P, A, i > where W is a set of possible worlds with a probability
distribution g, P is a set of propositions and A is a subset of £(P) which is called
a set of axioms. The function ¢ assigns an incidence set to every formula in A.
For any two formulae in A, we have é(¢ A ¢) = i(¢) Ni(y).

Based on this definition, given two formulae ¢, ¢ € A, we have i(¢) C i(¢))
if ¢ = ¢ = T. For any other formula ¢ € L(P) \ A, it is possible to get the
lower bound i, (¢) of its incidence set as i, (¢) = Uw_>¢:T i(y) where ¢ € A and
v — ¢ =Tiff i(y = ¢) = W. The degree of our belief in a formula is defined
s po(6) = wp(i-(9)).

Definition 2: Semantic implication set and essential semantic implication
set: for any formula ¢ € L(P), if ¢y = ¢ = T then ¢ is said to be semantically
implied by ¢, denoted as ¢ |= ¢. Let SI(¢) = {¢ | ¥ = ¢ = T,V¢ € A}, set



SI(¢) is called a semantical implication set of ¢. Furthermore, let ESI(¢) be
a subset of SI(¢) which satisfies the condition that a formula ¢ is in EST(¢)
for any ¢’ in SI(¢) v = ¢’ # T, then ESI(¢) is called an essential semantical
implication set of ¢. This is denoted as ESI(¢) = ¢.

Proposition 1 If SI(¢) and ESI(¢) are a semantic implication set and an es-
sential semantic implication set of ¢, then the following equation holds: i, (¢) =

i(51(¢)) = ix(ESI(9)) where i (S1(8)) = Uy, esr(p) 1(5)-

This proposition can be proved based on the definitions of lower bound of
incidence set i, and SI(¢) and ESI(¢) above. It will be proved later that the
essential semantic implication set of a formula is exactly the same as the set of
justifications of that formula in an ATMS.

When two incidence calculus theories are given on different sets of possible
worlds and the two sets are probabilistically independent (or DS-Independent?),
the combination can be performed using the Corollary 1 in [3]. Given that
< Wi, 01, P, A1,i1 > and < Wa, g2, P, As, i2 >, applying Corollary 1 we get a
combined theory < Ws, g3, P, As, i3 > where

Wy = U i1(¢) ® i2(¥) ¢ €A bE A
dAp=L
Ws = Wi @ Wy \ Wy
01 (wis) 02 (way)

Lowh ) EWo Ql(wlli)QZ(w/Zj)

1z

03(w) = es((wii, w2y)) = 17— )

"43: {SD | go:qS/\1/),where¢E.,41,1/) EAQ,QD#J—}
ise) = |J () @i) \ W ¢ € AL € Ay

(pAY—)=T
In general a pair (wq;, wo;) is an element of Wi @ Wy \ Wy. It is required
that T is automatically added into a set of axioms A if Ugeai(¢) C W.

3 The ATMS

The truth maintenance system (TMS) [9] and later the ATMS [7] are both
symbolic approaches to producing a set of statements in which we believe. The
basic and central idea in such a system is that for each statement we believe in,
a set of supporting statements (called labels or environments generally in the
ATMS) is produced. A set of supporting statements is, in turn, obtained through

?See definition and explanation in [3]. In the analysis [3], two sets of possible worlds are
probabilistically independent cannot guarantee they are DS-Independent when their original
source is known. In the case that original source is the set product of these two sets, their
probabilistic independence also implies their DS-Independence. In this paper, as we only
consider the latter case, we will use term probabilistically independent to name the relations
among two sets.



a set of arguments attached to that statement (called justifications). In an
ATMS, a justification of a statement (or called node) contains other statements
(or nodes) from which the current statement can be derived. Justifications are
specified by the system designer. For instance, if we have two inference rules as:
r1 :p — q and 72 : ¢ — 7, then logically we can infer that rs : p — r. In an
ATMS, if 71,75 and r3 are represented by node;, nodes and nodes respectively,
then nodes is derivable from the conjunction of node; and nodes and we call
(r1,72) a justification of nodes. Normally a rule may have several justifications.
Further more if 71 and 75 are valid under the conditions that A and B are
true respectively, then rule r3 is valid under the condition that A A B is true,
denoted as {A, B}. {A},{B} and {A, B} are called sets of supporting statements
(or environments) of r1, 7 and rg respectively. A and B themselves are called
assumptions. If we associate nodes with the supporting statements such as
{A, B} and the dependent nodes such as {(r1,72)} then nodes is generally in
the form of r3 : p — r,{{A4, B}...},{(r1,r2)...} when nodesz has more than one
justification. The collection of all possible sets of supporting environments is
called the label of a node. If we use L(rs) to denote the label of nodes, then
{A, B} € L(r3). If we assume that r1, 75 hold without requiring any dependent
relation on other nodes, then node; and nodes are represented as r1 : p —
0, {{A}}, {0} and 72 : ¢ = », {{B}},{()}. Therefore, we can infer a label for
any node as long as its justifications are known.

