
Reasoning about Knowledge using Rough Sets

Weiru Liu

School of ISE, University of Ulster at Jordanstown
Newtownabbey, Co. Antrim BT37 0QB, UK

w.liu@ulst.ac.uk

Abstract. In this paper, we first investigate set semantics of proposi-
tional logic in terms of rough sets and discuss how truth values of pro-
positions (sentences) can be interpreted by means of equivalence classes.
This investigation will be used to answer queries that involve general
values of an attribute when the actual values of the attribute are more
specific. We then explore how binary relations on singletons can be ex-
tended as set-based relations, in order to deal with non-deterministic
problems in an information system. An example on test-case selection in
telecommunications is employed to demonstrate the relevance of these
investigations, where queries either contain values (concepts) at higher
granularity levels or involve values of an attribute with non-deterministic
nature or both.

1 Introduction

In rough sets, information and knowledge is usually represented using data tables
or decision tables [9]. Each column in such a table is identified by an attribute,
which describes one aspect of the objects being processed in an information
system. Attribute values can be defined at different granularity levels, according
to a specific requirement. In the past, most of the research work using rough
sets has focused on how to use or manipulate or discover knowledge from the
information carried by a table, under the assumption that attribute values in
such a table have been chosen at the right granularity level (e.g., [10], and [11]).

Nevertheless, problems of granules of attribute values in query processing
have been addressed by some researchers. In [5], a high level data table is derived
from a lower level table when the concept required by the query is not matched by
the values of the relevant attribute in the lower level table. In this case, the values
of the attribute in the higher level table are replaced by more general values
(concepts). In [12], approaches to answering non-standard queries in distributed
information systems were explored. Values of an attribute at different granule
levels are arranged as nodes in a tree structure, with the attribute name as the
root and the most specific values of the attribute as the leafs. In contrast to
the two approaches above, in [1], rough predicates are defined. These predicates
associate user-defined lower and upper approximations with attribute values, or
with logical combinations of values, to define a rough set of tuples for the result
of the predicates. Each predicate, similar to the definition of a function on an

entity in a functional data model, does not define an attribute as a function on
a relation rather it chooses a possible value of an attribute as a function of the
relation. For example, if relation Horse has an attribute Age, then a predicate
young(Horse) is defined with the lower approximation containing those horses
with age below 1, and the upper approximation consisting of those horses with
ages in {2,3,4}.

Another common problem associated with attribute values in a data table
is that an object has a set of possible values instead of just one value for a
particular attribute. Although only one of the values is surely true but we cannot
say (determine) precisely which value it is yet. When a data table involves this
kind of attributes (non-determinictic), it is necessary to extend usual binary
equivalence relations to be set-based relations (e.g., [13]).

In this paper, we aim at solving these two problems when a query either
contains values (concepts) at higher granularity levels or involves values of an
attribute with non-deterministic nature or both. We discuss how to reason about
knowledge at different levels from a data table using the combination of logic and
rough sets, when values of an attribute are given at the most specific level, in
order to answer queries. To achieve this objective, we investigate set semantics of
propositional logic first in rough sets and then explore the relationships between
equivalence relations and propositions in terms of partitioning a data table. We
then discuss how extended set-based binary relations can be applied to com-
pute tighter bounds when the values of an attribute are non-deterministic (set-
based) [6]. An example on test-case selection in telecommunications is employed
to demonstrate the relevance of our research result. The paper is organized as
follows. Section 2 introduces the basic notions of rough sets and set based com-
putations in non-deterministic information systems. Section 3 explores the set
semantic of propositional logic. Section 4 discusses how to apply the results to
solve complex queries. Finally Section 5 summarizes the paper.

2 Deterministic and Non-deterministic Information
Systems

Basics of rough sets: Let U be a set, also called a universe, which is non-empty
and contains a finite number of objects (this assumption will not lose general
properties of rough sets), and R be an equivalence relation on U . An equivalence
relation is reflexive, symmetric and transitive. An equivalence relation R on U
divides the objects in U into a collection of disjoint sets with the elements in the
same subset indiscernible. We denote each partition set, known as an equivalence
class, as WR

l and an element in WR
l as wR

lj . The family of all equivalence classes
{WR

1 , ...,W
R
n } is denoted as U/R. WR

l and wR
lj are simplified as Wl and wlj

respectively when there is no ambiguity about which equivalence relation R we
are referring to.

