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Abstract. Semi-revision is a model of belief change that differs from
revision in that a new formula is not always accepted. Later, Fuhrmann
defined multiple semi-revision by replacing a new formula with a set
of formulae as the new information, which results in a merging opera-
tor called a partial meet merging operator. The problem for the partial
meet merging operator is that it needs additional information to define
a selection function which selects a subset from a set of maximal consis-
tent subbases of an inconsistent knowledge base. In this paper, we will
extend multiple semi-revision in the framework of possibilistic logic. The
advantage of possibilistic logic is that it provides an ordering relation on
formulae in knowledge bases, which makes it easy to define a selection

function practically.

1 Introduction

The problem of belief revision has been widely discussed in the past twenty years
[1, 8, 11, 12, 19, 24]. In belief revision theory, new information (a new formula)
must be adopted and some existing information will be dropped to accommodate
it. However, many researchers argued that new information should not always
have the priority over the existing information and some non-prioritized belief
revision methods have been proposed in which new informatin is not necessarily
accepted [11, 17, 18]. For example, the semi-revision introduced by Hansson [17]
differs from belief revision in two aspects: first, original information is represented
as a belief base rather than a belief set, and second, new information is not always
accepted. The semi-revision can be related to belief merging which deals with the
problem of deriving a coherent belief base from a set of inconsistent belief bases
[2–5, 11, 13–15, 19, 23]. Fuhrmann in [11] considered a multiple semi-revision by
replacing the new formula with a set of formulae as new information, which
results in a merging operator which he called a partial meet merging operator.
Both the semi-revision and the partial meet merge methods consist of two steps.
The first step is to conjoin original information and new information and the
second step is to restore consistency using a contraction function defined in [1,
16].

Two problems exist in semi-revision and partial meet merge. First, it is not
advisable to conjoin an original knowledge base with a new formula (or a set
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of formulae) because some information may be lost. Let us look at an example.
Let K1 = {φ, ψ} be the original knowledge base and K2 = {φ, ψ} be the new
information. Conjoining K1 and K2 results in K3 = {φ, ψ}, which is consistent. It
is the result of partial meet merge of K1 and K2. If new information K4 = {¬φ}
is obtained, conjoining K3 and K4 results in a knowledge base K = {φ,¬φ, ψ}.
Since φ and ¬φ are equally reliable, it is not possible to decide which formula
should be dropped, both φ and ¬φ have to be deleted. However, since both K1

and K2 support φ and only K4 supports ¬φ, by majority principle, φ should be
kept and ¬φ should be deleted.

The second problem is that we need a method to define a contraction function
in a practical way. In belief revision [1, 12], this problem is solved by considering
a notion of epistemic entrenchment. An epistemic entrenchment is an ordering
that envisages the logical dependencies of the formulae in the belief set. It is the
epistemic entrenchment of a formula in a belief set that determines the formula’s
fate when the belief set is contracted.

In this paper, we will resolve above problems by considering the multiple
semi-revision in possibilistic logic. In [9], a corresponding relationship between
epistemic entrenchment and possibilistic logic has been established. It has been
shown that the only numerical counterparts of epistemic entrenchment relations
are necessity measures. Possibilistic logic is an extension of classical logic. Each
formula in possibilistic logic is attached with a weight denoting its necessity
degree. Possibilistic logic has been shown to be a good framework for belief
revision and belief merging [3–5].

Multiple semi-revision in possibilistic logic is carried out in two steps: a com-
bination step and an inconsistency handling step. In the combination step, each
belief base is split into two subbases: one consists of conflict formulae and the
other consists of free formulae in the union of all the belief bases. The weights of
formulae in the subbases with free formulae are either increased or unchanged
and the weights of formulae in the subbases with conflict formulae are decreased.
That is, we have a reinforcement effect on the free formulae and a counteract
effect on the conflict formulae. This method is more reasonable than the conjoin-
ing method because it does not ignore any information in both sources. Then
in the inconsistency handling step, we will restore consistency of the resulting
belief base if it is inconsistent by dropping some conflict formulae according to
their priorities.