The advantage of this reasoning mechanism is that the dependent and sup-
porting relations among nodes are explicitly specified, in particular, the sup-
porting relations among assumptions and other nodes. This is obviously useful
when we want to retrieve the reasoning path. It is also helpful for belief revision.
The limitation of this reasoning pattern is that we cannot infer those statements
which are probably true rather than absolutely true. However, if we attach nu-
merical degrees of belief to the elements in the supporting set of a node, we may
be able to infer a statement with a degree of belief. For example, if we know A
is true with probability 0.8 and B is true with probability 0.7 and A and B are
probabilistically independent, then the probability of A A B is true is 0.56. The
belief in a node is considered as the probability of its label. So for nodes, our
belief in it is 0.56.

Definition 3: Probabilistic assumption set:® a set {A, B, ..., C'}, denoted as
Sa,... c,1s called a probabilistic assumption set for assumptions A, B, ..., C'if the
probabilities on A, ..., C are given by a probability distribution p from a piece
of evidence and Xpeyqa, . cyp(D) = 1. The simpliest probabilistic assumption
set has two elements X and =X, denoted as Sx = {X,—-X}. For any two
assumptions in a set, it is assumed that A;AA; ==L and VA; =T forj=1,... n.

For two distinct probabilistic assumption sets S4 and Sg, the unified prob-
abilistic assumption set set is defined as Sap = S4 @ Sp = {(41,B;) | 4; €
Sa,Bj € Sp} where @ means set product and p(A4;, Bj) = p1(4;i) X p2(B;). ;1
and ps are the probability distributions on S4 and Sp respectively.

Definition 4: Full extension of a label: assume that an environment of a

3Similar definition is given in [16] called auxiliary hypothesis set.



node nis {Ay, A, ..., A;} where A; are in different probabilistic assumption sets.
Because A1 A ANA = AALANAN(VB; | B € S), A1 AL AA, — noand
AN ANAL A (V3B | B € Sg) — n (where Sg is a probabilistic assumption
set which is different from Sa,), 41 A ... A A A(VB; | B; € Sg) is called a full
extension of the environment to Sg. If there are in total m assumptions in the
ATMS, then the extension A1 A...A(VB; | B; € Sp)A...A(VCi—i | C—i € S¢)
is called the full extension of the environment to all assumptions, or simply
called the full extension of the environment. Similarly if every environment in a
label has been fully extended to all assumptions, then we call the result the full
extension of the label, denoted as F'L(n).

4 Implementing an ATMS Using Incidence Cal-
culus

Abstractly if we view the set of possible worlds in incidence calculus as the set
of assumptions in an ATMS, and view the calculation of the incidence sets of
formulae as the calculation of labels of nodes in the ATMS, then the two rea-
soning patterns are similar. As incidence calculus can draw a conclusion with
a numerical degree of belief on it, incidence calculus actually possesses some
features of both symbolic and numerical reasoning approaches. Therefore, inci-
dence calculus can be used both as a theoretical basis for the implementation of a
probabilistic ATMS by providing both labels and degrees of belief of statements
and as an automatic reasoning model to provide justifications for an ATMS.

Now we will show how to manage assumptions in the ATMS in the way we
manage sets of possible worlds in incidence calculus. Here we look at an example
(from [16]).

Ezample 1 Assume that there are the following nodes in an ATMS:

assumed nodes: n1 :<b = o, {{V}HL{(V)} > ny:<c—oa {{W}L{W)}>
ny :<d—=b{{X}L{X)}> na<d-oce{{YIH{Y)}>
ns:<e—=>d, {7 1L{(Z)} >

premise node:  ng < e, {{}}, {0} >

derived nodes: n7:<d — a, {{X,V} {Y,W}}, {(n1, n3), (n2,n4)} >
ng:<e—a, {7, X, V{2, Y, W}} {(nr,ns)} >
ny < a, {{Z, X, V},{Z,Y,W}},{(ne,nsg)} >

assumption nodes: < X, {{X}},{(X)} >, <V, {{V}L{(V)}>, ..

The label of node a is Bel(a) = Pr((ZAX AV)V (ZAY AW)). Given
that probabilities on different assumptions are p1 (V) = .7; p2(W) = .8; ps(X) =
6;p4(Y) = 75;ps5(Z) = .8, and they are probabilistically independent, the
belief in @ is Bel(a) = 0.6144 which is calculated based on FL(a). A different
calculation procedure can also be found in [16] which produces the same result.

