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a b s t r a c t

This paper presents a new framework for multi-subject event inference in surveillance video, where mea-

surements produced by low-level vision analytics usually are noisy, incomplete or incorrect. Our goal is to

infer the composite events undertaken by each subject from noise observations. To achieve this, we con-

sider the temporal characteristics of event relations and propose a method to correctly associate the detected

events with individual subjects. The Dempster–Shafer (DS) theory of belief functions is used to infer events

of interest from the results of our vision analytics and to measure conflicts occurring during the event as-

sociation. Our system is evaluated against a number of videos that present passenger behaviours on a pub-

lic transport platform namely buses at different levels of complexity. The experimental results demonstrate

that by reasoning with spatio-temporal correlations, the proposed method achieves a satisfying performance

when associating atomic events and recognising composite events involving multiple subjects in dynamic

environments.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Security information and event management systems (SIEMs) are

well-established within the field of network security. Physical SIEMs

are also well-established within the physical security domain. How-

ever, many of the events that they deal with are of a very simple

nature with a high degree of certainty, e.g., intrusion alarms, ac-

cess control. Intelligent analysis and correlation/aggregation of in-

coming events from different sources represent a challenge to these

systems.

Recent developments in the field of video analytics have resulted

in a new source of events for PSEIM that can provide rich semantically

meaningful information with regard to situational awareness. How-

ever, unlike earlier event types, these can have a degree of uncertainty

and can conflict with one another. While the video analytics commu-

nity has been making progress on generating low-level events, typi-

cally termed action recognition [1–3], little thought has been given to

how one manages events of this nature over a period of time to give

higher-level composite events [4]. However, as this technology has

started to migrate from the laboratory to the commercial sector, there

is a growing realisation of the need to manage the events generated
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y video analysis software. By manage we mean the representation,

torage, reasoning and mining of events.

One of the main tasks of event management systems is that of

vent composition, whereby patterns of events across a distributed

etwork are detected. Event composition allows us to represent dif-

erent events and also to instantly infer events of interest by apply-

ng rules to combine existing events. In addition, new situations can

e captured by simply adding a new rule instead of modifying cus-

om code, hence ensuring a flexible solution for evolving situations.

vent composition can either be deterministic, or probabilistic, or

oth [5,6], however, to date only a few researchers have addressed

he problems of imperfect information, or information from different

ources that may be conflicting.

For the past decade or so, the deployment of CCTV in major urban

entres and cities has become well established. Recently, CCTV tech-

ology has begun to be deployed on public transport systems such as

uses and trains. The application domain of interest to us is the anal-

sis of people’s behaviour as they move into, remain in, and move

ut of seated areas. While this scenario has received very little atten-

ion to date within the computer vision community, seated areas are

biquitous in many application scenarios. For example, these can be

ound onboard transport platforms such as buses, trains and planes.

hey are also to be found in many transport hubs such as train sta-

ions and departure lounges in airports. Other sectors where they are

o be found include sports stadiums, entertainment venues such as

http://dx.doi.org/10.1016/j.cviu.2015.10.017
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oncert halls, and leisure venues such as restaurants and bars. Of par-

icular interest to us is the bus scenario and detecting anti-social or

riminal behaviour on buses. Studies have shown that the vast ma-

ority of crime carried out on transport platforms such as buses is by

oung males [7]. Therefore, having knowledge of the gender of pas-

engers, and how they are moving relative to one another, as well

s their seated positions, enables one to infer the degree of threat

nd likelihood of an anti-social/criminal incident occurring. The vast

ajority of events on a bus consist of passengers undertaking nor-

al journeys in which nothing untoward happens. This can be de-

omposed as: a passenger boarding the bus at an entrance, moving

nto the saloon area along the gangway, and taking a seat, which we

lassify as atomic events. Similarly, when exiting, a passenger stands,

oves along the gangway towards an exit, and then disembarks from

he bus. We classify both these as composite events. Less regular com-

osite events include a passenger changing a seat while the bus is

oving. This could indicate that one of the passengers is either being

ntimidated or threatened by another passenger.

Unfortunately, imperfect information frequently occurs in real

orld applications. For example, in the case of a person entering the

us doorway, the person may be classified as male with a certainty of

5% by the classification analytics, however, the remainder does not

mply that the person is female with a 15% certainty, rather, it is un-

nown. Hence, it can only give imperfect information for the remain-

ng 15%. Imperfect information is usually caused by the unreliability

f the information sources. For example, in the classification example

bove, the camera may have been tampered with, illumination could

e poor, or the classifier training set may be unrepresentative. Any

r all of these can result in imperfect information which cannot be

epresented by probability measures.

In this work, we investigate the use of evidential reasoning, for

ealing with low-level, or atomic events that are uncertain, and com-

ining them into higher level composite events that have semantic

eaning from a security viewpoint. Our main contributions can be

ummarised as follows:

A. The development of a novel technique for associating identi-

ties with atomic events.

B. One of the first attempts at integrating video analytics with an

event reasoning framework.

C. First demonstration of the recognition of composite, semanti-

cally meaningful, events onboard the challenging environment

of a moving transport platform (bus).

The rest of this paper is organised as follows. In Section 2, we re-

iew related work. Section 3 provides a preliminary treatment of the

empster–Shafer theory of evidence and temporal relation represen-

ation. We propose a new framework of subject-event association and

omposite event recognition in Section 4, a case study in Appendix B

llustrates how our framework works. In Section 5, the experimental

ethodology is described and results are presented. Finally, Section 6

oncludes this paper and discusses the future work.

. Related work

During the recent past there has been an extensive amount of

ork on video action recognition by the computer vision research

ommunity ([2,8] and references therein). However, most of this

ork has been on what we call atomic event recognition, e.g. running,

alking etc., which have a unique and enclosed, but limited, seman-

ic meaning in relation to the application context. Less emphasis has

een given to the use of reasoning for aggregating atomic events so

hat high-level semantically rich composite events can be recognised.

his straddles the boundary between the computer vision and artifi-

ial intelligence communities, and perhaps is the reason why there

as been less work in this area [9]. In this section we first review
ision-based action recognition and then event reasoning approaches

or composite event recognition.

.1. Action recognition

Given a specific scenario, where interactive elements are known,

imple action recognition can be performed by applying human de-

ection to video sequences, and from these generate trajectories

hich can then be used to describe the actions of the detected sub-

ects. For example, part-based techniques can be used to locate [10]

nd track [11] human body parts. These trajectories can then be mod-

lled using methods such as Hidden Markov Models (HMMs) [12].