This paper is organized as follows. Section 2 gives a brief review of possibilistic
logic. We then introduce Hansson’s semi-revision and Fuhrmann’s partial meet
merging in Section 3. In Section 4 we will define the stratified semi-revision.
We compare the stratified semi-revision and some other merging methods in
possibilistic logic in Section 5. Finally, we conclude this paper in Section 6.

2 Possibilistic Logic

In this paper, we only consider a finite propositional language denoted by L.
The classical consequence relation is denoted as `. φ, ψ, γ,... represent classical
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formulas. > and ⊥ represent constant truth and constant false respectively. A
(classical) knowledge base K is a finite set of propositional formulas. Knowledge
bases are denoted by capital letters A, B, C, K...

Possibilistic logic [10] is an extension of classical logic. It is a weighted logic
where each classical formula is associated with a level of priority. A possibilistic
knowledge base is the set of possibilistic formulae of the form B = {(φi, ai) : i =
1, ..., n}. The possibilistic formula (φi, ai) means that the necessity degree of φi

is at least equal to ai. Let KB denote the set of all the possibilistic knowledge
bases. In this paper, we only consider possibilistic knowledge bases where every
formula φ is a classical propositional formula. The classical base associated with
B is denoted as B∗, namely B∗ = {φi|(φi, ai) ∈ B}. A possibilistic base B
is consistent if and only if its classical base B∗ is consistent. The formulas in
B can be rearranged according to their weights in the descending order, such
that a0 = 1≥a1≥...≥an>0. Suppose there are m distinct ai values (weights)
ai1 , ..., aim

, where aij
> aij+1

. Then B can be equivalently expressed as a layered
belief base ΣB = S1∪...∪Sm, where Sk = {φ : (φ, aik

)∈B}. ΣB is called the
stratification of B.

In possibilistic logic, a possibility distribution, denoted by π, is a mapping
from a set of possible worlds W to the interval [0,1]. π(ω) represents the possi-
bility degree of the interpretation ω with the available beliefs. From a possibility
distribution π, two measures defined on a set of propositional or first order for-
mulas can be determined. One is the possibility degree of formula φ, denoted as
Π(φ) = max{π(ω) : ω |= φ}. The other is the necessity degree of formula φ, and
is defined as N(φ) = 1 − Π(¬φ).

Definition 1. [10] Let B be a PKB, and α ∈ [0, 1]. The α-cut of B is B≥α =
{φ∈B∗|(φ, a)∈B and a≥α}.

Definition 2. [4] A subbase A of B is said to be minimally inconsistent if and
only if it satisfies the following two requirements:

– (A)∗|=⊥, where (A)∗ is the classical base of A, and
– ∀φ ∈ (A)∗, (A)∗−{φ} 6|= ⊥.

Definition 3. [4] A possibilistic formula (φ, a) is said to be free in B if it does
not belong to any minimally inconsistent subbase of B and (φ, a) is said to be
conflict in B otherwise. Conflict(B) to denote the set of formulae in B which
are in conflict.

The inconsistency degree of B, which defines the level of inconsistency of B,
is defined as [10]:

Inc(B) = max{αi|B≥αi
is inconsistent}.

Suppose ΣB is the stratification of B, then the degree of inconsistency of ΣB is
defined as the degree of inconsistency of B.

Definition 4. [10] Let B be a possibilistic base. Let (φ, α) be a piece of in-
formation with α>Inc(B). (φ, α) is said to be a consequence of B, denoted by
B `π (φ, α), iff B≥α ` φ.
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3 Semi-Revision

The main difference between semi-revision [17] and traditional belief revision
[1, 12] is that a new formula is not necessily accepted. The basic idea of semi-
revision is to conjoin the original belief base and the new formula and then drop
some formulae in the resulting base to restore consistency.

