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Abstract

In incidence calculus, inferences are usually made by calculating
incidence sets and computing probabilities of formulae based on a
given incidence function in an incidence calculus theory. Incidence
functions are vital for performing any further inference. Without
the existence of this function, many of the features of incidence cal-
culus will be lost. However it 1s still the case that numerical values
are assigned on some formulae directly without giving the incidence
function. This paper discusses how to recover incidence functions in
these cases. The result can be used to calculate mass functions from
belief functions in the Dempster-Shafer theory of evidence (or DS
theory) and define probability spaces from inner measures (or lower

bounds) of probabilities on the relevant propositional language set.

1 Introduction

Incidence calculus [1, 3] as an alternative approach to dealing with un-
certainty has a special feature i.e., the indirect association of numerical
uncertain assignment on formulae through a set of possible worlds. In
this theory, uncertainties are associated with sets of possible worlds and
these sets are, in turn, associated with some formulae. This gives in-
cidence calculus the features of both symbolic and numerical reasoning
methods. If we take incidence calculus as a symbolic inference technique,
it has strong similarity with the ATMS [13]. If we use incidence cal-
culus to make numerical uncertain inference, it can deal with cases for
which Dempster-Shafer theory is adequate or inadequate [4, 12]. The
crucial point in carrying out the above reasoning procedures relies on a
special kind of function, called the incidence function in incidence cal-
culus. Without the existence of this function, many of the features of

incidence calculus will be lost. However, in practice numerical values



may be required to be assigned on some formulae directly without giv-
ing the corresponding incidence function. Therefore it is necessary both
theoretically and practically to recover the incidence function in this cir-
cumstance. In [2, 3], a preliminary procedure has been described using
the Monte Carlo method. This approach has further been developed in
[14]. In this paper, we discuss this problem from a different perspective.
An alternative approach to defining incidence functions from probability
distributions is explored. The result gives a new way to check whether a
numerical assignment on a set is a belief function and then calculate its
mass functions when it is in DS theory [15, 16] and to construct prob-
ability spaces from inner measures (or lower bounds) of probabilities on
the relevant propositional language sets [6].

The paper is organized as follows. In section 2, a brief introduction
to incidence calculus is given. The key features of incidence functions
are discussed. Following this, an algorithm for calculating an incidence
function based on numerical assignments is described in section 3. The
application of the result to DS theory and probability spaces is described
in section 4. Two examples are introduced to show the ideas given in the

paper in section 5. Finally a short conclusion is given in section 6.

2 Incidence Calculus

Incidence calculus is a logic for probabilistic reasoning. In incidence cal-
culus, probabilities are not directly associated with formulae, rather sets
of possible worlds are directly associated with formulae and probabilities
(or lower and upper bounds of probabilities) of formulae are calculated

from these sets.



2.1 Generalized Incidence Calculus

In generalized incidence calculus [11]!, a piece of evidence is described
in a quintuple called an incidence calculus theory. An incidence calculus

theory is normally in the form of < W, o, P, A, 7> where

e W is a finite set of possible worlds.

e For all w € W, p(w) is the probability of w and wp(W) = 1, where
wp(l) = Yyero(w).

e P is a finite set of propositions. At is the basic element set of
P. If Pis {p1,...,pm}, then At is defined as for each ¢ € At,
¢ = Ap! (i=1, ..., m) where p} = p; or pi = —p;, L(P) contains
all elements produced from P using connectors A, V, —, . For any
formula ¢ € L(P), there exists a subset A4 € 24 which makes the

following equation hold:

¢ =V ;€ Ay

e A is a distinguished set of formulae in £(P) called the azioms of
the theory.

e i is a function from the axioms A to 2", the set of subsets of W.
i(¢) is to be thought of as the set of possible worlds in W in which
¢ is true. i(¢) is called the incidence of ¢. An incidence function ¢

satisfies the conditions
(L) =1} (r)y=w

Here 1 stands for Fulse and T means True. For any two formulae ¢, % in
A, it is easy to prove that i(¢p A ) = i(¢) Ni(y) if A1 isin A based on
the definition of «¢.