Although these techniques are simple to implement and effective

or simple actions and scenarios, they fail to provide richer informa-

ion of the sort needed to recognise more subtle actions. Extending

his methodology to estimate the trajectory of the human pose

13,14], i.e. the trajectory of each body part, allows this. However,

urrent methods have been shown not to be robust for real scenarios

nd multiple actors [15]. It is also debatable whether such fine grain

etail is really necessary for action recognition [16]. In most practical

cenarios human detection and pose estimation can be difficult, due

o the presence of background clutter and foreground occlusions.

herefore, another approach is to treat a sequence, or part thereof,

s a single entity from which low-level spatio-temporal features can

e extracted and classified as belonging to a particular action. For

xample, Klaser et al. [17] proposed calculating the 3D Histogram

f Oriented Gradients (HoG) over a space-time volume in order to

haracterise actions. Similarly, Ke et al. generated over segmented

patio-temporal volumes and optical flow correlation and then used

distance metric to determine the subset of spatio-temporal volumes

hat best matched a parts-based event template [18]. A common

pproach is to describe a video sequence as an unordered set of

pace-time features, e.g., bag of visual words (BoV). Wang et al. pro-

osed a BoV approach to describe videos by dense trajectories [19].

neata et al. applied the Fisher vector representation, an extension

f BoV, to action classification [20]. By employing approximations

o Fisher normalisations they obtained a speed-up of an order of

agnitude while maintaining state-of-the-art action recognition

erformance. In a different approach to BoV, Sadanand and Corso

roposed the use of action banks, consisting of a bank of individual

emplate-based action detectors that provided location features

y maximum poling of volumetric correlation outputs [21]. The

esulting feature vectors generated for different actions and scales

ere then concatenated and used to train an SVM for classification.

An event scenario that has received considerable attention is the

etection of abandoned bags. Tian et al. applied the results of back-

round subtraction for detecting static and foreground regions and,

sing a novel segmentation algorithm, the former were then clas-

ified as being abandoned or removed [22]. Human detection and

racking are also employed in order to reduce false positives. In other

ork [23], Fan et al. proposed representing abandoned objects alerts

y relative attributes, e.g., staticness, foregroundness and abandon-

ent. A ranking function, learnt using low-level spatial and tempo-

al features, was used to determine the relative strengths of these

ttributes. Their system outperformed other state-of-the-art tech-

iques in terms of precision for the PETS2006 and AVSS-AB datasets.

Another scenario that has been extensively investigated is that

f crowd analysis for security and/or safety purposes. As has been

oted in [24], techniques developed for non-crowded scenarios tend

o fail in crowded scenes. As such, research has focused on address-

ng those issues, e.g., occlusion and complex collective behaviours,

nique to crowds. Idrees et al. proposed identifying prominent in-

ividuals within a crowd that are relatively easy to track, and then

sing the concept of neighbourhood motion occurrence to determine

he behaviour of individuals within the crowd [25]. Zhou et al. pre-

ented a new mixture model of dynamic pedestrian agents to learn
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collective behaviour patterns of pedestrians in crowded scenes [26].

In [27], Yi et al. developed a technique for detecting stationary fore-

ground regions by applying sparse constraints along spatial and tem-

poral dimensions to produce a 3D stationary map. This is then used

to detect four types of stationary group behaviours; gathering, relo-

cating, joining and dispersing.

All of the previous work reviewed thus far, assumed prior knowl-

edge of the actions, i.e., they were pre-defined. A more complex prob-

lem is the detection of unknown or unusual actions. Leach et al re-

ported on an unsupervised context-aware approach which takes into

account scene and social contexts to detect anomalous behaviour

[28]. Static and dynamic agents were used by Cho and Kang to model

individual and group behaviours as a BoVs [29]. Kittler et al. surveyed

the area of anomaly detection and proposed the use of context for

anomaly detection in video sequences [30].

2.2. Event reasoning

In this section we review related work on composite event recog-

nition and reasoning, which is the focus of the work reported herein.

Composite events have greater semantic meaning to end-users than

atomic events, and are high-level semantic interpretations from a set

of atomic events [5]. They are not easily identifiable using image fea-

tures, but, rather, by recognition of their composing events [31].

There are two major approaches to composite event recognition,

classification and inference. In the former, one approach is to use

actions, scenes and objects as semantic attributes for their classifi-

cation. Chen et al. [32] started with the identification of candidate

concepts for an event by firstly crawling Flickr to search for images

with tags related to keywords in the event description. WordNet was

then used to filter out noisy tags and each concept verified based on

the visual cohesiveness of the images associated with it. This was

followed by building a concept visual model using a Support Vector

Machine classifier. They found that their approach outperformed

others based on low-level visual features for a supervised event mod-

elling task. Li et al. [33] proposed decomposition of a video sequence

into short-term segments, which were modelled by a dictionary of

attribute dynamics templates using a binary dynamic system. It is

common to see probabilistic approaches applied to the recognition of

atomic events, due to their limited ability of modelling interrelations

between events in both space and time, and representing structural

information in event composition.

Inference-based approaches to composite event recognition usu-

ally involve development of an event modelling and reasoning mech-

anism. Composite events consist of a set of atomic events that occur

over a considerable time-span and that may have a partial ordering

or be concurrent. Thus, one of the main AI-based approaches to com-

posite event recognition is to infer them by reasoning about atomic

events. Works on visual event modelling and reasoning tend to follow

two major trends; declarative and probabilistic.

In declarative approaches, descriptive templates are used to

model events, such as context-free grammar [34] and Petri-Nets

[35]. Ryoo and Aggarwal [36] used context-free grammar to model

interactions of primitive actions and to recognise composite activi-

ties for multi-subject scenarios. Petri-Nets are used as a formalism

to model complex logical temporal and spatial relations in event

composition [37]. These are derived from semantic descriptions of

events in video event ontology languages such as VERL. Recently, on-

tologies, a semantic web technique, have been used to automate the

representation of composite events [38]. In [39], an event ontology

for representing complex spatio-temporal events by a composition

of simpler ones was proposed. The hierarchy includes primitive

events, single-thread composite events and multi-thread composite

events. Inferences are made in a bottom-up fashion. Declarative

approaches work satisfactorily when describing event semantics.

However, major drawbacks include an inability to handle multiple
ubjects and fragility to uncertainty in sensor measurements, which

requently exist in real applications.

In probabilistic approaches, such as HMMs [6], Dynamic Bayesian

etworks [40], and multi-agent methods [41,42], models are con-

tructed to represent events. While these demonstrate impressive

obustness to uncertainty in video analytics, they do not define se-

antically meaningful sub-events. Thus, it is not easy to describe the

omposition of an event at a semantic level. Though DBNs are more

eneral than HMMs, by considering dependencies between several

andom variables, the temporal model is still usually Markovian, as

s the case for HMMs [5]. Their models can only handle sequential

ctivities and fail to describe complex relations between sub-events.

onsequently, they often lack flexibility; hence it is difficult to apply

hem to dynamic problems in real applications [43].