Given a universe, there can be several ways of classifying objects. Let R and
R′ be two equivalence relations over U , R ∩R′ is a refined equivalence relation.

∩ can be understood as and. The collection of equivalence classes of R ∩R′ is

U/(R ∩R′) = {WR
l ∩WR′

j |WR
l ∈ U/R,WR′

j ∈ U/R′,WR
l ∩WR′

j �= ∅}. (1)

Equivalence relation R1 ∩R2 ∩ ...∩Rn, from R = {R1, ..., Rn} on a universe
U , is usually denoted as IND(R) [9].

Definition 1. Structure (U,Ω, Va)a∈Ω is called an information system where:
1. U is a finite set of objects,
2. Ω is a finite set of primitive attributes describing objects in U ,
3. For each a ∈ Ω, Va is the collection of all possible values of a. Attribute a

also defines a function, a : U → Va, such that ∀u ∈ U , ∃x ∈ Va, a(u) = x.

Such an information system is also called a deterministic information system.
For a subset Q ∈ Ω, function RQ defined by u1RQu2 ⇔ ∀a ∈ Q, a(u1) = a(u2) is
an equivalence relation. When Q consists of only one attribute a, i.e., Q = {a},
RQ is called an elementary equivalence relation. In [9], each equivalence class in
an elementary equivalence relation is referred to as an elementary concept. Any
other non-elementary equivalence relation RQ can be represented by a set of ele-
mentary equivalence relations using the following expression, RQ = ∩a∈QR{a}.

Definition 2. Let U be a universe and R be an equivalence relation on U . For
a subset X of U , if X is the union of some WR

l , then X is called R-definable;
otherwise X is R-undefinable.

Let R = {R1, ..., Rn} be a collection of n equivalence relations. Then any
subset X ⊆ U obtained by applying ∩ and ∪ to some equivalence classes in
any U/R (where R ⊆ R) is IND(R)-definable. This statement identifies all the
concepts that are definable under equivalence relation IND(R). For any subset
X of U with a given R, we can also use two subsets of U to describe it as follows:

RX = ∪{WR
l |WR

l ⊆ X}, RX = ∪{WR
l |WR

l ∩X �= ∅}.

When X is R-definable, RX = RX = X. Subsets RX and RX are called
R-lower and R-upper approximations of X.

Set-based computation: In real world applications, not all attributes in
a data table will be assigned with single values against individual objects (e.g.,
[6],[8]). The definition below defines those information systems where an attrib-
ute can have a set of values for a particular object.

Definition 3. Structure (U,Ω, Va)a∈Ω is called a non-deterministic information
system where:

1. U is a finite set of objects,
2. Ω is a finite set of primitive attributes describing objects in U ,
3. For each a ∈ Ω, Va is the collection of all possible values of a. Attribute a

also defines a function, a : U → 22Va , such that ∀u ∈ U , ∃S ⊆ 2Va , a(u) = S.

Table 1. A sample data table
U Manufactures Color Weight (g) Age-Group

u1 {{UK, France}, {UK, Japan}} {grey, black} {1,2} {infant, Toddler}
u2 {{Japan, Korea }, {UK, Japan}} {grey} {2,3,4} {Toddler, Pre-school}
u3 {{France, Germany}} {grey} {2,3,4} {Pre-School}
u4 {{Japan, Germany}} {grey, brown} {1} {All}
u5 {{UK, France}} {brown} {4,5} {Teenager}

Table 1 shows a non-deterministic information system (also called an attribute
system in [3]) with all attributes non-deterministic. Attribute Manufactures is
even more complicated: each object is assumed to be manufactured jointly by
two countries. When we don’t know for sure which two countries manufactured
a specific object, we assign several pairs of possible countries, such as for u1. In
[3], four possible explanations of the values in a(u), a set assigned to an object
against a particular attribute, are provided. We supplement 5th explanation on
top of that to cover the situation as shown by attribute Manufactures. These
five explanations are:

(1) a(u) is interpreted disjunctively and exclusively: one and only one value
is correct, such as the weight of an object (assume we use a closest integer to
measure the weight of each object),

(2) a(u) is interpreted disjunctively and non-exclusively: more than one value
may be correct, such as the (suitability of) age groups of a toy,

(3) a(u) is interpreted conjunctively and exclusively: all the correct values
are included, such as the color of a toy (when we list all the colors involved),

(4) a(u) is interpreted conjunctively and non-exclusively: all the values (but
not limited to the values) in a(u) are correct, such as the color of a toy (when
we list main colors only),

(5) the combination of (1) and (3): one and only one value (subset) is correct
and this value is the combination of individual values, such as the manufactures
of a toy.