'The main difference between incidence calculus and generalized incidence calculus
is that in generalized incidence calculus there are less conditions on i. See [3, 11] for
details.



If we use A(A) to denote the language set which contains A and all the
possible conjunctions of its elements, then this function can be generated
to any formula in this set by defining ¢(A¢;) = N;i(¢;) if A;¢; is not given
initially. Therefore the set of axioms A can always be extended to a set
in which the function ¢ is closed under operator A.

Since whenever we have a set of axioms A with a function ¢ defined on
it, where ¢ suits the basic definition of incidences, this set of axioms can
always be extended to another set which is closed under the operator A
on 7. In the following, we always assume that the set of axioms we name
is already extended and is closed under A, that is A is closed under A.

For any two elements in A, we have

(o1 A ¢2) = i(d1) Ni(¢2) (1)

In particular, if ¢(A;¢;) = {}, it doesn’t matter whether this formula

is in A(A) as this formula has no effect on further inferences. However if

N;¢; =L, then i(A;¢;) = N;i(¢;) must be empty otherwise the informa-
tion for constructing the function 7 is contradictory.

It is not usually possible to infer the incidences of all the formulae

in L(P) given an incidence calculus theory. What we can do is to define

both the upper and lower bounds of the incidence using the functions *

and i, respectively. For all ¢ € L(P) these are defined as follows:

*(6) = W\ ix (=) (o)= | i) (2)

Y—+d=T

where v — ¢ = T iff i(¢y — ¢) = W. For any ¢ € A, we have
i-(6) = i(6).

The lower bound represents the set of possible worlds in which ¢ is
proved to be true and the upper bound represents the set of possible
worlds in which —¢ fails to be proved. Function p.(¢) = wp(i.(¢)) gives
the degree of our belief in ¢ and function p*(¢) = wp(i*(¢)) represents
the degree we fail to believe in —¢. For a formula ¢ in A, if p.(¢) = p*(¢),
then p(¢) is defined as p.(¢) and is called the probability of this formula.

In the following, when we mention a lower bound of a probability

distribution on A, we always mean the function p.(x) calculated through



the lower bound of incidence sets.

2.2 Basic Incidence Assignment

In fact, from an incidence function 7, another function 47 can be con-
structed which is called the basic incidence assignment. In order to
show the relationship between 7 and ¢z, we look at an example first. Sup-
pose there are two propositions, P = {rainy, windy}, and seven possible
worlds, W = {sun, mon, tues, wed, thus, fri, sat}. Assume that each pos-
sible world is equally probable, i.e. occurs 1/7 of the time. Through a
piece of evidence, we learn that four possible worlds fri, sat, sun, mon
make rainy true, and three possible worlds mon, wed, fri make windy

true. Therefore the incidence sets of these two propositions are:

i(rainy) = { fri, sat, sun, mon}

i(windy) = {mon, wed, fri}

As i(rainy A windy) = i(rainy) N i(windy), we also have i(rainy A
windy) = {fri,mon}. So the set of axioms A is A =
{rainy, windy, rainyAwindy}. The corresponding incidence calculus the-
ory is

<W,po, P A, i>

and the At of P is At = {rainy A windy, rainy A\ —windy, —rainy A
windy, —rainy A—windy}. The basic incidence assignment for this theory

is

ii(rainy A windy) = { fri, mon}
ii(rainy) = {sat, sun}

ii(windy) = {wed}

It is easy to see that from the basic incidence assignment, the incidence

function can be recovered as:

i(rainy A windy) = ii(rainy A windy)



i(rainy) = it(rainy) U ii(rainy A windy)
i(windy) = 1i(windy) U ii(rainy A windy)

The elements in ¢i(¢) make only ¢ true without making any of its super-

formulae true.
Definition Basic incidence assignment

Given a set of axioms A, a function ¢ defined on A is called a basic

incidence assignment if 2¢ satisfies the following conditions:

it(p) £ {} where ¢ € A
(o) M) = {} where ¢ # 4
ii(L) = {} (1) =W\ Jii(¢)

where W is a set of possible worlds.