Recently hybrid approaches have emerged that combine declar-

tive and probabilistic properties. These tend to combine the rich

epresentation ability of declarative approaches with the uncertainty

easoning mechanism of probabilistic approaches. Stochastic gram-

ars [44] have been used for parking lot surveillance in [45]. Tran

t al. [43] applied Markov logic networks (MLNs) to probabilistically

nfer events in video surveillance where noise and missing obser-

ations are serious problems. First-order logic production rules are

sed to represent common sense domain knowledge. A weight is as-

ociated to each rule to indicate their confidence. In [46], Kanaujia

t al. also proposed the use of MLNs for recognising complex events

ver a sensor network consisting of four cameras. In their approach,

ather than using a single Markov network (MN) for representing

ll activities, they explicitly partitioned the MN into multiple activ-

ty specific networks. They addressed the issue of uncertainty, due to

he noisy sensor data and video analytic errors, by generating predi-

ates with an associated probability. Semantic information extracted

t each level from the lowest level visual processing is propagated to

ub-event detection by each MLN engine and then to a higher-level

omplex event module to recognise complex events. To tackle the

roblem of recognising coordinated events in challenging videos with

luttered background and occlusion, Brendel et al. [47] proposed the

ormulation of probabilistic event logic (PEL) for representing tempo-

al constraints among events. Lavee et al. [31] introduced a certainty

core to Petri Nets to cope with uncertain event observations.

Though the majority of previous declarative and probabilistic ap-

roaches have been applied to single subject scenarios, a few have

ackled the more difficult problem of event recognition in multi-

ubject videos. Among them, attention has focused on recognising

vents from understanding the interactions between subjects. These

orks presume that low-level video analytics can provide sufficient

nformation for the detection of simple semantic events, which often

ppears untrue in real world applications.

The approach proposed in this paper fits in the hybrid group and

ocuses on multi-subject video applications. Our solution is different

rom previous hybrid approaches in several ways. Firstly, we adopt

he Dempster–Shafer (DS) theory of evidence [48,49] to handle un-

ertainty in event recognition, from observations, to event detection

nd inference. Imperfect information frequently occurs in real world

pplications. For example, in bus surveillance, when a person enters

he bus the camera detects a face and classifies it as female with a cer-

ainty of 75%. However, the remainder does not imply that the face is

ale with a 25% certainty, rather it is deemed to be unknown be-

ause the gender classification analysis does not have enough infor-

ation to distribute the remaining 25% to male or female. In contrast,

ith probability theory such information can only be represented as

(female) ≥ 0.75 and p(male) ≤ 0.25, which is difficult to use for rea-

oning. Furthermore, the propagation and combination mechanisms

f DS theory are superior for composing complex events from sim-

le sub-events and atomic events detected from noisy observations.

ierarchical network templates are used to model the structural se-

antics of complex event composition. Similar to [36], we use Allen’s
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Table 1

The Allen’s 13 interval temporal relations on IX = [IXa, IXb] and IY = [IYa, IYb].

Interval relation Symbol Inverse Endpoint relations

IX before IY b a IXa < IYa , IXa < IYb , IXb < IYa , IXb < IYb

IX meets IY m mi IXa < IYa , IXa < IYb , IXb = IYa, IXb < IYb

IX overlaps IY o oi IXa < IYa , IXa < IYb , IXb > IYa , IXb < IYb

IX starts IY s si IXa = IYa, IXa < IYb , IXb > IYa , IXb < IYb

IX during IY d di IXa > IYa , IXa < IYb , IXb > IYa , IXb < IYb

IX finishes IY f fi IXa > IYa , IXa < IYb , IXb > IYa , IXb = IYb

IX equal IY eq eq IXa = IYa, IXa < IYb , IXb > IYa , IXb = IYb
emporal interval relation modelling [50] to represent temporal rela-

ions between events; however, we go further and deduce the associ-

tion of events with different subjects in a multi-subject scene. One of

hallenges for event recognition in multi-subject videos is that video

nalytics often results in errors, such as missed detections, and bro-

en tracks due to occlusion. To address this, we develop constraint

ules, using the temporal relationships between events, and use con-

ict factors of Dempster’s combination rule to measure conflict in

vent combinations, enabling us to associate events to a particular

ubject. Part of the current manuscript has been published in confer-

nce proceedings [50,51].

. Preliminaries

In this section, we introduce the main concepts of reasoning un-

er uncertainty and temporal relation representation, which we have

elied upon in developing our proposed approach.

.1. Dempster–Shafer theory of evidence

The fundamental technique of evidential reasoning that this work

ses is the Dempster–Shafer theory of evidence (DS theory), which

riginated from Dempster’s work [48] and further extended by Shafer

49]. DS theory is a generalisation of traditional probability theory

nd describes the propositional space of possible situations for a

iven problem by a finite, non-empty set called the frame of discern-

ent, denoted as �. Uncertainty related to propositions of the prob-

em is represented by a mass function over the power set 2�: the set

f all subsets of �.

efinition 1. The mapping 2� → [0, 1] is a basic belief assign-

ent, also called a mass function m, satisfying: (1) m(∅) = 0; (2)

A⊆� m(A) = 1.

A mass value can be committed to a subset, A, of � with either

ingle or multiple elements. All A are called focal elements if m(A) >

, where m(A) is attributed to A and only A. Due to lack of informa-

ion this mass value cannot be further distributed amongst specific

lements in A, which makes mass functions different with probabil-

ty functions. When m(�) = 1 and m(A) = 0 for all A �= �, the mass

unction represents total ignorance, called a vacuous mass function.

hen all focal elements of a mass function are singletons, the mass

unction is reduced to a probability function.

When two frames of discernment �G and �H hold relations de-

cribed by an evidential mapping �∗, the mass function occurring on

G can be projected to �H via �∗ as follows [51]:

�H
(Hj) =

∑
i

m�G
(gi) f (gi → Hj) (1)

∗ : �G → 22�H ×[0,1] assigns an element gi ∈ �G to a set of subset–

ass pairs in the following way:

∗(gi) = ((Hi1, f (gi → Hi1)), . . . , (Him, f (gi → Him))),

here Hij ⊆ �H, i = 1, . . . , n, j = 1, . . . , m, and f: �G × �H → [0,

] satisfying (a) Hij �= ∅, j = 1, . . . , m; (b)
∑m

j=1 f (gi → Hi j) = 1; (c)
∗(�G) = ((�H, 1)).

When all the f(gi → Hij) are either 1 or 0, an evidential mapping
∗ becomes a multi-valued mapping � : �G → 2�H . A mass function

rom frame �G can be translated to frame �H as [52]:

(Hj) =
∑

�(gi)=Hj

m(gi), (2)

here gi ∈ �G, Hj ⊆ �H.