Definition 5. [1] Let A be a set of formulae and φ a formula. The set A⊥φ
1(“A less φ”) is the set of sets such that B∈A⊥φ if and only if:

(1) B⊆A
(2) B 6`φ
(3) ∀B′⊂A, if B⊂B′, then B′`φ

Definition 6. [1] A selection function for a set A of formulae is a function γ
such that for every formula φ:

(1) If A⊥φ is non-empty, then γ(A⊥φ) is a non-empty subset of A⊥φ, and
(2) If A⊥φ is empty, then γ(A⊥φ) = {A}.

Definition 7. [1] Let A be a set of formulae and γ a selection function for A.
The partial meet contraction on A that is generated by γ is the operation ∼ γ
such that for every formula φ:

A∼ γφ = ∩γ(A⊥φ)

Partial meet semi-revision [17] is based on the partial meet contraction. It
first adds the belief φ to the base, and then the resulting base is contracted by
the constant false ⊥.

Definition 8. The partial meet semi-revision of B based on a selection function
γ is the operator ?γ such that for every fomula φ:

B?γφ = (B ∪ {φ})∼ γ⊥ = ∩γ((B∪{φ}) ⊥ {⊥})

In [11], Fuhrmann generalized the semi-revision by replacing the input as a
set of formulae, which results in a merging operator.

Definition 9. Let A and B be two belief bases. The partial meet merge of A
and B is defined as:

A◦B = (A∪B)∼ γ⊥

Fuhrmann also gave the axiomatic characterization of the partial meet merge
[11].

Theorem 1. ◦ is an operator of partial meet merge if and only if it satisfies:

(M1) A◦B is consistent (strong consistency)
(M2) A◦B⊆A∪B (inclusion)
(M3) If φ∈(A∪B)\(A◦B), Then ∃D : A◦B⊆D⊆A∪B and D 6`⊥ but D ∪ {φ}`⊥

(relevance)
(M4) If A∪B = A′∪B′, then A◦B = A′◦B′ (congruence)

1 We use ⊥ to denote both the constant false and the operation to obtain the set
of maximal subbases of A which do not imply φ as in belief revision literature.
Hopefully it will not make confusion.
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4 Multiple Semi-Revision: A Possibilistic Approach

Priority plays a very important role in belief revision [12, 19]. Possibilistic logic
is a good framework to represent priority [4]. In this section, we extend multi-
ple semi-revision in the framework of possibilistic logic. Multiple semi-revision
consists of two steps: one is the combination step and the other is the incon-
sistency handling step. In the combination step, the original knowledge bases
are combined that may produce a possibly inconsistent knowledge base. In the
inconsistency handling step, some conflicting formulae are dropped to restore
consistency.

4.1 Combination step

In semi-revision and partial meet merge, the intermediate combination step is
to conjoin original information and new information. Recall the example given
in the Section 1, a disadvantage of conjoining the knowledge bases is that some
important information may be lost.

It is also not always advisable to conjoin two possibilistic knowledge bases in
the intermediate combination step in multiple semi-revision in possibilistic logic.
Let us look at an example to illustrate the reason for it.

