
Measuring Inconsistency In Requirements
Specifications

Kedian Mu1, Zhi Jin1,2, Ruqian Lu1,2 and Weiru Liu3

1 Institute of Computing Technology
Chinese Academy of Sciences, Beijing 100080, P.R.China
2 MADIS, Academy of Mathematics and System Sciences
Chinese Academy of Sciences, Beijing 100080, P.R.China

3 Department of Computer Science,
Queen’s University Belfast, BT7 1NN, Northern Ireland

Abstract. In the field of requirements engineering, measuring incon-
sistency is crucial to effective inconsistency management. A practical
measure must consider both the degree and significance of inconsistency
in specification. The main contribution of this paper is providing an ap-
proach for measuring inconsistent specification in terms of the priority-
based scoring vector, which integrates the measure of the degree of incon-
sistency with the measure of the significance of inconsistency. In detail,
for each specification ∆ that consists of a set of requirements statements,
if L is a m-level priority set, we define a m-dimensional priority-based
significance vector

−→
V to measure the significance of the inconsistency in

∆. Furthermore, a priority-based scoring vector
−→
SP : P(∆) → Nm+1 has

been defined to provide an ordering relation over specifications that de-
scribes which specification is “more essentially inconsistent than” others.

1 Introduction

It is widely recognized that inconsistency is unavoidable during the requirements
stage, though most existing software development techniques or tools assume
consistency [1–3]. A practical way of handling inconsistency is learning to live
with inconsistency rather than parry it [3]. Furthermore, in many cases, it may
be desirable to take the initiative in managing inconsistency to facilitate the
requirements development and management [2]. Inconsistencies could be viewed
as signals of problematical information about requirements.

Measuring inconsistency is crucial to effective inconsistency management [2,
1]. In general, customers and developers need to know the number and severity of
inconsistencies in their requirements specifications. Often, developers need to use
these measures to prioritize inconsistencies in order to identify inconsistencies
that require urgent attentions, and to assess the progress after inconsistency-
handling. In other words, the developers need to know if a set of requirements
statements become more or less “consistent” after a particular inconsistency-
handling action has been taken.

It is not surprising that techniques for measuring inconsistent specifications
in classical logic are appealing [4]. In practical inconsistency-handling, customers
and developers need to know both the significance and severity of inconsistency.
The relative importance of a requirements statement always affects the evalu-
ation of significance of an inconsistent specification. Therefore, central to mea-
suring inconsistent specifications is the need to take the relative importance of
requirements statements into account.

An approach to evaluating the significance of inconsistency in the framework
of QC logic was proposed in [5] recently. It is based on specifying the relative
significance of incoherent QC models using additional information, encoded as
a mass assignment in Dempster-Shafer theory. This approach is not appropri-
ate for measuring inconsistency in requirements specifications, though the QC
logic is very appealing for representing inconsistent requirements specifications.
Generally speaking, the relative importance of a requirements statement is im-
plied by the relative priority of this statement in practical software development.
But prioritization is just a strategy for differentiating requirements at a coarse
granularity by relative importance and urgency. A common approach to prioriti-
zation is to group requirements statements into three priority categories, such as
three-level scale of “Essential”, “Conditional”, and “Optional” [6, 7]. However,
all such scales are subjective and imprecise, so it is difficult to specify the relative
significance of inconsistency in the framework of Dempster-Shafer theory.

In this paper, we propose a new approach for measuring inconsistent specifi-
cations, which considers both the degree and significance of inconsistency based
on the relative priorities of requirements statements. The rest of the paper is
organized as follows. Section 2 introduces some preliminary notions. Section 3
presents the approach for measuring inconsistencies in requirements specifica-
tions. Finally, we conclude this paper in Section 4.

2 Preliminaries

As mentioned above, classical logic is appealing for representing the requirements
specifications. We start this section with some notations of classical logic.

Let LΦ0 be the language composed from a set of classical atoms Φ0 and
logical connectives {∨,∧,¬,→} and let ` be the classical consequence relation.
Let α ∈ LΦ0 be a classical formula and ∆ ⊆ LΦ0 a set of formulas in LΦ0 . In
this paper, we call ∆ a requirements specification while each formula α ∈ ∆
represents a requirements statement.

Let Consequence(∆) = {α|∆ ` α}. If ∃α such that ∆ ` α and ∆ ` ¬α, then
we call ∆ is inconsistent and abbreviate α ∧ ¬α by ⊥.