For the first 4 categories, set-based operations are enough to deal with attrib-
ute values. However, for category 5, we will need to use interval-based operations,
since each value itself is again a set.

Definition 4. (from [13]) Let r be a binary relation on Va, a set of possible
values of attribute a. A pair of extended binary relations (r∗, r∗) on 2Va \ ∅ is
defined as:

Ar∗B ⇐⇒ (∀a ∈ A, ∀b ∈ B) arb, Ar∗B ⇐⇒ (∃a ∈ A, ∃b ∈ B) arb. (2)

Let Q be a query that involves values in subset B of Va, then retrieval sets

Ret∗(Q) = {ui | a(ui) = A,Ar∗B}; Ret∗(Q) = {ui | a(ui) = A,Ar∗B},

give the lower and upper approximations of a set of objects that support query
Q under condition B. For example, if Q = ‘select grey objects’, and we set B =
{grey} and r be ‘ =′, then Ret∗(Q) = {u2, u3} and Ret∗(Q) = {u1, u2, u3, u4}.

However, Eqs. in (2) cannot be used to deal with values for attribute Manu-
factures because there may be several subsets of values assigned to an object.
Therefore, we need to further extend the equations.

Given two sets A1, A2 ∈ 2Va with A1 ⊆ A2, set A defined by A = [A1, A2] =
{X ∈ 2Va, A1 ⊆ X ⊆ A2} is called a closed interval set.

Definition 5. Let A and B be two interval sets from 2Va . A pair of extended
binary relations (⊇∗,⊇∗) on 22Va \ ∅ is defined as:

A ⊇∗ B ⇐⇒ ∀X ∈ A, ∀Y ∈ B X ⊇ Y,
A ⊇∗ B ⇐⇒ ∃X ∈ A, ∃Y ∈ B X ⊇ Y.

Let Q be a query that involves conditions described in interval set B = [B1, B2] ⊆
2Va \ ∅, then two retrieval sets Ret∗(Q) and Ret∗(Q) defined by

Ret∗(Q) = {ui, | a(ui) = A,A ⊇∗ B}; Ret∗(Q) = {ui, | a(ui) = A,A ⊇∗ B},
(3)

give the lower and upper approximations of a set of objects that support query
Q. For instance, if query Q says ‘select UK manufactures related objects’ and
we set B = [{UK}, {UK}] = {{UK}} ⊆ 2Vmanu \ ∅, then Ret∗(Q) = {u1, u5}
and Ret∗(Q) = {u1, u2, u5}.

3 Set Semantics of Propositional Logic

A deterministic information system can be best demonstrated using a data table
in rough sets. Each data table contains a number of rows labelled by objects (or
states, processes etc.) and columns by primitive attributes. Each primitive at-
tribute is associated with a set of mutually exclusive values that the attribute can
be assigned to. Each attribute also defines an elementary equivalence relation
and each equivalence class of the relation is uniquely identifiable by an attribute
value. When an attribute can choose values from different value sets, only one
of the possible value sets will be used in a particular data table. Each equi-
valence class in a partition is also naturally corresponding to a concept which
can be characterized by a proper proposition. In the following, if we take P ,
P = {q1, q2, ..., qn}, as a finite set of atomic propositions, then as usual L(P) is
used to denote the propositional language formed from P . L(P) consists of P ,
logical constants true and false, and all the sentences constructed from P using
logical connectives {¬,∧,∨,→,↔} as well as parentheses (,).