Example 1. Let B1 = {(¬φ, 0.7), (γ, 0.8)} and B2 = {(φ, 0.6), (γ, 0.8)} be two
possibilistic belief bases. By conjoining them we obtain a knowledge base B =
{(¬φ, 0.7), (φ, 0.6), (γ, 0.8)}. Since the weight of ¬φ is greater than that of φ, it
is reasonable to delete φ, so the result of merging is B3 = {(¬φ, 0.7), (γ, 0.8)}.
Suppose later we receive another source represented as B4 = {(φ, 0.7), (¬γ, 0.8)}.
By conjoining B3 and B4 we get B′ = {(¬φ, 0.7), (φ, 0.7), (γ, 0.8), (¬γ, 0.8)}. Since
φ, ¬φ have the same weights and γ, ¬γ have the same weights, we have to drop
all the formulae in B′. So the final result is a knowledge base with no information.
This is not reasonable! For φ, there are two sources B1 and B2 supporting it with
weights 0.7 and 0.6 respectively. Whilst there is only one source supporting ¬φ
with weight 0.7. So we may prefer to retain φ and drop ¬φ. For the same reason,
it is more reasonable to retain γ and drop ¬γ. The problem for the example
above is that when we combine B1 and B2 by conjoining them, after restoring
consistency, information provided by B2 is ignored.

Let B1 and B2 be two possibilistic knowledge bases from two different sources.
For those formulas that are involved in the conflict in B1∪B2, their necessity
degrees should decrease after combination because they will counteract with
each other. In contrast, the necessity degree should increase for those formulas
that are supported by both sources.

Definition 10. [6] An operator ⊕SC is said to be strongly conjunctive on [0,1]
if for all (a1, ..., an)

⊕SC(a1, ..., an)≥max(a1, ..., an).
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A strongly conjunctive operator is used to increase the weight of a formula after
combination. Many operators belong to this class, such as the probabilistic sum
⊕(a, b) = min(a + b − ab, 1) and bounded sum ⊕(a, b) = min(a + b, 1).

Definition 11. [21] An operator ⊕UA is said to be an up-averaging operator if
for all (a1, ..., an)

⊕UA(a1, ..., an)≤max(a1, ..., an).

This operator reflects that a combination result cannot be greater than the great-
est of all. An example of up-average operator is the standard average operator
⊕(a, b) = (a + b)/2. Another up-average operator, called max-product operator,
is defined as follows:

⊕max,pro(a, b) =

{

max(a, b) if a, b6=0,
max(a2, b2) otherwise.

This operator reflects that if a formula is supported by two sources with weights
greater than 0, then we keep the maximum weight as the result of combination
of two weights a and b, otherwise the weight of the formula will be decreased
after combination.

Now we give a combination method based on the operators defined above.

Given two knowledge bases B1 and B2, we use two operators, one is a strongly
conjunctive operator and the other is an up-averaging operator. For those for-
mulas that are not in conflict in B1∪B2, we choose the strongly conjunctive
operator to combine them. But for those formulas that are in conflict, we use
the up-averaging operator to combine them. We always assume that if a for-
mula φ does not appear in a possibilistic knowledge base B, then (φ, 0) has been
added to B implicitly if necessary. Moreover, we assume that each formula in a
possibilistic knowledge base appears only once with a unique weight.

Definition 12. Let B1 = {(φi, ai) : i = 1, ..., n} and B2 = {(ψj , bj) : j =
1, ...,m} be two self-consistent possibilistic knowledge bases. Let ⊕SC and ⊕UA

be a strong conjunctive operator and an up-averaging operator respectively. The
combination of B1 and B2 is defined as ∆⊕SC ,⊕UA

(B1,B2) = C∪D, where

C = {(φ,⊕UA(a, b))|φ∈(Conflict(B1∪B2))
∗, (φ, a) ∈ B1 (φ, b) ∈ B2},

D = {(φ,⊕SC(a, b))|φ6∈(Conflict(B1∪B2))
∗, (φ, a) ∈ B1 and (φ, b) ∈ B2}

Example 2. (Continue Example 1) Since γ is supported by both sources, its
certainty degree should increase, i.e., there is a reinforcement between B1 and
B2 for γ. For formulas φ and ¬φ, they are involved in the inconsistency of B1∪B2,
so their necessity degrees should decrease. Let ⊕SC be the probabilistic sum and
⊕UA be the max-product operator. By Definition 12, the combination of B1 and
B2 is B = ∆⊕SC ,⊕UA

(B1,B2) = {(¬φ, 0.49), (φ, 0.36), (γ, 0.96)}.
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4.2 Inconsistency handling step

The knowledge base obtained by the combination step is inconsistent if the
original knowledge bases are in conflict. As in semi-revision and partial meet
merge, we will drop some formulae in the knowledge base to restore consistency.
Since a possibilistic knowledge base provides explicit priorities between formulae,
we can drop those formulae in conflict according to their weights or priorities.