One advantage of DS theory is that it provides a mechanism

f aggregating multiple pieces of evidence from different sources.

hen mass functions m and m are obtained from two independent
1 2
ources over the same frame of discernment �, the consensus mass

unction m can be obtained by fusing them using Dempster’s rule of

ombination as follows:

(C) = (1 − k)−1
∑

A∩B=C

m1(A)m2(B), (3)

here k = ∑
A∩B=∅ m1(A)m2(B) �= 1 is considered to be a conflict fac-

or that numerically measures the degree of conflict between two

ieces of evidence. When k = 0, two pieces of evidence are com-

letely consistent. When k = 1, the two are completely inconsistent.

he combination rule is both commutative and associative.

It is common that information provided by a source may not be

ompletely credible. To reflect the reliability of the source, a discount

ate r ∈ [0, 1] is introduced in [49]. The original mass function m from

source is discounted:

r(A) =
{
(1 − r)m(A), A ⊂ �

r + (1 − r)m(�), A = �.
(4)

For decision making, Smets [53] proposed the pignistic transfor-

ation of mass functions.

efinition 2. Assume that there exists mass function m(A), A ⊆ �.

or every element g of �, the pignistic probability, denoted BetP, can

e calculated:

etP(g) =
∑
g∈A

m(A)

|A| , (5)

here |A| is the number of elements of � in A.

The pignistic probability is the DS counterpart of the subjective

robability that would quantify the agent’s beliefs according to the

ayesians [54].

.2. Temporal relations

Allen proposed a method for modelling temporal relations in

50,55] that enables the representation of multiple subjects’ actions

ver a period of time extending from the present to the future. In

llen’s model, temporal information is represented by intervals than

oints. In this way, real-world events taking place over a time inter-

al can be handled within the same modelling framework as instan-

aneous events, by treating the latter as occurring over a time interval

ith the same start and end time. The time of an event can be relative

o a reference point rather than being absolute. To describe temporal

orrelations between two event instances that take place within two

ime intervals respectively, Allen defined 13 relations as depicted in

able 1.

Allen’s temporal model will allow us to enforce constraints in our

vent inference for both continuous and discrete events.

. Methodology

This section describes our system for uncertain atomic event man-

gement from multiple sensors and composite event inference. The

ystem is proposed in the context of video-surveillance for public

ransport platforms.
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Fig. 1. System of intelligent event management for video surveillance.
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4.1. System outline

The main purpose of video surveillance is to provide situational

awareness of a specific place over a period of time. In this context,

therefore, an event is an observation (or collection of observations)

that has semantic meaning. An event can be simple or complex de-

pending on the level of relevant semantic information provided. To

distinguish these two different concepts, we call the former an atomic

event and the latter a composite event. An atomic event can be directly

detected using video analytics and/or sensors. Atomic events can then

be aggregated to generate composite events which are more seman-

tically meaningful.

Our system is composed of two main stages, shown in Fig. 1, and

integrates computer vision techniques with knowledge representa-

tion and reasoning mechanisms. In the first stage, human subjects

are detected and video analytics are then generated in order to pro-

vide low-level semantic components such as “a female face has been

detected” and “a person has moved from the door towards the gang-

way”. The second stage is designed to recognise significant events

based on a semantic hierarchy obtained from domain knowledge. At
Fig. 2. Event inferenc
his level, the events of interest are recognised based on the informa-

ion derived at the lower-level with varying degrees of belief.

First stage modules have been previously developed and pre-

ented [56]. In this paper, we concentrate on investigating event in-

erence processing at the upper level of the proposed system.

.2. Event inference procedure

Knowledge is the main drive behind the proposed event infer-

nce approach. Our knowledge base contains frameworks for repre-

enting uncertain events, spatio-temporal relations and event net-

ork models, which facilitate atomic event detection, event associ-

tion and composite event recognition, Fig. 2. Event inference starts

y deriving atomic events from the outputs of the computer vision

nalysis modules. Once atomic events are detected, the event associ-

tion aims to make the correct association of atomic events to specific

ubjects. Composite event recognition then is performed on the de-

ected atomic events associated to a single subject. The final outputs

f the process are the subjects with the composite events they have

ndertaken. In the following subsections we will describe the pro-

osed methods for the event inference processing.

.3. Event representation

Uncertainty is intrinsic to event recognition. Video sensors can-

ot provide complete information of an evolving scenario over time.

n other words, the video analysis modules have certain limitations

ith respect to providing correct visual information about a scene.

uring information processing, there is uncertainty in representing

he relations between two events of interest. Nevertheless, an intelli-

ent event management system should be able to represent and infer

seful information in the presence of uncertainty.

We first define a formal representation of atomic events.

efinition 3. In our event inference system, an atomic event E is rep-

esented by a tuple:

= (eType, oID, date, time, location, source, reliaR, vFrame, m),

here eType is the descriptor of an event, e.g. “Female Boards the

us”; oID is the identity number, assigned by a video analytics mod-

le or sensor, for the detected event, e.g. “track id 12”; date is the date

f the observed event; time is the time-stamp for the observed event;

ocation presents location information, e.g. “at seat 3” and “a trajec-

ory”; source denotes the source from which the event was detected;
e components.



X. Hong et al. / Computer Vision and Image Understanding 144 (2016) 276–297 281

r

o

v

e

f

t

t

D

n

w

h

t

c

c

o

F

e

e

c

s

e

a

t

c

4

t

p

[

D

u

M

M

l

l

e

t

a

w

a

w

w

Fig. 3. A simple example of the general layout of evidential event networks: s1–s5

represent sources that provide evidence on atomic events; AE1–AE4 represent event

nodes at atomic level; CE1 and CE2 are the event nodes at composite level.
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eliaR is the degree of reliability of the source; vFrame is the frame

f discernment that holds all its values; and m is a mass function on

Frame.

As previously mentioned, in a multi-subject environment, each

vent, be it atomic or composite, belongs to only one subject. There-

ore, to provide a generic framework for the multi-subject scenario

hat encompasses both atomic and composite events, we introduce

he concept of an event node which is defined as follows:

efinition 4. An event node n is a tuple:

= (eType, pID, level, oID, date, time, location,

source, reliaR, vFrame, m),

here eType, oID, date, time, location, source, reliaR, vFrame and m

ave the same meaning as those in an atomic event; pID represents

he identity number of the subject who is responsible for the oc-

urrence of the event; level indicates whether the event is atomic or

omposite.