Definition 6. Let U be a non-empty universe with a finite number of objects,
P be a finite set of atomic propositions. Function val : U ×P → {true, false} is
called a valuation function, which assigns either true or false to every ordered
pair (u, q) where u ∈ U and q ∈ P .

val(u, q) = true, denoted as u |=S q, can be understood as q is true with respect
to object u in S, where S = (U,Ω, Va)a∈Ω is an information system. Based on
val, another mapping function v : P → 2U can be derived as:

v(q) = {u | u ∈ U, u |=S q}, (4)

where u ∈ v(q) is interpreted as q holds at state u (or is proved by object u).
Function v can be extended to a mapping v : L(P) → 2U as follows. For any
φ, ψ ∈ L(P),

v(φ ∧ ψ) = {u | u ∈ U, (u |=S φ) and (u |=S ψ)}, (5)
v(φ ∨ ψ) = {u | u ∈ U, (u |=S φ) or (u |=S ψ)}, (6)
v(¬φ) = {u | u ∈ U, u �|=S φ}. (7)

Therefore, the subset of U containing those objects supporting formula φ (non-
atomic proposition) can be derived through the initial truth assignment val. An
atomic proposition can be formally defined as: there exists one and only one
attribute a ∈ Ω in an information system (U,Ω, Va)a∈Ω , such that there exists
only one x, x ∈ Va, v(q) = {u | a(u) = x}.
Definition 7. Let (U,R, P, val) be a structure where R is an elementary equi-
valence relation on U , P is a finite set of atomic propositions, and val is an
valuation function on U ×P . If there is a subset P ′ = {q1, ..., qn} of P such that
U/R = {v(q1), v(q2), ..., v(qn)} holds, then subset P ′ is said to be equivalent to
R, denoted as U/R = v(P ′).

v(P ′) is defined as a collection of subsets of U , i.e., v(P ′) = {v(q1), v(q2), ...,
v(qn)} for all ql ∈ P ′. This definition suggests that there can be a subset of a
set of atomic propositions P which is functionally equivalent to an elementary
equivalence relation in terms of partitioning a universe, regarding to a particular
aspect (attribute) of the objects in the universe.

Table 2. A sample test case data table
U ID Engineer Feature Purpose

c1 408 N Ross STM-4o
c2 356 N Ross STM-1o Undefined
c3 228 T Smith Connections Undefined
c4 175 T Smith Protection {{Forced Path Protection Switch is successful

Switching when Standby Path is faulty},
{Pass criteria: Path Protection to the Standby
Path occurs},
{Fail criteria: Path Protection to the Standby Path}
not occur}}

c5 226 T Smith Synchroni- {{STM-N/ESI ports added to the SETG priority list,
sation Ensure ports not logically equipped not added}}

c6 214 none 2Mbit/s Undefined
c7 48 N Ross STM-4o
c8 50 N Ross STM-1o {{Can configure Alarm Severity of Card Out,

Default value of Severity is Minor},
{When Severity is changed Alarm should raise}}

c9 72 N Ross STM-1o {{Can display card type, Card variant, and
Unique serial No},
{Otherwise, Alarm should raise}}

c10 175 P Hay STM-1o {{HP-UNEQ Alarm raised when C2=00 5 times},
{Alarm not raised when C2 is set 00}}

Example 1. Assume U is a universe containing 10 simplified snap-shot
of test cases in telecommunications (Table 2). Let R be an equivalence rela-
tion on U which divides U into three disjoint sets, one with those cases for
which the value of Purpose is empty, one with Purpose Undefined, and one with
Purpose Defined (if the details of Purpose of an object are given, we say it is
defined). Similarly, relation R′, which divides U into six disjoint sets based on the
names of Feature, is also an equivalence relation. The equivalence classes gen-
erated by R and R′ are: U/R = {{c1, c7}, {c2, c3, c6}, {c4, c5, c8, c9, c10}} and
U/R′ = {{c1, c7}, {c2, c8, c9, c10}, {c3}, {c4}, {c5}, {c6}}. R = R{Purpose} and
R′ = R{Feature} are elementary equivalence relations, but R ∩ R′ is not. Let
q1, ..., q6 be six atomic propositions, ‘A test case has feature STM-4o’, ..., ‘A
test case has feature 2Mbit/s’ respectively, these six atomic propositions divide U
into six disjoint subsets: v(q1) = {c1, c7}, v(q2) = {c2, c8, c9, c10}, v(q3) = {c3},
v(q4) = {c4}, v(q5) = {c5}, and v(q6) = {c6}, where v(qi) = WR′

i for i = 1, ..., 6.
Therefore v(P ′) = U/R.