Proposition 1 Given a set of axioms A with a basic incidence assign-
ment it, then the function i defined by equation ( 3) is an incidence func-
tion on A.

)= U i) (3)

by—o=T

PROOF

First of all, because it(7) = W \ U;ii(¢;), we have ¢(T) = (1) U
(Ujit(¢;)) = W. As @i(L) = {}, it is straightforward to infer that
i) = {).

Next we are going to prove that i(¢ A ) = i(¢) N ().

Suppose that i(¢) Ni(y) = W' # {},

for each w € W', w € i(¢) Ni(¢) =
Ao, w € ti(¢o) and ¢pg = =T, > v =T =
dpo, w € 1i(¢Pg), and ¢g— NP =T =
wei(pNY) =

(@) Ni(y) S il Ay)



Similarly, we can prove that i(¢) N () D i(d A ), so i(¢) N () =
i(¢ N 1p). For the case that i(¢) Ni(yp) = {}, it is still easy to prove that
i(¢) Ni(¥) = i(¢ A ). Therefore the function ¢ defined by ( 3) is an

incidence function.

QED

Proposition 2 Given an incidence calculus theory < W,po, P, A, ¢ >,

there exists a basic incidence assignment for the incidence function.
PROOF

This proof procedure is actually to construct a basic incidence assignment
1t for the given incidence function.

From the theory < W, o, P, A, 1 >, we have

WP AP) = i(9) Ni(y)

where ¢, € A.

The definition of 7 leads us to the conclusion that if ¥» — ¢ =T then
i(10) C i(¢). As we assume that P is finite, then At, £L(P) and A are all
finite.

A subset Ag of A can be defined as Ay = {¢1,...,¥,} where Ay

satisfies the condition that

Vi, € Ao, Vo € A, if ¢ #; then ¢ — v £ T

Therefore, Ag contains the “smallest” formulae in A and Ag is not
empty. In fact, we can get Ag using the following procedure. For a formula
v € A if 3o € A, ¢ # b and ¢ — ; = T, then we use ¢ to replace
1; and repeat the same procedure until we obtain a formula ¢; and we
cannot find any formula which makes ¢; true, then ¢; will be in Ay. For
example, the set Ap in the above example is Ag = {randy A windy}.

For any formula ¢; in A\ A, there are 1, ..., ¥; € Ay where

Vij = ¢i = T. So i(1hij) Ci(¢i) and (U; i(vi5)) C i(¢i)-

Algorithm A



From a function ¢, we can obtain another function ¢ using the following

procedure:

Step 1: for every formula ¢ € Ag, define ii(¢)) = i(2)).
Step 2: update A as A\ Ap.

Step 3: chose a formula ¢; in A which satisfies the requirement that
there are vy, ..., ¥y € Ag where ¥;; — ¢; =T and for any ¢; € A,

if ¢; # ¢i, then ¢; — ¢ #T.
Define wi(¢;) = i(¢:) \ U; it ().

Step 4: delete ¢; from A and update Ag as Ag U {¢;} when ii(¢;) # {}.
If A is empty then terminate the procedure. Otherwise go to step
3.