From the above definition, it can be seen that there are two sorts

f event nodes, distinguished by level, either be atomic or composite.

or the first type, an event node is an atomic event, except that the

vent node has an additional element pID. For the second type, an

vent node represents an event deduced from atomic events and/or

omposite events. pID is kept for the same subject through the full

equence and associated to all the event nodes that the subject gen-

rates. Therefore, a composite event node has the same pID as the

tomic/composite events that it consists of. Its date and time cover

he period from the first event starts until the last event ends. For a

omposite event node, oID, location, source and reliaR are omitted.

.4. Composite event modelling

To represent the hierarchical structure of the relationships be-

ween composite and atomic events, and the video analytic out-

uts, we propose an evidential network model for event composition

57,58].

efinition 5. An evidential event network (EEN) is a graph of an

pside-down tree EEN = (ND, EG, MM), where:

• ND = {n1, . . . , nN} is a set of event nodes;

• EG is a set of directional lines over ND, each of which represents

the connection between the nodes at two consecutive layers;

• MM is a set of multi-valued mappings �, each of which describes

compatibility relations between the node at the layer where a line

starts and the node at the layer where the connection line ends.

Fig. 3 shows the layout of an example EEN, EEN = (ND, EG,

M) where

ND = {AE1, AE2, AE3, AE4, CE1, CE2},
EG = {AE1 −→ CE1, AE2 −→ CE1, AE3 −→ CE2, AE4 −→ CE2,

CE1 −→ CE2},
M = {� : AE1 → CE1, � : AE2 → CE1, � : AE3 → CE2, � : AE4

→ CE2, � : CE1 → CE2}.
On an EEN the nodes are categorised into three levels. The top

evel contains a root node, and at the bottom level we have many

eaf nodes. Between these two levels, the middle level consists of sev-

ral sub-layers. Over the three levels, there exist two types of nodes

hat are characterised by the level at which a node sits. A leaf node

t the bottom level can be an atomic event, such as AE1 in Fig. 3,

hich is detected by a sensor, e.g. a seat pressure sensor, or a video

nalytics module, e.g. face detection and a tracker. A leaf node is al-

ays connected to the start of an edge. At the other end of the edge,

e have nodes from the middle level, such as CE1 in Fig. 3. Middle
evel nodes are composite events, derived from the connected atomic

vent nodes. Composite event nodes at this sub-level may be further

onnected together in order to form composite events at higher sub-

ayers. On the topmost level of the EEN tree, there is a composite event

ode that is formed by atomic and/or composite event nodes below,

ontaining the events of interest to the end users.

The hierarchical structure of an EEN reveals semantic relations be-

ween events, which are the foundation of evidential event composi-

ion and inference developed below. This paradigm also helps in pre-

enting redundancy by reusing the recognised atomic and composite

vents across EENs.

Uncertainty associated with each node is defined as a mass func-

ion m. For an atomic event, denoted as a leaf node of the EEN, the

ass value can be estimated from the accuracy of the computer vi-

ion detection module which is its source. For a composite event, the

ass distribution can be derived through a composite event inference

rocess as detailed in the following sub-section.

.5. Composite event inference

At the bottom level of an EEN, the atomic events as leaf nodes are

etected from outputs of sensors or video analysis modules. Infor-

ation on detected atomic event nodes can be used to deduce in-

ormation on higher-level nodes of composite events by propagating

nd aggregating evidence of atomic events through the network us-

ng evidential reasoning operations.

Composite event inference starts from having detected atomic

vents from outputs of the computer vision analysis modules and

oving up within an EEN. The final output of the process is the mass

unction on the composite event node in concern. Algorithm 1 details

he inference process.

.6. Event–subject association

In multi-subject scenarios, it is usual that several subjects may be

resent at the same time, resulting in highly ambiguous video ana-

ytic output. For example, it is quite common that a single individ-

al is assigned several IDs in complex scenes due to split/erroneous

racks produced by the tracking system. Intuitively arranging all de-

ected atomic events with the same object ID assigned by video ana-

ytics into a composite event network EEN and directly making infer-

nce on the composite event node at EEN’s root inevitably produces

rrors. To solve this problem, we propose an atomic event associa-

ion method by integrating the use of temporal relation modelling in

vent composition and evidential reasoning in event inference.
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Algorithm 1 Evidential event inference.

Input: an event network EEN, mass functions of the detected atomic

events

Output: mass function cast on composite event node at the top of the

EEN

1: start from composite event nodes connected by only atomic event

nodes at the start of a connection (so called parent and child

nodes);

2: while not reach the topmost node of the EEN do

3: translate mass functions of all child nodes into their parent

node using Eq. (2);

4: combine the translated mass functions using Eq. (3);

5: end while

6: output the final mass function on the topmost event node.
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The event association problem can be seen as the association of

all related atomic events with an individual under observation. The

problem is two-fold: (i) partitioning a set of atomic events into dif-

ferent groups, and (ii) selecting the most probable set of partitions

among many possible sets.

Definition 6. For a set of atomic events � = {E1, . . . , E|�|}, a parti-

tioning S = {S1, . . . , S|S|}, satisfies:

(1) S1 ∪ · · · ∪ S|S| = � (2) Si �= ∅ (3) Si ∩ S j = ∅
where i, j = 1, . . . , |S| and i �= j.

It is possible that we do not have sufficient information to jus-

tify if an atomic event belongs to one subject or another. This results

in many possible choices to group those atomic events, i.e. we have

many ways for partitioning. In the cases where several possible sets

of partitions exist, a partition set may be considered more satisfying

than others and is therefore selected as the most optimum partition-

ing of the atomic events.

4.6.1. Event partitioning

Partitioning atomic events aims to identify subjects who are re-

sponsible for the occurrences of the atomic events, in order to in-

fer the composite events undertaken by the subjects. We investigate

the intrinsic properties of ID assignments, as well as characteristics of

atomic events, in order to determine a possible partitioning. For this

purpose, we introduce two functions � and � .

Let PID = {pID1, . . . , pIDP} be a set of subject IDs, � = {E1, . . . ,

E|�|} (|�| ≥ P) be a set of atomic events, and S = {S1, . . . , S|S|} be a par-

titioning of �. For �, we have � = {e1, ¬e1, . . . , e|�|, ¬e|�|}, a set of

possible states for all the atomic events related to a subject, whereas

ei means the occurrence of event Ei concerns the subject, and ¬ei does

not.

Definition 7. A function � that assigns a partition Si to a subject ID

pIDi is defined as:

�(pIDi) = Si (6)

where Si ⊆ S, i = 1, . . . , |S|.
A mapping function � represents the one-to-one mapping rela-

tion between a subject ID and a partition of atomic events.

Definition 8. A function � that maps each subject ID pIDi onto pos-

sible states of the atomic events is defined as follows:

�(pIDi) = ωi (7)

where ωi ⊂� and � ∃E j ∈ �, s.t.{e j, ¬e j} ⊆ ωi.