Definition 8. Let (U,R, P, val) be a structure defined in Definition 7. For a
formula φ in L(P), if v(φ) defined in Eq. (4) is R-definable then φ is said to
be an R-definable formula. Otherwise, φ is R-underfinable. Formulae true and
false are always R-definable with v(true) = U and v(false) = ∅.
Theorem 1. Let (U, IND(R), P, val) be a structure defined in Definition 7 with
R = {R1, R2, ..., Rn} containing n elementary equivalence relations on U . When
U/Ri = v(Pi) holds for i = 1, ..., n and Pi ⊆ P , every formula in L(P ′) (P ′ =
∪iPi) is an IND(R)-definable formula.

Example 2. Let U be a set of objects containing a group of 10 test cases as
given in Table 2. Let P1 and P2 be two subsets of a set of atomic proposi-
tions P as P1 = {q11, q12, q13}={Purpose is empty, Undefined, Defined} and
P2 = {q21, q22, q23, q24, q25, q26}={feature with STM-4o, STM-1o, Connections,
protection-Switching, Synchronisation, 2Mbit/s}. These two subsets of atomic
propositions are equivalent to the two elementary equivalence relations, R and
R′, in Example 1.

The following formulae:
φ =test cases with feature STM-1o and purpose given,
ψ =either test cases with feature Connections or with purpose undefined,
ϕ =test cases with feature is neither STM-4o nor STM-1o and purpose

known,
which can be re-written into disjunctive normal forms:
φ = (q13 ∧ q22),
ψ = (q12) ∨ (q23),
ϕ = (q13 ∧ ¬(q12 ∨ q22)) = (q13 ∧ (¬q21 ∧ ¬q22))
are all R1 ∩R2-definable. The subsets of objects supporting these formulae,

i.e., v(φ), v(ψ), and v(ϕ) are {c8, c9, c10}, {c2, c3, c6}, and {c4, c5} respectively.
Valuation function val requires full information about every ordered pair

(u, q) in the space U × P . This is an ideal situation where for every formula
φ in L(P) it is possible to identify all the objects that support φ, and this

set is v(φ) through Eq. (4). When a universe U is very large, it may not be
practical to require function val being fully specified, but be quite reasonable
to have information about a particular elementary equivalence relation (R) and
its corresponding equivalent subset of a set of atomic propositions (P ′). In this
case, v(φ) can be determined only when φ ∈ L(P ′), as v(φ) can be represented
using elements in U/R.

Still, this is an unavoidable question that one may ask: is it realistic to assume
that the relevant equivalence relations (hence equivalence classes) are given as
prior knowledge? The answer may be ‘No’ for many applications, however, the
answer is ‘Yes’ for the test-case selection scenario in telecommunications, because
the feature or sub-feature of all already designed test cases must be given.

Definition 9. Structure (U,R, P, P ′, val) is called a partial rough logic theory
1. U is a universe consisting of a finite number of objects,
2. P is a finite set of atomic propositions,
3. R is an elementary equivalence relation on U ,
4. Valuation function val is only partially specified on space U × P
5. P ′ ⊂ P . For each ql ∈ P ′, v(ql) = Wl and Wl is in U/R.

Based on a partial rough logic theory (U,R, P, P ′, val), the following equations
hold only for formulae φ, ψ in L(P ′).

v(¬φ) = U \ v(φ), v(φ ∧ ψ) = v(φ) ∩ v(ψ),
v(φ ∨ ψ) = v(φ) ∪ v(ψ), v(φ → ψ) = (U \ v(φ)) ∪ v(ψ).