Generally, both the “plausible” and “problematical” information in the in-
consistent set of formulas is of interest. However, for any set of formulas, we may
consider each of its maximal consistent subsets as the reflection of one of many
plausible views of the requirements specification. Furthermore, we consider the
common subset of all its maximal consistent subsets as the reflection of all the
“uncontroversial” information in it. On the other hand, we consider the union of

all its minimal inconsistent subsets as the collection of all the “problematical”
information [8].

Definition 1. Let ∆ be a requirements specification. Then

CON(∆) = {Γ ⊆ ∆|Γ 6` ⊥}, INC(∆) = {Γ ⊆ ∆|Γ ` ⊥}
MC(∆) = {Φ ∈ CON(∆)|∀Ψ ∈ CON(∆), Φ 6⊂ Ψ}

MI(∆) = {Φ ∈ INC(∆)|∀Ψ ∈ INC(∆), Ψ 6⊂ Φ}
FREE(∆) =

⋂

Φ∈MC(∆)

Φ = ∆−
⋃

Ψ∈MI(∆)

Ψ, CORE(∆) = ∆− FREE(∆)

MC(∆) is the set of maximal consistent subsets of ∆; MI(∆) is the set of
minimal inconsistent subsets of ∆; and FREE(∆) is the set of formulas that
appear in all the maximal consistent subsets of ∆.

Example 1. Let ∆ = {α,¬γ, β,¬β∨γ}, then MC(∆) = {Φ1, Φ2, Φ3},where Φ1 =
{α,¬γ,¬β∨γ}, Φ2 = {α, β,¬β∨γ}, and Φ3 = {α,¬γ, β}, MI(∆) = {{¬γ, β,¬β∨
γ}}, and FREE(∆) = {α}.

For a set of formulas ∆, a scoring function S is defined from P(∆) (the
power set of ∆) into the natural numbers so that for any Γ ∈ P(∆), S(Γ) gives
the number of minimal inconsistent subsets of ∆ that would be eliminated if the
subset Γ was removed from ∆ [8]. That is, for Γ ⊆ ∆, S(Γ) = |MI(∆)|−|MI(∆−
Γ)|. As such, sets of formulas could be compared using their scoring functions
so that an ordering relation, which means “more inconsistent than”, over these
sets can be defined.

Definition 2. (score ordering [8], ≤) Assume that ∆i and ∆j are of the same
cardinality, Si is the scoring function for ∆i, and Sj the scoring function for ∆j.
Si ≤ Sj holds iff there is a bijection f : P(∆i) 7→P(∆j) such that the following
condition can be satisfied:

∀Γ ∈ P(∆i), Si(Γ) ≤ Sj(f(Γ))

Note that Si < Sj iff Si ≤ Sj and Sj 6≤ Si. Also, Si ' Sj iff Si ≤ Sj and
Sj ≤ Si. We say ∆j is more inconsistent than ∆i iff Si ≤ Sj.

3 Approach for Measuring Inconsistent Specification

Let m, a natural number, be the scale of the priority and L be
{
lm0 , · · · , lmm−1

}
, a

totally ordered finite set of m symbolic values of the priorities, i.e. lmi < lmj iff i <
j. Furthermore, each symbolic value in L could associate with a linguistic value.
For example, for a three-level priority set, we have a totally ordered set L as
L = {l30, l31, l32} where [6, 7]

l30 : Optional, l31 : Conditional, l32 : Essential

In the rest of paper, we adopt this three-level priority set, though it is not oblig-
atory. We may ignore the superscript m if no ambiguous arises. According to
the convention in software engineering, the intuitive meaning of “essential” is
that the software product could not be acceptable unless all of the essential re-
quirements are satisfied ; the meaning of “conditional” is that these requirements
would enhance the software product, but it is not unacceptable if absent ; the
meaning of “optional” is that these requirements may or may not be worthwhile.
In some sense, the priority could be seen as the abstraction of the requirements’
significance.

Prioritizing requirements statements in ∆ is in essence to establish a prioritiz-
ing mapping P : ∆ 7→ L by balancing the business benefit that each requirements
statement can provide against its cost and technique risk.

Definition 3. Let ∆ be a requirements specification and L a m-level priority
set. Let P be a prioritizing mapping P : ∆ 7→ L. The priority-based partition of
∆ under L can be defined as

{
∆0, · · · ,∆m−1

}
, such that

∆i = {α ∈ ∆|P (α) = li}, for i = 0, · · · ,m− 1.

Obviously, each component of the priority-based partition of ∆ is a subset of ∆.
We give an example to illustrate the priority-based partition.