Further defining 7¢(T) = W\ U;ii(¢;), if @i(T) # {} then #¢(T) rep-
resents only those possible worlds which make T true. This is also an
alternative way to represent ignorance. That is, based on the current
information we don’t know which formula (7)) makes true except 7.
Adding T to Ag, we get a function ii as i : Ay — 2"Y. Now we need to

prove that ¢¢ is a basic incidence assignment. That is, we need to prove
() Nii(p;) ={} where ¢; # ¢;

Suppose that 1i(¢;)Nie(¢;) = W’ # {}, we have the following inference

procedure.

w € 1i(¢;) Nii(¢;) =

w e i(¢;) and w € i(¢;) =

w € 1(gi) Nig;) =

w e Z((bZ A (b]) —

dp#L N w € i(p) and ¢ = ¢ N p; =

w g i(¢) \ (D) or w g i(g;) \i(g) as & £ ¢; =
w & ii(¢i) N ii(¢;)



Conflict.
So the equation ¢i(¢;)Nii(¢p;) = {} holds for any two distinct elements
¢; and ¢; in Ag. As we also have (1) = W\ U;ii(¢;) and (L) = ¢(L

) = {}, #¢ is a basic incidence assignment.

QED

3 Recovering an Incidence Function from a
Lower Bound of probabilities on a Set of Ax-

ioms

Given an incidence calculus theory, we can infer lower bounds of proba-
bilities on formulae. However sometimes numerical assignments are given
on some formulae directly without defining any incidence calculus the-
ories. We are interested in how to build incidence calculus theories in
these cases. The key part for an incidence calculus theory is to define its
incidence function. In this section, we show a way to recover incidence
functions in these circumstances.

When we know a proposition set P, its language set L(P), a set
of axioms A and an assignment of lower bound of probabilities on A,
our objective is to determine an incidence function 7, a set of possible
worlds W and the discrete probability distribution on W from which the
corresponding probability distribution on A is produced. In order to
achieve this goal, we will construct a function ¢z first and then form .

For the set of axioms A, we always assume that for ¢;, ¢; € A, ¢;A@; €
A and p(¢; A ¢;) is known. If it is not, we will assume that p(¢; A¢;) = 0.
When ¢ — ¢; = T, i(¢) C i(¢;) and p(6) < p(6).

In a similar way as we described in the above section, a special set Ag

is constructible from A which satisfies the condition

Vo € Ag, Vo' € A, ¢ = ¢ £ T, if ¢+ ¢ (4)

Assume that there are an incidence function ¢ and a basic incidence

assignment 7¢ associated with this A, then wy = 7i(¢;) and wqy = ii(¢;)



must be two disjoint subsets of an unknown W because of the feature
ii(¢i) Nii(¢;) = {} when ¢;, ¢; € Ao, ¢; # ¢;.

As it is required that the probability distribution on W should be dis-
crete in incidence calculus, we treat wy and wq as two single elements in
W. The following procedure gives the algorithm for determining the inci-
dence function ¢, its basic incidence assignment ¢2 and the set of possible

worlds with its probability distribution.
Algorithm B

Given A and a lower bound of probability distribution p, on A, de-

termine a basic incidence assignment and an incidence function.

Step 1: Assume that Ag is a subset of A as defined above in (4).

If there are [ elements in Ag, then [ elements in W can be defined

from Ag and define p(w;) = p.(¢;) for e = 1, ..., 1, ¢; € Ap.
Further define 7i(¢;) = {w;}, i(¢;) = {w;} and A" := A\ Ap.

Step 2: Chose a formula ¢ from A’ which satisfies the condition that
Vo' € Ayt — op £ T if o # 4.
For all ¢; € Ag repeat p.() 1= p«(¥) — p«(9;) when ¢; = =T.
If p.() > 0 then add an element w;y; to W and define

ii(Y) = {wipr }
o(wi1) = pu(¥)

./40 = ./40 U {¢}

A= A\ {4}

i(¥) = 1(P) U (Ug;p=111(;))
l=1+1

If p.() = 0, define 7i(x0) = {}.
If p.(10) < 0, this assignment is not consistent, stop the procedure.

Repeat this step until A’ is empty.