Each partial rough logic theory defines the set of objects supporting a formula in
L(P ′) precisely with the knowledge of relevant elementary equivalence relation
R. That is, all formulae in L(P ′) are R−definable. For ψ ∈ L(P)\L(P ′) which is
not R-definable, it is only possible to define the upper and lower approximations
of v(φ).

v(φ) = ∪{v(ψ) | ψ |= φ, ψ ∈ L(P ′)} = ∪{Wi ⊆ v(ψ) | ψ |= φ, ψ ∈ L(P ′)}, (8)

v(φ) = U \ v(¬φ). (9)

Eq. (8) defines the lower bound of the set of objects that make formula φ true
and Eq. (9) gives the upper bound of that set. The algebraic properties of (v, v)
can be found in [2]. All objects in the lower bound will definitely satisfy formula
φ while an object in the upper bound is known not to satisfy ¬φ, therefore,
it may support φ. In terms of Dempster-Shafer theory of evidence, if a frame
of discernment is defined as elements being the equivalence classes of R, then
Eq.(8) will yield a belief function and Eq.(9) will produce a plausibility function
([7]).

4 Reasoning about knowledge

From general concepts (values) to specific concepts (values) or vice
versa: An information system, exemplified by a data table, provides the basic

information to answer relevant queries. Since each attribute in a data table is
confined to an exclusive set of values, some intermediate values cannot always be
explicitly shown in this table. When a query involves in an intermediate value,
a system has to have an approach to matching it with the more specific/general
values available in the table. This process requires additional knowledge about
the application domain that is being dealt with. We call the tables holding the
domain knowledge as meta-level tables, such as Table 3.

Table 3. A meta-data table
→ Feature-details Feature

T25 Alarm Reporting - Unterminated Through Connections STM-4o
T24 STM-4 Alarm Correlation - HP-REI masked by HP-RDI STM-4o
T20 Eqpt Alarms - ALS-Dis (STM-4) STM-4o
T19 Eqpt Alarms - Write Protect Jumper Fitted STM-4o
T12 Plug-in Unit Alarms - Unexpected Card STM-4o
T11 Plug-in Unit Alarms - Card Out STM-4o
T10 Loopback - Operation STM-4o
...

Now we visit Example 1 again. In Table 2, one of the values of attribute Feature
is STM-4o. In fact, STM-4o covers wide range of test activities, such as, T20
Eqpt Alarms - ALS-Dis (STM-4) or T10 Loopback - Operation (see Table 3 for
more). Therefore, it is more useful to provide these details in a data table than
just giving STM-4o. We now replace attribute Feature with Feature-details and
update the values of Feature-details as appropriate as shown in Table 4. For
instance, if feature STM-4o is not replaced by a set of detailed features, it is
then difficult to answer the following query Q1: select test cases with features
relevant to Plug-in unit alarms. With Table 4, it is easy to answer Q1. However,
it raises problems when queries like Q2 below are issued, Q2: select test cases
with STM-4o related plug-in tests.

To deal with the connections/relationships between general and specific con-
cepts in a given domain, meta-level knowledge needs to be available. Meta-level
tables can be used as supplements to data tables when answering queries. In
this way, knowledge “T25 Alarm Reporting → STM-4o” is stored as a record
in a meta-level table as shown in Table 3. There are in total 14 most general
features, hence 14 meta-level tables are required. Now, let us assume that P is
a set of atomic propositions with q1 standing for ‘A test case has feature T25
Alarm Reporting’, q2 for ‘A test case has feature STM-1o’, ..., , q7 for ‘A test
case has feature Plug-in Unit Alarms’ respectively. Let us also assume that R is
an elementary equivalence relation which partitions test cases according to their
features. Based on Definition 7, subset P ′ = {q1, q2, .., q7} is equivalent to R and
U/R = v(P ′). Given the knowledge about P ′ and R, according to Theorem 1,
every formula in L(P ′) is R−definable. Query Q1 above which can be re-written
as a proposition, ϕ1 = a test case has feature Plug-in Unit Alarms = q7, can be
answered based on knowledge R. Similarly, query Q2 which means ‘a test case
has feature STM-4o and feature Plug-in’ can be expressed as ϕ2 = (q1 ∨ q7∨
q8∨q9∨ q10∨q11∨q12)∧q7 = q7, is also R-definable, where q8, ..., q12 stand for 5

atomic propositions that a test has feature with T24, T20, T19, T11, or T10 re-
spectively (see the details given above). Therefore test cases (objects) supporting
it are obtained straightforwardly. However, query Q3: select test cases relevant
to alarms (or alarm raise), is not R-definable, since test cases c8 and c10 are also
relevant to alarms problems as shown in the column Purpose and they cannot
be summarized into an equivalence class of R. If we use ϕ3 to denote query Q3,
we have q1 |= ϕ3 and q7 |= ϕ3, where p1 |= p2 means whenever an interpretation
makes p1 true, it must make p2 true as well. According to Eqs. (8) and (9),

v(ϕ3) = ∪{v(q) | q |= ϕ3} = v(q1) ∪ v(q7) = WR
1 ∪WR

7 = {c1, c7},
v(ϕ3) = U \ v(¬ϕ3) = U \ ∅ = U.