Example 2. Let L be a three-level priority set, and ∆ = {α,¬γ, β,¬β ∨ γ}. P is
the prioritizing mapping from ∆ to L:

P (α) = l2, P (¬γ) = l2, P (β) = l1, P (¬β ∨ γ) = l0

Then, ∆0 = {¬β ∨ γ}, ∆1 = {β}, ∆2 = {α,¬γ}. Obviously ∆ = ∆0 ∪∆1 ∪∆2.

For the priority-based partition of ∆ under L, {∆0, · · · ,∆m−1}, ∆i stands
for the subset of ∆ that is grouped to the category with priority level li. In
other words, all of the requirements statements in ∆i have the same level of
relative importance and urgency. Note that, for ∆l, the l-th component of its
priority-based partition is itself, and others are ∅. For example, the priority-based
partition of ∆m−1 is {∅, · · · , ∅,∆m−1}.

3.1 Priority-based Score Ordering

Prioritizing requirements statements is in essence to differentiate the require-
ments statements by relative importance and urgency. In order to measure in-
consistencies arising in requirements specifications, it is necessary to consider the
relative priority of requirements statement in techniques. In fact, the approach
based on scoring functions in [8] assumes that each formula has the same rela-
tive priority by default. In other words, it does not consider the significance of
inconsistency. For the specifications consisting of requirements statements with
different priorities as we have defined above, to consider their significance, we
need to define a priority-based score ordering as follows to compare the
inconsistent specifications.

Definition 4. (priority-based score ordering, ≤P) Let L be a m-level pri-
ority set. Let ∆i and ∆j be two specifications with the same cardinality. Let
{∆0

i , · · · ,∆m−1
i } and {∆0

j , · · · ,∆m−1
j } be the priority-based partitions under L

of ∆i and ∆j, respectively. Let Si be the scoring function for ∆i and Sj be the
scoring function for ∆j. Si ≤P Sj holds iff there is a bijection f : P(∆i) 7→P(∆j)
such that the following conditions can be satisfied:

– f is a bijection from P(∆l
i) to P(∆l

j) (l ∈ {0, · · · ,m− 1});
– ∀Γ ∈ P(∆i), Si(Γ) ≤ Sj(f(Γ))

We call ≤P the priority-based score ordering. Note that Si <P Sj iff Si ≤P Sj

and Sj 6≤P Si, Si 'P Sj iff Si ≤P Sj and Sj ≤P Si. We say ∆j is more truly
inconsistent than ∆i iff Si ≤P Sj.

The priority-based score ordering emphasizes the bijection from P(∆l
i) to

P(∆l
j), which provides a basis for comparing the scoring functions under the

same level of priority. In other words, the significance of inconsistency is con-
sidered in the priority-based score ordering in an indirect way. Let us look at
the following example to see how to compare inconsistent specifications via the
priority-based score ordering.

Example 3. Let L be a three-level priority set. Consider ∆1 = {¬α, α, β} and
∆2 = {α ∧ ¬α, β, γ}. Assume that ∆0

1 = {¬α}, ∆1
1 = {α}, ∆2

1 = {β}, ∆0
2 =

{α ∧ ¬α}, ∆1
2 = {β}, and ∆2

2 = {γ}. Let S1 and S2 be the scoring functions for
∆1 and ∆2 respectively, as detailed below,

S1({¬α}) = 1, S1({α}) = 1, S1({β}) = 0, S1({¬α, α}) = 1
S1({¬α, β}) = 1, S1({α, β}) = 1, S1({¬α, α, β}) = 1

S2({α ∧ ¬α}) = 1, S2({β}) = 0, S2({γ}) = 0, S2({α ∧ ¬α, β}) = 1
S2({α ∧ ¬α, γ}) = 1, S2(β, γ}) = 0, S2({α ∧ ¬α, β, γ}) = 1

Then we have S2 < S1. Therefore, if we ignore the relative significance of
each formula in ∆1 ∪ ∆2, we conclude that ∆1 is more inconsistent than ∆2.
But if we consider the relative significance of each formula, then S2 <P S1. We
may say that ∆1 is more truly inconsistent than ∆2.

The priority-based score ordering considers both the degree and significance
of inconsistency in some sense. It is more strict than the score ordering. That
could be shown by the following proposition.

Proposition 1. Let ∆i and ∆j be of the same cardinality. If Si and Sj are the
scoring functions for ∆i and ∆j respectively, then Si ≤P Sj implies Si ≤ Sj.
But the converse does not hold.

Example 4. (a counterexample for the converse) Let L be a three-level priority
set. Consider ∆1 = {¬α, α, β} and ∆2 = {α ∧ ¬α, β, γ}. Assume that ∆0

1 =
{¬α, α}, ∆2

1 = {β}, ∆0
2 = {α ∧ ¬α}, ∆1

2 = {β}, and ∆2
2 = {γ}. There is no

bijection from P(∆0
1) to P(∆0

2), thus S2 < S1 but S2 6<P S1.