A mapping function � represents the relation between a subject

ID and the occurrence/non-occurrence states of atomic events.
There is a relation between an event Ej and the sate set {ej, ¬ej}

ased on the two mapping function � and � .

Ej ∈ Si ⇔ e j ∈ ωi

E j /∈ Si ⇔ ¬e j ∈ ωi

f or any i = 1, . . . , P, j = 1, . . . , |�|.

From Definitions 7 and 8, we can see that event partitioning is ac-

ually about deciding the state of each atomic event in relation to a

ubject ID. For a subject pIDi, we can have a set of states of the de-

ected atomic events, where the occurrence/non-occurrence state of

n atomic event indicates that pIDi is responsible for the happening of

he atomic event. The restrictions of ωi ⊂� and {ej, ¬ej} �⊆ ωi for any

∈ [1, |�|] means that, for a given subject ID, either the occurrence or

on-occurrence state of an atomic event holds.

To deduce the possible state of an atomic event for a subject,

e consider the occurrence constraints on atomic events concern-

ng the subject. For a subject, the occurrence of an atomic event can

e affected by and/or has impacts on the occurrence of other atomic

vents. For example, “I am reading a book at home at 9 pm” implies

hat “I cannot be playing basketball at a sports centre at 9 pm on the

ame day”. Identifying the state of an atomic event from the already

nown states of another atomic events is called event implication. This

s managed by using constraint rules, which determine the possible

tate of an atomic event with regard to other atomic events in con-

ern.

efinition 9. A constraint rule R is expressed as a tuple

= (Statement, Premise,Condition, Result)

here:

Statement is the description of the constraint rule that the

premise set should obey.

Premise is a set of eTypes of which atomic events are prerequi-

sites.

Condition is a conjunction of a set of conditions on the states of

some atomic events currently hold.

Result is a set of the states of atomic events in relation to a subject,

obtained by applying the constraint rule.

In this work, we consider three types of constraints: temporal,

patial and common knowledge. Since atomic events happen over a

eriod of time, the temporal relation between atomic events usually

mplies their states in relation to each other. For example, a man can-

ot play basketball and watch TV at the same time. Similar to tempo-

al constraints, spatial relations between atomic events usually im-

ly their states. For example, a man cannot be in two separate places

t the same time. A common knowledge constraint is derived from

nowledge about the domain context. Consider a man taking a bus,

e cannot exit the bus without boarding the bus first. A constraint

ule can include one, two or all three types of constraints.

Condition in the form of formula presents temporal and spatial

elations of existing atomic events. In particular Allen’s temporal re-

ation models are used to describe temporal relations between two

vent instances. We abstract the Allen’s relations in Table 1, into a

mall set, {b, a, m, mi, ol, eq}, as shown in Table 2.

Rules are pre-requisite for finding states of atomic events. Rule R

s used to search for events that violate or obey constraints of the

hree types. Therefore, the state of an atomic event can be identified

n relation to a subject. Upon the states of all atomic events have been

etermined for each subject, the partitions of atomic events can then

e obtained.

To show what an event constraint rule looks like, consider two ex-

mples from the bus journey scenario. Assume that the atomic events

re derived from the video data. From common sense existentialism,

e can have the following rules.
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Table 2

Mapping of the abstract and original Allen’s

interval temporal relations.

Abstract relation Allen’s relation(s)

b b

a a

m m

mi mi

ol o, oi, s, si, f, fi, d, di
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xample 1. A rule, ensuring that one person cannot undertake two

ifferent events at a time that are detected in a bus scenario, can be

efined as follows:

Rule R1

Statement: a person cannot undertake two events at a time;

Premise: {PB, PM, PSIT, PSTD, PE}1 is a set of event types;

Condition: Ei.Time eq Ej.Time∧ei ∈ �(pIDp);

Result: ¬ej ∈ �(pIDp).

xample 2. A rule, describing that a person cannot exit a bus before

aving boarded the bus, can be defined as follows:

Rule R2

Statement: a person can only exit the bus after having boarded

the bus;

Premise = {PB, PE} is a set of event types;

Condition: Ei.eType = PB ∧ E j.eType = PE ∧ Ei.Time a E j.Time

∧ ei ∈ �(pIDp);

Result: ¬ej ∈ �(pIDp).

Based on the relevance of the events detected by the video ana-

ytics and the non-relevance of the events obtained by the implica-

ion rule, we attempt to find the optimum partitioning for the set of

tomic events. A partitioning of the set of atomic events is to identify

he persons under observation, each partition Si ⊂ S should satisfy the

ollowing principle:

roposition 1. Suppose PID = {pID1, . . . , pIDP} is a set of possible per-

on IDs for a set of atomic events � = {E1, . . . , E|�|} (|�| > P), � =
e1, ¬e1, . . . , e|�|, ¬e|�|} is a set of possible states for all atomic events

n �, and � is a mapping function that indicates the relation between

ubject ID and the states of the given atomic events, then we have:

(i) Uniqueness: �ei ∈ �, s.t.ei ∈ �(pIDu) ∩ �(pIDv)),

u, v = 1, . . . , P, u �= v;
(ii) Completeness: �(pID1) ∪ . . . ∪ �(pIDP) = �.

roof. (i) Uniqueness: Assume that ∃ek ∈ �, s.t. ek ∈ �(pIDu) ∩
(pIDv), u, v = 1, . . . P, u �= v, by Definition 8, we have Ek ∈ Su and

k ∈ Sv. Thus, Su ∪ Sv �= ∅. It violates the definition of partition in

efinition 6. Thus, item (i) holds.

(ii) Completeness: We first prove that (�(pID1) ∪ · · · ∪ �

pIDP)) ⊂ �.

By Definition 8, we have �(pIDi) ⊂� (i = 1, . . . , P). Thus, it holds.

Then, we prove that � ⊂ (�(pID1) ∪ · · · ∪ �(pIDP)).

Let S1 ∪ · · · ∪ SP be a possible partitioning of � that indicates the

et of possible person IDs PID. By Definition 6, for any Ei ∈ �, we have

i ∈ ( S1 ∪ · · · ∪ S|S|). Moreover, for any state x, x ∈ �, we have ∃Ek ∈
, such that, x ∈ {ek,¬ek}, where Ek ∈ ( S1 ∪ · · · ∪ S|S|). Without losing

enerality, let Ek ∈ Sl, Sl ∈ {S1, . . . , SP}. Then, by Definition 6, for any Sh

h �= l), we have Sh ∪ Sl = ∅ and Ek �∈ Sh. Thus, by Definition 8, we have

∈ �(pID ) and ¬e ∈ �(pID ). Clearly, we have x ∈ �(pID ) ∪�(pID )
k l k h l h

1 PB—person boarding, PM—person moving, PSIT—person sitting, PSTD—person

tanding, PE—person exiting. w
or any h �= l. So, for any occurrence state x, if x ∈ �, then x ∈
�(pID1) ∪ · · · ∪ �(pIDP)). Thus, item (ii) holds. �

The completeness states that any atomic event shall be included

n a partition. The uniqueness means that an atomic event should be

n one and only one partition.