v(ϕ3) gives us those test cases which should be definitely selected while v(ϕ3)
covers those test cases that might be selected. For this query, v(ϕ3) does not
provide much useful information, since it contains all test cases. To further elim-
inate worthless test cases, we need to make use of other information in the
database. Because values of attribute Purpose cannot be used to partition the
universe due to its non-deterministic nature. When the details of Purpose of a
test case are given, it usually contains several possible outcomes of a test, each
of which may in turn consist of several symptoms simultaneously. To model this
phenomena, we apply set-based computations discussed in Section 2.2.

Table 4. A set based sample test case data table
U Purpose-key-word

c1
c2 Undefined
c3 Undefined
c4 {{Forced Path Protection Switch, success, Standby Path faulty}, {Path

Protection, Standby Path, occur}, {Path Protection, Standby Path, not occur}}
c5 {{Stm-N/ESI ports, Setg priority list, Ports not logically equipped, not added}}
c6 Undefined
c7
c8 {{Alarm Severity, Card Out, Default value, Severity, Minor},

{Severity change, Alarm raise}}
c9 {{Card type, Card variant, Unique Serial No}, {Alarm raise}}
c10 {{HP-UNEQ, Alarm raised, C2=00 5 times}, {Alarm not raised, C2 set 00}}

Refining upper bounds using set-based computations: Equipped with
Definition 5 and Eqs. in (3), we revise Table 2 Purpose to obtain Table 4 Purpose-
key-word (we only include this attribute in Table 4). It is worth pointing out that
when a test case has multiple values for attribute Purpose, each value is a pos-
sible outcome of that test case and the value cannot be decided until the test
case is used in a specific test. In addition for each possible outcome, a set of
joint descriptions is possible. In this situation, those descriptions should be read
conjunctively. For example, value {Can display card type; Card variant; Unique
serial No} means a user ‘can read card type and card variant, and unique serial
number’. In order to process the sentence descriptions in column Purpose more
efficiently, we have identified a set of key-words used in all possibly purpose spe-
cifications. The sentence descriptions of Purpose of a test case are thus replaced
by the combinations of these key-words, as shown in Table 4. Therefore, each

possible outcome identified in column Purpose-key-word can be treated as a set
of values1. This enables set-based computations applicable.

Let Vpurp be the set of all key-word collections used for describing Purpose,
and let p be a key-word appeared in a given query Q, logically expressed as
formula q, then interval set B = [{p}, {p}] = {{p}} ⊆ 2Vpurp \ ∅ is called a
base interval set. Further more, let ui be a test case in v(q), and let Ai =
Purpose−key−word(ui) be the set of subsets of purpose key-word collections of
ui. Then sets v(q)∗ and v(q)∗ defined by the following two equations are referred
to as the tighter upper bound and the looser upper bound of v(q) respectively,

v(q)∗ = Ret∗(QB)∪v(q) = {ui | purpose−k−w(ui) = Ai,Ai ⊇∗ B}∪v(q), (10)

v(q)∗ = Ret∗(QB)∪v(q) = {ui | purpose−k−w(ui) = Ai,Ai ⊇∗ B}∪v(q). (11)

It is observed that the purpose of a test case may not be defined and it is
also possible that the purpose of a test case in v(q) can either not be defined
or not contain key-word p. Therefore, we will have to union v(q) to the selected
set. Also, subscript B of Q can be omitted is there is no confusion about which
base interval set we refer to.

When a query Q involves several key-words and generates multiple base in-
terval sets, B1, ...,Bj, Eqs. (10) and (11) will be repeatedly applied to all base
interval sets. As for any two base interval sets Bi and Bj defined from two dis-
tinct key-words, the effect of conjunction or disjunction of the key-words in a
query will be reflected by the computation of joint tighter/looser bounds using
the following equations:

v(qBiandBj)∗ = v(qBi)∗ ∩ v(qBj)∗, v(qBiandBj)∗ = v(qBi)∗ ∩ v(qBj)∗;
v(qBiorBj)∗ = v(qBi)∗ ∪ v(qBj)∗, v(qBiorBj)∗ = v(qBi)∗ ∪ v(qBj)∗.