3.2 Measuring Significance of Inconsistent Specification

The priority-based score ordering does not provide a direct approach for mea-
suring the significance of inconsistency based on the priority. It just provides a
basis for comparing the scoring functions under the same level of priority. As
mentioned above, the priority associated with each requirements statement is
some kind of abstraction of this statement’s significance. We may easily think
up the following intuitive assumptions: (1) the requirements statements with the
same priority have the same significance; (2) any requirements statement with
higher priority is more significant than all of those with lower priorities; (3) those
requirements statements with higher priorities play dominant roles in measuring
the significance of the inconsistencies in requirements specifications. This is the
reason why we have to take the priority into account. To achieve this objective,
we first introduce a priority-based cardinality vector for ∆.

Definition 5. Let L be a m-level priority set. ∀∆ ⊆ LΦ0 , the priority-based
cardinality vector of ∆, denoted −→C (∆), is defined as −→C (∆) = (|∆0|, · · · , |∆m−1|),
where {∆0, · · · ,∆m−1} is the priority-based partition of ∆ under L and |∆l| is
cardinality of ∆l for each l ∈ {0, · · · ,m− 1}.
Example 5. Consider ∆ = {α, β,¬β ∨ ¬α, γ}. Let L be a three-level priority
set. Let {∆0,∆1,∆2} be the priority-based partition of ∆ under L, where ∆0 =
{β,¬β ∨ ¬α}, ∆1 = {α}, and ∆2 = {γ}, then −→C (∆) = (2, 1, 1).

Definition 6. (cardinality vector ordering, ¹P) Let ∆ ⊆ LΦ0 , Γi, Γj ⊆
∆, and L a m-level priority set. Let −→C (Γi) and −→

C (Γj) be the priority-based
cardinality vectors under L of Γi and Γj respectively. The cardinality vector
ordering, denoted ¹P , is defined as: −→C (Γi) ¹P

−→
C (Γj) iff ∃0 ≤ l ≤ m − 1 such

that |Γ l
i | ≤ |Γ l

j | and ∀l < k ≤ m−1, |Γ k
i | = |Γ k

j |. Furthermore, −→C (Γi) ≺P
−→
C (Γj)

iff −→
C (Γi) ¹P

−→
C (Γj) and −→

C (Γj) 6¹P
−→
C (Γi);

−→
C (Γi) = −→

C (Γj) iff −→
C (Γi) ¹P−→

C (Γj) and −→C (Γj) ¹P
−→
C (Γi).

In this sense, the priority-based cardinality vector −→C (∆) gives a measure of
priority-based significance of ∆. The l-th component of −→C (∆) denote the number
of the requirements with the l-th level of priority.

Proposition 2. Let L be a m-level priority set. Let ∆ ⊆ LΦ0 . If −→C denotes the
priority-based cardinality vector under L, then for Γi, Γj ⊆ ∆,

−→
C (Γi ∩ Γj) ¹P min¹P(−→C (Γi),

−→
C (Γj))

max¹P(−→C (Γi),
−→
C (Γj)) ¹P

−→
C (Γi ∪ Γj)

where min¹P
(−→C (Γi),

−→
C (Γj)) = −→

C (Γi) if −→C (Γi) ¹P
−→
C (Γj), or −→C (Γj) otherwise;

max¹P
(−→C (Γi),

−→
C (Γj)) = −→

C (Γj) if −→C (Γi) ¹P
−→
C (Γj), or −→C (Γi) otherwise.

Now we can use the priority-based cardinality vector to describe the sig-
nificance of inconsistency. Let N be a set of natural numbers, then Nm is a
m-dimensional space.

Definition 7. Let L be a m-level priority set and ∆ ⊆ LΦ0 . The priority-based
significance vector for ∆ under L, −→V : P(∆) 7→ Nm, can be defined as that for
Γ ∈P(∆), −→

V (Γ) = −→
C (CORE(∆))−−→C (CORE(∆− Γ))

If we use V l(Γ) to denote |CORE(∆)l|−|CORE(∆−Γ)l| for each l ∈ {0, · · · ,m−
1}, then −→V (Γ) = (V 0(Γ), · · · , V m−1(Γ)).

Intuitively, for Γ ∈ P(∆), −→V (Γ) captures the reduction of the significance of
those “problematical” statements in ∆ after Γ were removed from ∆. Based on−→
V , we may introduce another ordering relation, the priority-based significance
ordering, for comparing the significance of inconsistencies in specifications.