Following Proposition 1, we obtain all the possible partitions for a

et of atomic events, indicating the occurrence/non-occurrence states

f atomic events that each subject ID holds. The next step is to deter-

ine which partition minimises the inferred conflict.

.6.2. Minimum conflict optimisation

After obtaining a possible set of partitions for all atomic events, we

an assign each partition to a possible person ID, i.e. we have a one-

o-one mapping from S = {St
1
, . . . , St

P
} to PIDt = {pIDt

1
, . . . , pIDt

P
}.2

herefore, we can obtain a set of event nodes for each possible person

D defined in Definition 4. Afterwards, we apply EENs introduced in

ection 4.4 to infer all the composite events related to each possible

erson ID. However, if we have more than one possible partitioning of

he atomic events, how can we choose the best from many possibili-

ies? In this subsection, we will solve this problem using the conflict

actor in the Dempster’s rule of combination.

After having identified all the atomic events related to a specific

ubject, we feed the atomic events into the EENs and derive the com-

osite events. This is done by aggregating atomic events through EENs

sing the Dempster’s Rule of Combination as proposed in Section 4.5.

hen combining atomic event evidence, the conflict factor k in

q. (3) is a measure of the amount of conflict between the two pieces

f evidence as described below.

(1) k = 0 totally agree;
(2) 0 < k < 1 agree to some extent;
(3) k = 1 totally disagree.

We use k to select the most probable partition of object IDs. Since

ach composite event for a possible person ID accompanies a degree

f conflict, we need to consider the aggregation effect during the in-

erence process for each possible partitioning.

efinition 10. Let St
1

∪ · · · ∪ St
P

be a possible partitioning of the set of

tomic events � = {E1, . . . , E|�|} and P be the total number of per-

ons, where for each St
p, we have St

p = {Eu, . . . , Ev}, each element of

hich relates to the pth person. We therefore calculate the aggre-

ation effect in terms of a conflict factor when inferring composite

vents for each possible person, denoted as k̂t
p:

ˆt
p =

∑L
i=1 kt

i

L
, (8)

here L is the total number of the composite events inferred for the

th person. kt
i

is a conflict factor obtained from the inference of the

th composite event, as k in Eq. (3).

For a conflict factor, the smaller its value is, the more confident

upport evidence has. From this we can have the definition the most

robable partitioning.

efinition 11. The dth possible partitioning is the most probable one

or the set of object IDs if it satisfies d = arg mint (kt), kt = ∑P
p=1 k̂t

p.

After finding the most possible partition for the set of subject IDs,

e retain a set of person IDs based on Definition 7 and the event

odes that have been determined to them by using Definition 4.

Algorithm 2 summarises the event association process.
2 Since there may be more than one possible partitioning for a set of atomic events,

e use the superscript t to distinguish them.
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Algorithm 2 Event association.

Input: � = {E1, . . . , E|�|}, a set of atomic events;

P the number of persons;

EEN the evidential event networks;

R constraint rules;

Output: S = {S1, . . . , SP}, a set of atomic event partitions

Begin

1: � = {e1, ¬e1, . . . , e|�|,¬e|�|};

2: initialise ω1 = · · · = ωP = �;

3: i = 1;

4: while not reach the end of � do

5: Search ω1, . . . , ωP to find all ω j that hold events satisfying the

constraints on Ei;

6: if possible then

7: Delete ei or ¬ei accordingly from ω j;

8: else

9: Create the options;

10: end if

11: i + +;

12: end while

13: Find all the combinations of elements in ωt
j

by proposition 1;

14: Calculate k for each combination;

15: Select ωt holding the smallest k as the association;

16: Obtain the partitioning St from ωt ;

17: Output the partitioning St .

End

Table 3

Properties of the eight test sequences.

Sequence No. of passengers No. of Sequence No. of passengers No. of

frames frames

1 1 male and 1 female 2556 5 1 male and 1 female 1902

2 1 male and 1 female 1733 6 2 male and 1 female 5202

3 1 male and 1 female 2667 7 2 male and 2 female 5522

4 1 male and 1 female 2662 8 3 male and 3 female 10,322
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5. Experiments

In this section we describe an experiment in which the ability of

our system to recognise the following four composite events is mea-

sured:

• MBTS: Male boards, moves to a seat and sits down

• FBTS: Female boards, moves to a seat and sits down

• PCS: Person changes seat

• PEX: Person exits
 d

Fig. 4. Experimental environment: (a) route with six designated stops (the red curve highlig

(numbered seats are used in experiments). (For interpretation of the references to colour in t
We compare the performance of our system to a simple rules-

ased approach with no reasoning and an adapted Bayesian reason-

ng system.

.1. Environmental set-up

We hired a standard single-deck bus from Translink (Northern Ire-

and), which travelled a defined journey in the Northern Ireland Sci-

nce Park. Fig. 4a is the aerial view of the local neighbourhood with

red curve outlining the route and six black circles marking six bus

tops. The researchers from the ECIT centre were recruited as pas-

engers. The bus saloon and the seat plan are shown in Fig. 4b and c,

espectively. In the experiments 20 seats in the first five rows of the

us, numbered C1–C20, were deployed as passenger seats.

Two cameras were used on the bus: a Panasonic camera WV-

P244 (camera A) is used to monitor the front door of the bus, and

n AXIS M31-R camera (camera B) is used to monitor the saloon area.

amera A is carefully positioned so that it can capture a passenger’s

ace as s/he boards the bus. Camera B looking at the saloon can record

he movements of passengers.

.2. Dataset

We captured eight sequences of varying complexity, including dif-

erent numbers of passengers on board, various passenger behaviour

atterns, and from simple to difficult scene captures. The properties

f the eight sequences are summarised in Table 3. Each sequence is

escribed in detail in Appendix C.
hts the route, the black circles mark the six bus stops); (b) bus saloon; (c) seat layout

his figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Gender classification.

Fig. 6. Outputs of the tracker: (a) image with tracker bounding boxes over the person in the scene; (b) the corresponding track plots in real-world coordinates.
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Fig. 7. Sitting and standing detection.
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.3. Video processes

For detecting passengers boarding and gender recognition, we

mploy a camera pointing at the door of the bus. The well-known

ones and Viola face detector is then applied to the acquired video.

he output of this detection is then input to a face-based gender clas-

ifier. This, firstly, projects the face image onto a subspace derived

sing a principal component analysis of a training data set of face im-

ges. The resulting feature is input to a support vector machine that

as been trained on approximately 2000 male and female face im-

ges. The resulting output is the credibility of the face as being either

emale or male (Fig. 5a and b).