Now looking back at query Q3, if we assume B =[{Alarm}, {Alarm}]={{Alarm}},
and apply Eqs. (10) and (11) to v(ϕ3), we get v(ϕ3)∗ = {c8, c10} ∪ {c1, c7} and
v(ϕ3)∗ = {c8, c9, c10} ∪ {c1, c7}.

5 Conclusion

In this paper, we have presented novel approaches to coping with two common
problems usually involved in a query: general concepts that are not explicitly
defined in a data table and non-determinictic values among a set of possible
choices. A logical based method is used to deal with the former while set based
computations are applied to the latter.

The method in [5] is not applicable in test case selection problem, since
there is a large number of attributes (24) involved in test case data table with
thousands of records (test cases). It is not practical to re-generate the whole test
case table every time a query is issued. The approach in [1] is also inadequate
for this specific application because there are no user defined bounds available
1 In fact, we rename the existing attribute Purpose as Purpose-description and add

an additional attribute Purpose-key-word. In this way, we will be able to look at the
detailed descriptions of test case purposes for those selected test cases.

to generate possible predicates. However, our mechanism is very similar to the
knowledge representation schema in [12], where a tree is used to represent all the
possible values of an attribute at different levels. Instead of using trees, we use
meta-level tables to do the same job. Each meta-level table, equivalent to a tree
in [12], can have more than two columns, with the most specific values in the
far-left column and the most general values at the far-right. The manipulation
and maintenance of these tables are almost identical to any data table in an
information system, so there is very little extra work involved in building these
meta-level tables.

Acknowledgments: I would like to thank Andrzej Skowron and Ivo Düntsch
for their valuable comments on an earlier version of the paper, and Alfons
Schuster for providing the telecommunication database. This project (Jigsaw) is
jointly supported by the Nortel Networks and the IRTU, Northern Ireland.

References

1. Beaubouef, T. and Petry, F. E., (1995) Rough querying of crisp data in relational
databases. In [4], 85-88.

2. Düntsch, I., (1997) A logic for rough sets. Theoretical Computer Science 179(1-2),
427-236.

3. Düntsch, I. et al, (2001) Relational attribute systems, International Journal of
Human Computer Studies, To appear.

4. Lin, T.Y. and Wildberger, A.M. (eds), (1995) Soft Computing. Proceedings of Third
International Workshop on Rough Sets and Soft Computing. San Jose State Uni-
versity, USA, November 10-12.

5. Lin, T.Y., (1998) Granular computing on binary relations I: Data mining and
neighborhood systems. In [10], 107-121.

6. Lipski, W.J., (1981) On databases with imcomplete information. J. of the ACM,
Vol 28, 41-70

7. Liu, W., (2001) Propositional, Probabilistic and Evidential Reasoning: integrating
numerical and symbolic approaches. to appear in Studies in Fuzziness and Soft
Computing series. Springer-Verlag (Physica-Verlag).

8. Pagliani, P., (1998) A practical introduction to the model-relational approach to
approximation spaces. In [10], 207-232.

9. Pawlak, Z., (1991) Rough Sets. Theoretical Aspects of Reasoning about Data.
Kluwer Academic Publishers,

10. Polkowski, L. and Skowron, A., (ed.) (1998a) Rough Sets in Knowledge Discovery
1: methodology and applications. In Studies in Fuzziness and Soft Computing Vol
18. Springer-Verlag (Physica-Verlag).

11. Polkowski, L. and Skowron, A., (ed.) (1998b) Rough Sets in Knowledge Discovery
2: applications, case studies and software systems. In Studies in Fuzziness and Soft
Computing Vol 19. Springer-Verlag (Physica-Verlag).

12. Ras, Z.W., (1998) Answering non-standard queries in distributed knowledge based
systems. In [11], 98-108.

13. Yao, Y.Y. and Noroozi, N., (1995) A unified model for set-based computations. In
[4], 252-255.