Definition 8. (priority-based significance ordering, ¹S
P) Let L be a m-

level priority set. Assume that ∆i and ∆j are of the same cardinality. Let −→Vi and−→
Vj be the priority-based significance vectors under L for ∆i and ∆j respectively.
Then −→

Vi ¹S
P
−→
Vj holds iff there is a bijection f : P(∆i) 7→P(∆j) such that the

following condition can be satisfied:

∀Γ ∈ P(∆i),
−→
Vi(Γ) ¹P

−→
Vj(f(Γ))

We call ¹S
P the priority-based significance ordering. Furthermore, −→Vi ≺S

P
−→
Vj iff−→

Vi ¹S
P
−→
Vj and −→Vj 6¹S

P
−→
Vi;

−→
Vi 'S

P
−→
Vj iff −→

Vi ¹S
P
−→
Vj and −→Vj ¹S

P
−→
Vi. We say the

inconsistency in ∆j is more significant than that in ∆i iff −→
Vi ¹S

P
−→
Vj.

Let us give an example to illustrate how to compare two inconsistent specifi-
cations from the significance of inconsistency via the priority-based significance
ordering.

Example 6. Consider ∆1 = {α,¬α} and ∆2 = {β,¬β}. Let L be a three-level
priority set. Assume that ∆0

1 = {α}, ∆1
1 = {¬α}, ∆1

2 = {β}, and ∆2
2 = {¬β}.

If −→V1 and −→
V2 are priority-based significance vectors under L for ∆1 and ∆2

respectively, then
−→
V1(∆1) = (1, 1, 0),−→V1({α}) = (1, 1, 0),−→V1({¬α}) = (1, 1, 0)
−→
V2(∆2) = (0, 1, 1),−→V2({β}) = (0, 1, 1),−→V2({¬β}) = (0, 1, 1)

Therefore, −→V1 ≺S
P
−→
V2, and we conclude that the inconsistency in ∆2 is more

significant than that in ∆1. However, if we apply the scoring function, S, to
∆1 and ∆2, we can not tell the difference of their inconsistencies.

Proposition 3. Let L be a m-level priority set. Let ∆i, ∆j ⊆ LΦ0 . If −→Vi and−→
Vj are the priority-based significance vectors under L for ∆i and ∆j respectively,
then −→Vi ¹S

P
−→
Vj implies −→C (CORE(∆i)) ¹P

−→
C (CORE(∆j)).

The priority-based significance vector provides a concise means for articulating
the significance of inconsistency in specifications. For inconsistent specifications,
it is easy to get the following relation between the degree and significance of
inconsistency.

Proposition 4. Let L be a m-level priority set and ∆ ⊆ LΦ0 . Let −→0 be a zero
vector. If S is the scoring function for ∆ and −→V the priority-based significance
vector for ∆ under L, then for Γ ⊆ ∆, S(Γ) = 0 iff −→

V (Γ) = −→0 .

3.3 Priority-based Scoring Vector

As mentioned earlier, the scoring function S for ∆ reveals the degree of in-
consistency arising in ∆, while the priority-based significance vector −→V for ∆
measures the significance of inconsistency. We also give two ordering relations
for comparing inconsistent specifications from the perspectives of the degree and
the significance of inconsistency, respectively. Actually, in many cases, we need
to consider both of them. In software engineering, we might define this integrated
measure by combining the scoring function with the priority-based significance
vector.

Definition 9. Let L be a m-level priority set and ∆ ⊆ LΦ0 . Let −→V be the
priority-based significance vectors under L for ∆. The priority-based scoring vec-
tor for ∆ under L, −→SP : P(∆) 7→Nm+1, can be defined as that for Γ ∈ P(∆),

−→
SP (Γ) = (V 0(Γ), · · · , V m−1(Γ), S(Γ))

Actually, for Γ ∈ P(∆), the priority-based scoring vector for ∆ consists of −→V (Γ)
concatenated with value S(Γ). It could be viewed as the integrated measure of
inconsistent information of ∆ that would be reduced if Γ were removed from ∆.
Furthermore, we can compare these inconsistent specifications using the priority-
based scoring vector for each specification from an integrated view.

Definition 10. (scoring vector ordering, ¹∗P) Let ∆ ⊆ LΦ0 , Γi, Γj ⊆ ∆,
and L a m-level priority set. Let −→SP (Γi) and −→SP (Γj) be the priority-based scoring
vectors under L of Γi and Γj respectively. The scoring vector ordering, denoted
¹∗P , is defined as: −→SP (Γi) ¹∗P

−→
SP (Γj) iff −→

V (Γi) ¹P
−→
V (Γj) and S(Γi) ≤ S(Γj).