10



Step 3: Finally if ¥;(p.(¢;)) < 1 then add an element w4y to W and
define

o(wip1) =1 = X;p.(¢))

(1) = {wist)

Step 4: The resulting set of possible worlds is W = {wy, wa, ..., wiy1}
and the probability distribution is o(w;) = p«(¢;) where ¢; € Ay
and ¥;0(w;) = 1. Two functions ¢ and ¢ are defined as ii(¢;) = {w;}
and i(¢) = U¢J_>¢ii(q§j), ¢; € Ao.
It is easy to prove that ¢ and ¢ are a basic incidence assignment
and an incidence function respectively. The corresponding incidence

calculus theory is < W, 0, P, A, >.

If there are n elements in A then there are at most n 4+ 1 elements in
W.

This algorithm is entirely based on the result that ii(¢) Nii(¢) = {}.
In algorithm B, for a formula ¢, we keep deleting those portions in p.(¢)
which can be carried by its superformulae until we obtain the last bit
which must be carried by ¢ itself. Then the last portion will only be

contributed by its basic incidence set.

4 Extending the Result to DS Theory and
Probability Spaces

One of the meaningful extensions of this algorithm is to calculate the
mass function in DS theory when A is the whole language set £(P) and
P« is a belief function on it [15, 16] and, in particular, to recover the
corresponding probability space when p, is thought of as an inner measure
(or a lower bound) on A in probability structures [6].

One may suspect that bel is usually defined on a frame of discernment?

in DS theory rather on a set of formulae. We will briefly show how to

2A set is defined as a frame of discernment if this set contains mutually exclusive

and exhaustive answers for a question.

11



build a belief function on a set of formulae here, more details can be found
in [6].

Assume that we have a set of propositions P and its basic element set
At. Because At satisfies the definition of a frame of discernment, we can
talk about a belief function on At. Further if we follow the one-to-one
relationship between 24 and L£(P) as we have seen in section 2, then
given a belief function bel on At, we can define a belief function on £(P)
as bel’(¢) = bel(Ay) where Ay C At. Therefore we can also talk about a

belief function on a language set L(P).

4.1 Calculating mass functions

In DS theory, a function on a frame © is called a mass function, denoted
as m if ¥ q4m(A) = 1 where A C ©. The relationship between a belief
function, denoted as bel, and its mass function is unique. They can be

recovered from each other as follows.

bel(A) = Xpcam(B)

m(A) = Spcapro(—1)"""bel(B)
where a — b =| (AN —B) | where A, B € L(P) [16]. | A | stands for the
element number in A.
In the following we show an alternative way to obtain a mass function
from a belief function by means of incidence calculus. Assume that A is
the whole language set £(P) and p, is a belief function on A, then p, is

also a lower bound of probability on A in incidence calculus as shown in
[4, 12].

Algorithm C

Given a function bel on the set L(P) = A, determine whether bel is a

belief function on this language set ® and obtain its mass function if it is.

Step 1: Delete all those elements in A in which bel(*) = 0. Then as in
algorithm B, define a subset Ay out of A. For any ¢ € Ag, define

In fact, this language set can be any frame of discernment.

12



m(¢) = bel(¢). Assume that there are [ elements in Ag. Define
./4/ =A \ ./40.

Step 2: Chose a formula ¢ from A’ which satisfies the condition that
Vo' e ALVt = £T.
For all ¢; € Ag repeat bel(v) := bel (1)) —bel(¢;) when ¢; — b =1T.
If bel(zp) > 0, define

l:=14+1
./40 lIA0U{¢}
A= A\ {0}

m(e) = bel(v)

If bel(1)) = 0 then © is not a focal element?® of this belief function.

If bel(¢) < 0 then this assignment is not a belief function, stop the

procedure.

Repeat this step until A’ is empty.

Step 3: All the elements in Ay will be the focal elements of this belief
function and the function m defined in Step 2 is the corresponding

mass function. It is easy to prove that ¥ m(A) = 1.