As most inconsistency handling methods in possibilistic logic [4], first we
need to stratify the possibilistic knowledge bases. A very common approach
to handling inconsistency in a stratified knowledge base is to keep as much
information in a higher layer as possible.

Definition 13. [4] Let Σ = S1∪...∪Sn be a layered belief base. A subbase Σ′ =
A1∪...∪An of Σ is a strongly maximal consistent subbase (SMC-subbase for
short) iff for all k (1≤k≤n) A1∪...∪Ak is a maximal consistent subset of S1∪...∪Sk.
The set of all SMC-subbases of Σ is denoted by SMC(Σ).

The SMC-subbase was also defined in [7], with the name “preferred subbases”.
It can be constructed by starting with a maximal consistent subset of S1, then
adding to the maximal consistent subset as many formulas of S2 as possible
(while preserving consistency), and so on. So a SMC-subbase Σ′ of a stratified
belief base Σ must be a maximal subbase of it, i.e., Σ′∈Σ⊥{⊥}. The following
proposition suggests that SMC-subbases are acceptable in the sense of the best
out selection.

Proposition 1. [4] Let ΣB be the stratification of a possibilistic knowledge base
B. A SMC-subbase of ΣB = S1∪...∪Sn is Σ′ = A1∪...∪An such that the degree
of inconsistency of Σ′∪{φ}i is ai, ∀φ∈Si−Ai, where Σ′∪{φ}i is the new stratified
knowledge base obtained by adding φ to the layer Si in Σ′.

Now suppose we have two possibilistic knowledge bases B1 and B2, where
B1 is the original knowledge base the B2 is a new knowledge base. Then the
multiple semi-revision is processed as follows. First we combine B1 and B2 as
∆⊕SC ,⊕UA

(B1,B2). Let Σ be the stratification of ∆⊕SC ,⊕UA
(B1,B2), then in the

second step, we delete those elements of ∆⊕SC ,⊕UA
(B1,B2) that do not belong

to any of the elements of SMC(Σ).

Definition 14. Let B1 and B2 be two possibilistic knowledge bases. ∆⊕SC ,⊕UA

(B1,B2) is the possibilistic knowledge base obtained by the combination step.
Suppose Σ is the stratification of ∆⊕SC ,⊕UA

(B1,B2). Let Σ′ = A1∪...∪An =
∩{Σi⊆Σ : Σi∈SMC(Σ)}. Then the SMC-subbases based merging is defined as
B1 ◦

SMC
⊕SC ,⊕UA

B2 = {(φ, ai)∈∆⊕SC ,⊕UA
(B1,B2) : φ∈Ai}.

Example 3. (Continue Example 2) In Example 2, the combination of B1 and B2

is B = ∆⊕SC ,⊕UA
(B1,B2) = {(¬φ, 0.49), (φ, 0.36), (γ, 0.96)}. The stratification of

B is ΣB = {{γ}, {¬φ}, {φ}}, and the only SMC-subbase of ΣB is {{γ}, {¬φ}}.
So the result of merging of B1 and B2 is B3 = {(¬φ, 0.49), (γ, 0.96)}. Now suppose
another source B4 = {(φ, 0.7), (¬γ, 0.8)} is received. By combining B3 and B4 we
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get B′ = ∆⊕SC ,⊕UA
(B3,B4) = {(¬φ, 0.24), (φ, 0.49), (γ, 0.92), (¬γ, 0.64)}. The

stratification of B′ is ΣB′ = {{γ}, {¬γ}, {φ}, {¬φ}}. The only SMC-subbase of
ΣB′ is {{γ}, {φ}}. So the final result of merging is B5 = {(φ, 49), (γ, 0.92)}. So
both φ and γ can be inferred from B5, which is consistent with our analysis in
Example 1.