Furthermore, −→SP (Γi) ≺∗P
−→
SP (Γj) iff −→

SP (Γi) ¹∗P
−→
SP (Γj) and −→SP (Γj) 6¹∗P

−→
SP (Γi);−→

SP (Γi) = −→
SP (Γj) iff −→

SP (Γi) ¹∗P
−→
SP (Γj) and −→SP (Γj) ¹∗P

−→
SP (Γi);

Definition 11. (priority-based score vector ordering, ¹E
P) Let L be a m-

level priority set. Assume that ∆i and ∆j are of the same cardinality. Let −→SP i and−→
SP j be the priority-based scoring vectors under L for ∆i and ∆j, respectively.−→
SP i ¹E

P
−→
SP j holds iff there is a bijection f : P(∆i) 7→P(∆j) such that the

following condition can be satisfied: ∀Γ ∈ P(∆i),
−→
SP i(Γ) ¹∗P

−→
SP j(f(Γ)). We

call ¹E
P the priority-based score vector ordering. Furthermore, −→SP i ≺E

P
−→
SP j iff−→

SP i ¹E
P
−→
SP j and −→SP j 6¹E

P
−→
SP i;

−→
SP i 'E

P
−→
SP j iff −→

SP i ¹E
P
−→
SP j and −→SP j ¹E

P
−→
SP i.

We say ∆j is more essentially inconsistent than ∆i iff −→
SP i ¹E

P
−→
SP j.

Proposition 5. Let L be a m-level priority set, and ∆i, ∆j ⊆ LΦ0 . Let Si

and Sj be the scoring functions for ∆i and ∆j respectively. If −→SP i and −→
SP j

are the priority-based scoring vectors under L for ∆i and ∆j respectively, then−→
SP i ¹E

P
−→
SP j implies −→Vi ¹S

P
−→
Vj and Si ≤ Sj.

Let us look at the following example to see how to compare two inconsistent
specifications from two different perspectives, i.e. the degree and the significance
of inconsistency.
Example 7. Consider ∆1 = {α, β,¬α,¬β} and ∆2 = {α, γ,¬α,¬γ}. Let L be a
three-level priority set. And let {∆0

1,∆
1
1,∆

2
1} and {∆0

2,∆
1
2,∆

2
2} be the priority-

based partitions under L of ∆1 and ∆2, respectively, where ∆0
1 = {α}, ∆1

1 =
{¬β}, ∆2

1 = {¬α, β}, ∆0
2 = {α,¬α}, ∆1

2 = {¬γ}, and ∆2
2 = {γ}.

If S1 and S2 are the scoring functions for ∆1 and ∆2 respectively, then S1 '
S2. Therefore, we may say ∆1 is as inconsistent as ∆2 from the perspective of
the degree of inconsistency. On the other hand, from the perspective of the
significance of inconsistency, we may say the inconsistency in ∆1 is more
significant than that in ∆2 since −→V2 ≺S

P
−→
V1, where −→V1 and −→V2 are the priority-

based significance vectors under L for ∆1 and ∆2 respectively. Furthermore,
if −→SP 1 and −→SP 2 are the priority-based scoring vectors under L for ∆1 and ∆2

respectively, we have −→SP 2 ≺E
P
−→
SP 1. That is, from the integrative perspective, ∆1

is more essentially inconsistent than ∆2.
However, as illustrated by the following propositions, the priority-based scor-

ing vector is also a concise and yet expressive articulation of the inconsistencies
that arise in requirements specifications from both the severity and significance.

Proposition 6. Let ∆ ⊆ LΦ0 and L a m-level priority set. If −→SP is the priority-
based scoring vector under L for ∆, then
−→
SP (FREE(∆)) = −→0 ,

−→
SP (CORE(∆)) = (|CORE(∆)0|, · · · , |CORE(∆)m−1|, |MI(∆)|);

Proposition 7. Let ∆ ⊆ LΦ0 and L a m-level priority set. If −→SP is the priority-
based scoring vector under L for ∆, then for α ∈ ∆,

α ∈ FREE(∆) iff −→
SP ({α}) = −→0 ; and α ∈ CORE(∆) iff −→0 ≺∗P −→

SP ({α})
Proposition 8. Let ∆ ⊆ LΦ0 and L a m-level priority set. If −→SP is the priority-
based scoring vector under L for ∆, then for Γi, Γj ⊆ ∆,

−→
SP (Γi ∩ Γj) ¹∗P min¹∗

P
(−→SP (Γi),

−→
SP (Γj))

max¹∗
P
(−→SP (Γi),

−→
SP (Γj)) ¹∗P −→

SP (Γi ∪ Γj)

where min¹∗
P
(−→SP (Γi),

−→
SP (Γj)) = −→

SP (Γi) if −→SP (Γi) ¹∗P
−→
SP (Γj), or −→SP (Γj) other-

wise; max¹∗
P
(−→SP (Γi),

−→
SP (Γj)) = −→

SP (Γj) if −→SP (Γi) ¹∗P
−→
SP (Γj), or −→SP (Γi) other-

wise.