The algorithm tries to find the focal elements of a belief function one
by one. Once all the focal elements are fixed and the uncertain values
of these elements are defined, the corresponding mass function is known.
The worst case of computational complexity of this algorithm is the same
as the approach used in DS theory but it may be more efficient when
the elements in A’ are arranged in the decreasing sequence of their sizes.
However the Fast Moebius Transform of Kennes and Smets remains faster
than ours [7, 8, 9].

*When m(A) > 0, Ais called a focal element of its belief function.

13



4.2 Recovering probability spaces

In [5, 6], given a probability space (W, x, ), an inner measure on a propo-
sitional language set can be defined through a mapping 7(w) : L(P) —
{true, false}. If 7(w)(¢) = true, ¢ is said to be true at w; otherwise
we say that ¢ is false at w. ¢™ is defined to contain all those elements in
W in which ¢ is true. If we define p.(¢) = 0.(¢7), then p, is called an
inner measure of a probability on L£(P). It is proved in [6] that a belief
function on such a language set is also an inner measure on this set which
is generated from a probability space. Therefore it is also interesting to
apply the above technique to recover a probability space when we know
an inner measure j,. (or lower bound) of probabilities on a language set.

Following the Algorithm C, in Step 2 when bel(¢) > 0 if we further
assign

(@) =W; o(Wj) = bel(9)

where W is a subset of a set W, then for any two elements in Ay we have
i(¢i) Nii(d5) = {}

That is W; N W; = {}. Therefore W;, ¢ = 1,...,n are dis-
joint subsets of W and X;p(W;) = 1. So x' = {W, Wy, .., W,}
can be a basis for a c-algebra. The corresponding probability space
will be (W, x,p) where x is the o—algebra generated by the basis
x’. This mapping 7 can basically be defined as m(w;;)(¢;) = true,
w;; € i(¢;) = W;. Therefore the corresponding probability structure
is (W, x, 0, 7). From this structure, the given yu, can be recovered. More
details about probability space, probability structure and its relation with

DS theory can be found in [5, 6].

5 Examples

In this section, we use two examples to show our algorithms in this paper.
The first example is reconstructed from [10].

Example 1:

14



Assume that we know the probability distribution on a set of axioms
of formulae, we want to create a set of possible worlds and its probability
distribution and to define an incidence function from this set to the set
of axioms. The created set of possible worlds and the incidence function
can, in turn, produce the probability distribution on the set of axioms.

Suppose that we have P, L£(P) and a set of axioms A as A =
{a,b,c,aNbyaNc,bAc,aNbAc} with a lower bound of a probability

distribution as

pe(a) = 0.760 o (b) = 0.640
ps(c) = 0.480 p«(a A b) =0.525
p«(a A c) =0.350 p<(bA ) =0.225
pe(aNbAc)=0.165

The set A is closed under operator A. Following Algorithm B, an
incidence function is defined by the following steps.

Step 1. The set Ag is {a A b A ¢} which contains the smallest formula
in A. So there is at least one possible world wy supposing formula aAbAc
and p(wq) = 0.165. We also have

ilanbAc)=1ti(aNbAc)={w}
A=A\ Ay
=1

Step 2. Chose a formula a A b from A’, as only formula a A b A ¢
possesses the feature that a AbA ¢ — aANb =T, We have

P(a A D) :==p(aNb)—pi(aNbAc)=0.525—-0.165 = 0.36
Because p.(a A b) > 0, we define

ii(a A b) = {wy}
Q(wQ) :p*(a/\b)
Ao = Ao U {a nb}

15



A=A\ {anb}
i(a Ab) ={wy, wy}
l=1+1

Repeat this step for all the elements in A’, we get

Ac) = {wy, w3}
Ac) =H{wy, wa}
= {wh W2, W3, w5}
= {wh W2, W4, w6}
.070 i(e) =A

wy, W3, Wy, w7}

Eventually, define wp(ie(T)) = 1 — X,wplii(¢;)) = 1 —
wp({wi, ..., wr}) = 0.055 and let ¢ (7)) = {ws}, then we obtain W =
{wy, ..., ws} with probability distribution p on it.