Example 4. Let B1 = {(φ, 0.8), (¬φ ∨ ψ, 0.7), (γ, 0.6), (ψ ∨ ϕ, 0.5)} and B2 =
{(¬φ, 0.8), (¬ψ, 0.7), (γ, 0.7)}. Let ⊕SC be the probabilistic sum and ⊕UA be the
max-product operator. The knowledge base obtained by the combination step is
∆⊕SC ,⊕UA

(B1,B2) = {(γ, 0.88), (φ, 0.64), (¬φ, 0.64), (¬φ∨ψ, 0.49), (¬ψ, 0.49), (ϕ∨
ψ, 0.5)}. The stratification of ∆⊕SC ,⊕UA

(B1,B2) is Σ = {{γ}, {φ,¬φ}, {ϕ ∨
ψ}, {¬φ∨ψ,¬ψ}}. There are three SMC-subbases in Σ: {{γ}, {φ}, {ϕ∨ψ}, {¬φ∨
ψ}}, {{γ}, {φ}, {ϕ ∨ ψ}, {¬ψ}}, {{γ}, {¬φ}, {ϕ ∨ ψ}, {¬φ ∨ ψ,¬ψ}}. The inter-
section of the SMC-subbases is {{γ, }, {ϕ∨ψ}}. So the result of SMC-subbases
based merge of B1 and B2 is B = {(γ, 0.88), (ϕ ∨ ψ, 0.5)}.

The SMC-subbases based merge discards too much information. In Example
4, all the formulae involved in conflict are dropped after merging. As in the semi-
revision and partial meet merge, we can select a subset of SMC-subbases. This
can be done by defining a selection function as follows.

Definition 15. A selection function for a layered belief base Σ is a function γ
such that:

(1) If SMC(Σ) is non-empty, then ∅⊂γ(SMC(Σ))⊆SMC(Σ), and
(2) If SMC(Σ) is empty, then γ(SMC(Σ)) = {Σ}.

The merging operator based on a selection function is defined as follows.

Definition 16. Let B1 and B2 be two possibilistic knowledge bases. ∆⊕SC ,⊕UA

(B1,B2) is the possibilistic knowledge base obtained by the combination step.
Suppose Σ is the stratification of ∆⊕SC ,⊕UA

(B1,B2). Let γ be a selection func-
tion for Σ. Let Σ′ = A1∪...∪An = ∩{Σi⊆Σ : Σi∈γ(SMC(Σ))}. The par-
tial SMC-subbases based merging is defined as B1 ◦PSMC

⊕SA,⊕UA
B2 = {(φ, ai)∈

∆⊕SC ,⊕UA
(B1,B2) : φ∈Ai}.

A particular selection function can be defined by selecting the lexicographi-
cally maximal consistent subbases [4].

Definition 17. [4] Let Σ be a stratified knowledge base. Suppose SMC(Σ) is
the set of SMC-subbases of Σ, then any Σ′ = A1∪...∪An∈SMC(Σ) is said
to be a lexicographically maximal consistent (LMC) subset of Σ if and only if
∀Σ′′ = B1∪...∪Bn∈ SMC(Σ),

6 ∃i, such that|Bi| > |Ai| and ∀j < i, |Bj | = |Aj |

The set of all lexicographically maximal consistent subsets of Σ is denoted as
Lex(Σ).
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Definition 18. Let B1 and B2 be two possibilistic knowledge bases. ∆⊕SC ,⊕UA

(B1,B2) is the possibilistic knowledge base obtained by the combination step.
Suppose Σ is the stratification of ∆⊕SC ,⊕UA

(B1,B2). Let Σ′ = A1∪...∪An =
∩{Σi⊆Σ : Σi∈Lex(Σ)}. Then the Lex-subbases based merging is defined as
B1 ◦

Lex
⊕SA,⊕UA

B2 = {(φ, ai)∈ ∆⊕SC ,⊕UA
(B1,B2) : φ∈Ai}.