Proposition 9. Let L be a m-level priority set and ∆i, ∆j ⊆ LΦ0 . If −→SP i and−→
SP j are the priority-based scoring vectors under L for ∆i and ∆j respectively,
then −→SP i ¹E

P
−→
SP j implies |FREE(∆i)| ≥ |FREE(∆j)|. But the converse does not

hold.

Example 8. (a counterexample for the converse). Consider ∆1 = {α,¬α, β} and
∆2 = {α ∧ ¬α, β, γ}. Let L be a three-level priority set. Let ∆0

1 = {α,¬α},
∆2

1 = {β}, ∆1
2 = {β, γ}, and ∆2

2 = {α∧¬α}. So, |FREE(∆2)| > |FREE(∆1)|, but−→
SP 2 6¹E

P
−→
SP 1

3.4 Case Study

Example 9. Let L be a three-level priority set. Consider a scenario in a close
residential area management system. Developer A, who is in charge of gathering
information about vehicle’s application for entrance, supplies the “essential”
requirements as follows: The vehicles with authorization (Auth) of residential
area can enter (Enter) the area; The vehicles without authorization can not enter.
He also gathers a legal rule about fire engine as follows: the fire engine (Fire) can
enter the area without authorization. If we use ∆A to represent the specification
from A, then ∆A contains:

Fire(v) → Enter(v), F ire(v) → ¬Auth(v),¬Auth(v) → ¬Enter(v), F ire(v)

The priority-based partition of ∆A is: ∆2
A = ∆A.

Developer B, who is in charge of managing renting garages, supplies the
“essential” requirements as follows: A garage is available (Available) if it is
unoccupied (Unoccupied). A further “conditional” requirements is: If a garage
should be repaired (Repaired), then it is not available; If a garage can be repaired,
then it is unoccupied. Then specification ∆B contains the following statements:

Unoccupied(a) → Available(a), Repaired(a) → ¬Available(a),
Repaired(a) → Unoccupied(a), Repaired(a)

The priority-based partition of ∆B is: ∆1
B = {Repaired(a) → ¬Available(a),

Repaired(a) → Unoccupied(a)},∆2
B = ∆B −∆1

B . Obviously, both ∆A and ∆B

are inconsistent. If −→SP A and −→SP B are the priority-based scoring vectors under L
of ∆A and ∆B , respectively, then −→SP B ≺E

P
−→
SP A. It signifies that the developers

should give ∆A priority based on integrated measure of inconsistency. However,
if we use the scoring functions in [8], we can’t distinguish the inconsistencies of
the two specifications.

The approach could also be applied to other scenarios such as negotiation
between agents and the comparison of heterogeneous sources of information,
since the relative importance of knowledge in certain scenario may affect the
measure of inconsistency, especially in competitive negotiation.

Example 10. Consider the competition of Japan and China for Russia’s oil and
gas pipeline routes. Generally, large amount of the export of oil, dominant role in
export, the length and cost of routes are viewed as factors that may contribute
to Russia’s choice of routes.

Let ∆R be Russia’s perspective about routes. ∆R = {short, cheap, large,
dominant}.

Let the descriptions of routes proposed by China and Japan be represented
by ∆C and ∆J respectively. ∆C = {short, cheap, ¬large, ¬dominant}, ∆J =
{¬short, ¬cheap, large, dominant}.

Hence, the negotiation between Russia and China is captured by ∆RC .

∆RC = {short, cheap, ¬large, ¬dominant, large, dominant}

The negotiation between Russia and Japan is captured by ∆RJ .

∆RJ = {short, cheap, large, dominant, ¬short, ¬cheap}
Let L be a three-level priority set. As for the items that contribute to Russia’s

choice of routes, large amount of the export of oil and dominant role in export
are essential factors, while the length and cost of route are significant but less
essential factors. Therefore, the priority-based partition of ∆RC is captured as
follows:

∆1
RC = {short, cheap},∆2

RC = {¬large, ¬dominant, large, dominant}
The priority-based partition of ∆RJ is captured as follows:

∆1
RJ = {short, cheap, ¬short, ¬cheap},∆2

RJ = {large, dominant}
If −→SP RC is the priority-based scoring vector for ∆RC and −→SP RJ is the priority-
based scoring vector for ∆RJ , then −→SP RJ ≺E

P
−→
SP RC . It implies that Japanese

proposal of pipeline route is more attractive to Russia than that of China.