For any other formula 1, if wp(ii(¢)) = 0, we explain this in two ways:
there is no any possible world making this formula true or the probability
of the subset which makes 1 true is 0. In any case, it doesn’t matter
whether we add 7i(1)) to the whole set of possible worlds or not. The
incidence calculus theory which can produce the probability distribution
pon Ais <W,po, P, A, i>.

For any formula ¢ € L(P)\ A, we can calculate both i, (¢) and p.(¢).

Example 2:

Assume that there are four elements in At = {a,b, ¢,d} and A = L(P)
is A={a,b,e,d;aVbaVe,avd bVebVvdevdavbVeaVevd,aV
bV d,bVeVvdaVvbVeVd} and the corresponding degrees of belief in
elements of A are bel(A) = {.5,0,0,.3,.7,.5,8,0,.3,.3,.7,8,1,.3, 1}.

By using the Algorithm C, the calculating procedure for a mass func-
tion is as follows.

Step 1. After deleting those elements with 0 degrees of belief, we
have A = {aVbVeVdbVevdavbVvd aVeVdaVvVbVvdeVd,
bvd,avd,aVe,aVvb,d a}and Ay = {a,d}. Define m(a) = bel(a) = .5,
m(d) = bel(d) = .3, =2 and A" := A\ Ap.

16



Step 2. Get aVefrom A'. Because a — aVe =T, we have bel(aVe) :=
bel(aV c) — bel(a) = .5 —.5=10. So aV cis not a focal element. Repeat

this procedure until we get a vV b and we have bel(aV b) :==.7— .5 = .2.
Define

m(aVb) =bel(aVb) =2
Ao =AU {aVc}
A=A\ {aVc}
l=1+1

Repeat this procedure until A" is empty, we get Ag = {a,d,aV b} and
the mass function m is m(a) = .5, m(d) = .3, m(aV c) = .2.

If we take bel as an inner measure of a probability on A from an
unknown probability space, this space can be recovered as (W, x, ¢) where
the basis for y is x' = {Wy, Wy, W5}, Wi U WL U W3 = W and o(W;) =
B, 0(Wa) = .3, 0(Ws) = 2.

The computational complexity may be high when there are huge num-
ber of elements in £(P). That is, it is exponential with the element

number of P.

6 Summary

Dealing with uncertainty is an important task in many automated reason-
ing systems. Quite a few numerical and symbolic approaches have been
proposed and discussed. In this paper, we focused on incidence calcu-
lus and mainly on the recovering procedure from numerical assignments
to symbolic assignments. The result shows that numerical assignments
and symbolic assignments can be transformed into each other in some
circumstances.

We have discussed an approach to defining an incidence function based
on a probability measure in incidence calculus. The advantage of this
approach is that its computational complexity is lower i.e. o(] A |) com-

paring to the method discussed in [14]. The latter is exponential given
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the same set of axioms A. The size of the set of possible worlds entirely
depends on the size of A. For example, if there are only two elements in
A, then we can define a set of possible worlds containing at most three
elements. This is mainly because the probability distribution on the set
of possible worlds must be discrete.

When we extend the result to DS theory and the probability space,
we follow the known result that a lower bound in incidence calculus is
equivalent to a belief function and a belief function is, in turn, equivalent
to an inner measure in probability structures when these three theories
concern the same problem space. Therefore the incidence assignment
procedure can be not only used to define an incidence assignment but
also used to construct an undefined probability space. In the latter case,
a basis for an o—algebra of a probability space is similar to a set of possible
worlds except that each subset in the basis usually contains more than
one elements.
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