Example 5. (Continue Example 4) The lexicographically maximal consistent
subbase of Σ is {{γ}, {¬φ}, {ϕ∨ψ}, {¬φ∨ψ,¬ψ}}. So the result of Lex-subbases
based merge is B = {(γ, 0.88), (¬φ, 0.64), (¬φ∨ψ, 0.49), (¬ψ, 0.49), (ϕ∨ψ, 0.5)},
which is equivalent to B′ = {(γ, 0.88), (¬φ, 0.64), (¬ψ, 0.49), (ϕ ∨ ψ, 0.5)}.

In Example 5, B′ contains two more formulae (¬φ, 0.64) and (¬ψ, 0.49) than B
in Example 4. Although φ and ¬φ have the same priority, both formulae ¬φ∨ψ
and ¬ψ from the lower level give support to ¬φ. So we still accept ¬φ and drop
φ.

5 Postulates for Partial SMC-subbases based Merge

In this section, we will propose the postulates to characterize the partial SMC-
subbases based merge by adapting the postulates for partial meet merge in
Theorem 1.

First, by Definition 16, the condition strong consistency still holds for the par-
tial SMC-subbases based merging operator. However, other postulates should
be changed because we do not conjoin the knowledge bases in the combina-
tion step. There are two main differences between the partial SMC-subbases
based merging operator and the partial meet merging operator. Fist, given two
possibilistic knowledge bases B1 and B2, instead of conjoining them, we take
∆⊕SC ,⊕UA

(B1,B2) as the result of combination step. Second, the partial SMC-
subbases based merging operator is based on a selection function which selects a
subset of the set of SMC-subbase of Σ, the stratification of ∆⊕SC ,⊕UA

(B1,B2).
So we have the following postulates for the partial SMC-subbases based merging
operator.

Theorem 2. Let ⊕SA and ⊕UA be a strongly conjunctive operator and an upper-
averaging operator respectively. An operator ◦: KB×KB→KB is a partial SMC-
subbases based merging operator with regard to ⊕SA and ⊕UA iff for every two
possibilistic knowledge bases B1 and B2, it satisfies the following conditions:

1. (B1◦B2)
∗ 6`⊥ (consistency)

2. B1◦B2⊆∆⊕SC ,⊕UA
(B1,B2) (inclusion)

3. If (φ, a)∈∆⊕SC ,⊕UA
(B1,B2) and (φ, a)6∈B1◦B2, then ∃E such that B1◦B2⊆E⊆

∆⊕SC ,⊕UA
(B1,B2), and E∗ 6`⊥ and Inc(E ∪ {(φ, a)}) = a.

4. If ∆⊕SC ,⊕UA
(B1,B2) = ∆⊕SC ,⊕UA

(B′
1
,B′

2
), then B1◦B2 = B′

1
◦B′

2
.

Proof. We only prove the “only if” part, the proof of “if” part is similar to that
of Theorem 1 [11].
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(=⇒) Conditions 1, 2 and 4 clearly hold. To prove Condition 3, let us assume
(φ, a)∈∆⊕SC ,⊕UA

(B1,B2) and (φ, a)6∈B1◦B2. Let Σ = S1∪...∪Sn = ∆⊕SC ,⊕UA

(B1,B2) and φ∈Sk. By Definition 16, there is some Σ′∈γ(SMC(Σ)) such that
Σ′ = A1∪...∪An and φ 6∈ Ak. Let E = {(φ, ai) ∈ ∆⊕SC ,⊕UA

(B1,B2) : φ ∈
Ai, 1≤i≤n}. It is clear that B1◦B2⊆E⊆ ∆⊕SC ,⊕UA

(B1,B2), and E∗ 6`⊥. Since
φ∈Sk−Ak, by Proposition 1, Inc(E ∪ {(φ, a)}) = a.