4 Conclusions

In terms of the relative priorities of requirements statements, this paper presents
a set of priority-based strategies to measure the inconsistencies arising in re-
quirements specifications. First, the priority-based score ordering is proposed to
compare the degree of inconsistencies under the same level of priority. And then
the priority-based significance vector is given to assess the significance of incon-
sistency. And finally, the priority-based score vector ordering, which is based on
the priority-based scoring vector, is defined to compare the inconsistent spec-
ifications from an integrated view, i.e. according to both the degree and the
significance of inconsistency.

Measuring inconsistency is still an important issue in developing requirements
specifications as well as intelligent systems. Some recent techniques for measuring
inconsistent information have been reviewed in [9]. The overwhelming majority of
these techniques focus on different measures of the degree of inconsistency [10–
13]. At present, the scoring function [8] is one of the most appropriate tools
for summarizing the degree of inconsistency. However, researchers have begun to
study the significance of inconsistency. For example, Hunter provided a approach
for measuring the significance of inconsistency arising in QC models [5]. This
approach is based on specifying the relative significance of incoherent models
using additional information, encoded as a mass assignment. But, the priority
of a requirements statement is just an imprecise measure of relative importance.
It is difficult to determine the precise measure of relative significance for each
statement during the requirements stage in many cases. That might be the main
obstacles in putting this approach into practical applications.

In contrast, the approach described in this paper uses the priority-based
significance vector to measure the significance of inconsistency. The priority-
based partition of specification is available during the requirements stage [14].

It could be viewed as a partition of requirements by relative importance and
urgency. Moreover, in general cases, the priority-based partition of specification
is accepted by all stakeholders. That is, each stakeholder gives the same meaning
of the same level of significance. It shows that this approach may be more feasible
to requirements engineering practices.

Acknowledgements

This work was partly supported by the National Natural Science Foundation of
China (No.60233010 and No.60496324), the National Key Research and Develop-
ment Program (Grant No. 2002CB312004) of China, the Knowledge Innovation
Program of the Chinese Academy of Sciences and the British Royal Society
China-UK Joint Project. We are grateful to the reviewers for their constructive
comments, which helped to improve our work.

References

1. Nuseibeh, B., Easterbrook, S., Russo, A.: Leveraging inconsistency in software
development. IEEE Computer 33 (2000) 24–29

2. Nuseibeh, B., S.Easterbrook, A.Russo: Making inconsistency respectable in soft-
ware development. Journal of Systems and Software 58 (2001) 171–180

3. Easterbrook, S., M.Chechik: 2nd international workshop on living with inconsis-
tency. Software Engineering Notes 26 (2001) 76–78

4. Hunter, A., B.Nuseibeh: Managing inconsistent specification. ACM Transactions
on Software Engineering and Methodology 7 (1998) 335–367

5. A.Hunter: Evaluating the significance of inconsistency. In: Proceedings of the
International Joint Conference on AI (IJCAI’03). (2003) 468–473

6. Wiegers, K.E.: Software Requirements,2nd ed. Microsoft Press (2003)
7. 830-1998, I.S.: IEEE Recommended Practice for Software Requirements Specifica-

tions. Los Alamitos, CA:IEEE Computer Society Press (1998)
8. A.Hunter: Logical comparison of inconsistent perspectives using scoring functions.

Knowledge and Information Systems Journal 6 (2004) 528–543
9. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In:

Inconsistency Tolerance,LNCS. Volume 3300. Springer-Verlag (2004) 189–234
10. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical mod-

els. In: Proceedings of the 18th National Conference on Artificial Intelligence
(AAAI’2002), MIT Press (2002) 68–73

11. D.Dubois, Lang, J., Prade, H.: Possibilistic logic. In: Handbook of logic in artificial
intelligence and logic programming. Oxford University Press (1994) 439–531

12. S.Benferhat, D.Dubois, S., H.Prade: Encoding information fusion in possibilis-
tic logic:a general framework for rational syntactic merging. In: Proceedings of
ECAI’2000, IOS Press (2000) 3–7

13. S. Konieczny, Lang, J., P.Marquis: Quantifying information and contradiction in
propositional logic through test actions. In: Proceedings of IJCAI2003, Morgan
Kaufmann (2003) 106–111

14. K.Wiegers: First things first:prioritizing requirements. Software Development 7
(1999) 48–53