Now let us see how his problem can be solved in incidence calculus theories.
Suppose that we have the following six incidence calculus theories

< Sv,o1, P,{b—a, T} i1(b—a) ={V},i(T) = Sy >



< Sw,e2, P,{c—=a, T} iz(c = a) = {W},ia(T) = Sw >

< Sx,03, P,{d—=b,T},iz(d = b) = {X},i3(T) = Sx >

< Sy,04, P,{d = ¢, T} is(d—¢) ={Y},ia(T) = Sy >

< Sz,05, P{e=>d, T} is(e = d)={7},is(T) = Sz >

< Sg,06(F)=1,P {e},isle) = Sg >
where Sy = {V, =V}, ..., Sz = {Z,-Z}, and Sg = {E,—~FE} are probabilistic
assumption sets. If we assume that sets of Sx, ..., Sz, Sg are probabilistically
independent, the combination of the first five theories produces an incidence
calculus theory < S7, 07, P, A7,i7 > in which the joint set is S7 = Sz @ Sx ®
Sy ® Sy ® Sy . Combining this theory with the sixth incidence calculus theory?
we obtain i(eA¢1) = SEZXV Sy Sw, i(eN¢2) = SgZYWSx Sy, i(eAg1 Aga) =
SgZXVYW ifwelet e = dAd — bAb — a = ¢1 and e = dAd — cAe — a = ¢o.
Because e A ¢1 — a, e A ¢p2 — a and e A 91 A ¢2 — a, the following equation
is(a) = SEZXV Sy Sw USpSx Sy ZYW holds. So p.(a) = wp(i.(a)) = 0.6144.
Similarly we can also obtain i.(d — a), ix(e — a) as:

i*(d — a) = SESzXVSySw USESZzYWSx Sy
i*(e — a) =SEZXVSySw USEZYWSx Sy

Therefore the following equations i, (d = @) = FL(d — a), i.(e = a) = FL(e —
a) and i.(a) = FL(a) hold. Here the symbol = is read as “equivalent to”. An
incidence set of a formula (or its lower bound) is equivalent to the full extension
of the label of a node means that for any element in the incidence set there is
one and only one conjunction part in FL(x).

Theorem 1 Given an ATMS, there exists a set of incidence calculus theories
such that the reasoning result of the ATMYS s equivalent to the result obtained
from the combination of these theories. For any node d; in an ATMS, L(d;)\L(L
) is equivalent to the incidence set of formulae d; in incidence calculus.

The proof is given in [17].

Ezample 2 Following the story in Example 1, suppose we are told later that
f 1s also observed and there is a rule f — —c¢ with degree .8 in the knowledge
base. That is, three more nodes in the ATMS are used as shown below.

assumed node: < f — —¢, {{U}} {(U)} >

premise node < f, {{}},{0} >

assumption node < U, {{U}},{(U)} >

and assumption sets Sy = {U,~U}, Sp = {F,-F}.

Here SF is created to support premise node f.

In the ATMS, we can infer that one environment of node ¢ is {F,Z YV}
and one environment of node —e¢ is {F,U}. So the nogood environment is
{E,X,Y,F,U}. The belief in node a needs to be recomputed in order to re-
distribute the weight of conflict on the other nodes. The revised belief in a is
0.366 given in [16].

Similar to Example 1, in incidence calculus two more incidence calculus the-
ories are constructed from the assumed node and the premise node. Combining

4The combination sequence does not affect the final result. Here in order to show the result
explicitly, we take these two steps.



these two theories with the final one we obtained in Example 1, we have Wy =
{UZY}% dc(a) = {ZXV UZYW} \ Wy. Therefore wp({UZY }) = 0.48 which
is the weight of conflict and pl(a) = wp({ZXV U ZYWH\{UZY}) = 0.366
which is our belief in a. Both of these results are the same as those given in [16],
but the calculation of belief in node @ and the weight of conflict are based on
incidence calculus theory.

5 Conclusions

Existing papers discuss the unification of an ATMS with numerical uncertain
reasoning mechanisms [5, 6, 8 11, 14, 15, 16, 19, 20]. The closest work to
ours is described in [16]. In their paper the relations between the ATMS and
the Dempster-Shafer theory of evidence is discussed. They claimed that the
relation between the two theories is that the ATMS can be used to represent DS
inference networks. More precisely, their result is that a set of belief functions
can be equivalently translated into a corresponding ATMS system. In such
systems the reasoning procedure is carried out as a normal ATMS together with
performing the appropriate calculations of uncertainty values. However a formal
proof of equivalence between the two theories is missing. We claim that incidence
calculus, though closely related to DS theory [2, 3], also has strong similarities to
the ATMS. These have allowed us to produce a proof of the equivalence between
the two forms of inference.

The discussion in this paper tells us that incidence calculus itself is a unifica-
tion of both symbolic and numerical approaches. It can therefore be regarded as
a bridge between the two reasoning patterns. This result also gives theoretical
support for research on the unification of the ATMS with numerical approaches.
In incidence calculus structure, both symbolic supporting relations among state-
ments and numerical calculation of degrees of belief in different statements are
explicitly described. For a specific problem, incidence calculus can either be
used as a support based symbolic reasoning system or be applied to deal with
numerical uncertainties. This feature cannot be provided by pure symbolic or
numerical approaches independently.

Another advantage of using incidence calculus to make inferences is that it
doesn’t require the problem solver to provide justifications. The whole reason-
ing procedure is performed automatically. The inference result can be used to
produce the ATMS related justifications. The calculation of degrees of beliefs
in nodes are based on the hypothesis that each assumption 1s in one auxiliary
set and all these sets are probabilistically independent. Further work will con-
sider the more general situation, that is, several assumptions are in one set as
individual elements and there is a probability distribution on it.

5In order to state the problem clearly, we use UZY instead of UZY Sx Sy Sv SgSr.
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