By Condition 3 above, a formula which is deleted after merging must be in
conflict in B1∪B2. Since in the combination step, the weights of free formulae
will increase or keep intact, we have the following corollary.

Corollary 1. Let ⊕SA and ⊕UA be a strongly conjunctive operator and an
upper-averaging operator respectively. Let B1 and B2 be two possibilistic knowl-
edge bases, with B1◦B2 as the result of merging by a partial SMC-subbase based
merging operator with regard to ⊕SA and ⊕UA. If (φ, a) is a free formula in
B1∪B2, then (φ, b)∈B1◦B2 and b≥a.

The following Corollary tells us that our partial SMC-subbases based merg-
ing operator is a generalization of Fuhrmann’s partial meet merging operator.

Corollary 2. Let B1 and B2 be two classical knowledge bases. Let ⊕SC(a, b) =
⊕UA(a, b) = max(a, b). Then the partial SMC-subbases based merging opera-
tor ◦⊕SA,⊕UA

and partial meet merging operator ◦ have the same result, i.e.
B1◦⊕SA,⊕UA

B2 = B1◦B2.

6 Related Work

Many merging operators have been proposed in the framework of possibilistic
logic [3–6, 20, 21].

The merging operators in [3, 5] are defined semantically and syntactically,
i.e. the fusion of two possibilistic knowledge bases are defined semantically by
combining their possibility distributions using an operator which is weakly con-
strained (the result is a new possibility distribution) and then a possibilistic
knowledge base is recovered from the new possibility distribution. A problem
is, if the result of merging is required to be consistent, disjunctive operators are
usually chosen, which was criticized to be too cautious.

In [20], we proposed a split-combination method for merging possibilistic
knowledge bases which combines formulae in conflict using a disconjunctive oper-
ator and formulae that are free using a conjunctive operator. We showed that this
method improves the disjunctive-operator based methods because more informa-
tion was kept after merging. A common point between the partial SMC-subbases
based method and the split-combination method is that they both differentiate
conflict formulae from free formulae and combines them using different opera-
tors. The difference among them is that the partial SMC-subbases based method
resolves inconsistency by deleting some formulae that are in conflict whilst the
split-combination method does this by weakening conflict information instead of
deleting some of them.
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Some inconsistency-tolerant consequence relations were proposed to deal with
inconsistency in [4], merging uncertain sources of information is done in two
steps: the first step is simply to conjoin the original knowledge bases, and then in
the second step, an inconsistency-tolerant consequence will be applied to handle
inconsistency. This method does not require to restore consistency after com-
bination. Moreover, it conjoins the original knowledge bases, which is different
from our first step of merging.

7 Conclusion

In this paper, we extend Fuhrmann’s partial meet merge in possibilistic logic.
The merge is processed in two steps: a combination step and an inconsistency
handling step. In the combination step, we combine free formulae and conflict
formulae using different operators. The result of combination in the first step
may be an inconsistent knowledge base. Then in the inconsistency handling step,
we delete those formulae that are in conflict and do not belong to some strongly
maximal consistent subbase.

We only defined the merging operator for two knowledge bases. A future work
is to extend it to merge more than two knowledge bases. A problem with it is that
the order of merging will influence the final result. This problem exists in most
merging methods. We will deal with this problem by introducing some criterion
to decide which two knowledge bases should be merged first. For example, we
can choose two knowledge bases which are “closest” to each other to merge each
time.

Another important issue is how to choose the appropriate operators in the
combination step. We have discussed some criteria to choose operators in [22].
More work will be done on this problem in the future.
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