For monitoring movements of passengers, we employ a 3D tracker

hat consists of three stages. Firstly, we apply the Poselet detector to

etect instances of humans in the video on a frame-by-frame basis.

hese detections are then linked together to form tracks using a hier-

rchical linear assignment procedure. In the first level, detections are

inked on a frame-to-frame basis by linear assignment. The resulting

racklets are then subsequently linked into tracks by a second level of

inear assignment (see [56] for further details). Fig. 6a shows an ex-

mple of a male and a female being tracked and their corresponding

racks projected into real-world space, Fig. 6b.

For sitting and standing detection, the height from the top of the

ead of an individual to the ground plane is calculated and compared

o a threshold of 1.4 m. This threshold was empirically determined

hrough trial and error, and is around the lower end of the normal

uman height distribution. The height can be estimated given the

cene calibration and a standard reference height in the scene. When

passenger boards the bus, the passenger is inferred to be stand-

ng. For subsequent frames, if the height falls below the threshold at

ny point, we infer that the passenger has sat down. While sitting,

f the height increases beyond the threshold value, we infer that the

assenger has just stood up. Fig. 7 shows an example of sitting and

tanding being detected.
.4. Evaluation

To evaluate the performance of our system in terms of the asso-

iation of events with personal IDs and composite event recognition,

e use two measurements. The first of these is the accuracy of the

vent association, A, which is given by

= CAE

NAE

,

here CAE is the number of atomic events in a sequence correctly

ssociated with a personal ID, and NAE is the total number of atomic

vents in the sequence. The second is the accuracy of the composite

vent recognition, R, given by

= 1

NCE

NCE∑
i=1

Ii
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Fig. 8. Manual ground truth for sequence 5.

Table 4

Association results for the evidential reasoning system.

Sequence Number of atomic events A (%)

Ground truth Evidentialreasoning system

1 12 (2 PB, 4 PM, 2 PSIT, 2 PSTD, 2 PE) 12 (2 PB, 4 PM, 2 PSIT, 2 PSTD, 2 PE) 100

2 15 (2 PB, 5 PM, 3 PSIT, 3 PSTD, 2 PE) 13 (2 PB, 5 PM, 2 PSIT, 2 PSTD, 2 PE) 87

3 15 (2 PB, 5 PM, 3 PSIT, 3 PSTD, 2 PE) 15 (2 PB, 5 PM, 3 PSIT, 3 PSTD, 2 PE) 100

4 6 (1 PB, 2 PM, 1 PSIT, 1 PSTD, 1 PE) 6 (1 PB, 2 PM, 1 PSIT, 1 PSTD, 1 PE) 100

5 18 (2 PB, 6 PM, 4 PSIT, 4 PSTD, 2 PE) 16 (2 PB, 6 PM, 3 PSIT, 3 PSTD, 2 PE) 89

6 21 (3 PB, 7 PM, 4 PSIT, 4 PSTD, 3 PE) 21 (3 PB, 7 PM, 4 PSIT, 4 PSTD, 3 PE) 100

7 27 (4 PB, 9 PM, 5 PSIT, 5 PSTD, 4 PE) 22 (4 PB, 6 PM, 4 PSIT, 4 PSTD, 4 PE) 81

8 39 (6 PB, 13 PM, 7 PSIT, 7 PSTD, 6 PE) 24 (6 PB, 8 PM, 5 PSIT, 4 PSTD, 1 PE) 62
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where Ii equals one if the ith recognised composite event in the se-

quence matches the ground truth, and zero if not, and NCE is the total

number of composite events in the sequence.

For the purposes of this each sequence is manually ground truthed

both in terms of its atomic events and its composite events. Fig. 8

shows the manual ground truth for sequence 5.

From the table we can see that both male and female have nine

atomic events each consisting of the sequence: PB, PM, PSIT, PSTD,

PM, PSIT, PSTD, PM and PE (PB = “male or female boards bus”, PM =
“person moves from X to Y”, PSIT = “person sits”, PSTD = “person stands”

and PE = “person exits”). Similarly, these correspond to three com-

posite events: MBTS(FBTS), PCS and PEX. Each sequence was then in-

put to our system and the corresponding atomic events, their asso-

ciated person IDs and the recognised composite events output were

recorded. Comparison of these against the ground truth enabled us to

calculate both A and R for each sequence.

5.5. Results and analysis

Table 4 shows the variation in A with sequence numbers. Clearly,

the event association works very well for almost all the sequences

apart from 8, almost above 90% on A for each sequence. The last col-

umn in Table 5 shows the R values obtained for each sequence with

our evidential reasoning system. The event recognition achieves 100%

of R for four sequences, 90% for one sequence, 83% for one sequence,

and 80% for one sequence, lower than 50% for one sequence.
Analysis reveals that for sequences 2, 5 and 7 the R values were

ess than 100%. For sequences 2 and 5 there lacked sitting detections

nd tracking. This resulted in the PM and PSIT atomic events being

ncorrect and undetected, which in turn resulted in the composite

vent P(M/F)BTS being incorrect. Sequence 2 contains five composite

vents, the resulting R value was 80%. Sequence 5 contains six com-

osite events, the resulting R value was 83%. For sequence 7 there

ere two atomic events being missed in association to a passenger

esulting a composite event, PCS, being undetected. Overall, the se-

uence contains ten composite events which explains the value of

0% for R.

Sequence 8 performed most poorly with a value of R = 46%. Inter-

stingly, this was also the sequence for which A was lowest at 62%.

he ground truth and the system output for this sequence are shown

n the tables in Fig. 9.

Here we can see from the ground truth table that there are in to-

al 13 composite events: FBTS11 and PEX for person P1; MBTS19 and

EX for person 2; FBTS9 and PEX for person P3; MBTS18, PCS17, and

EX for person P4; FBTS2 and PEX for person P5; MBTS19 and PEX for

erson P6. However, only six of the events are correctly recognised,

.e. R = 6/13 = 46%. In the case of the composite event PEX, only for

erson P6, it is correctly recognised; for others, the composite event

as mistakenly mixed up, that is the PEX of P1 was mistakenly as-

igned to P4, P2 to P1, P3 to P5, P4 to P3, and P5 to P2. Also for person

2 the composite event PCS6 was incorrectly recognised, namely the

ale was mistakenly recognised as sitting in seat 6 when in fact he
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Table 5

Recognition results for rule-based approach, Bayesian approach, and our evidential reasoning approach.

Sequence Number of composite events—R

Ground truth Rule-based Bayesian reasoning Evidential reasoning

1 4 3–75% 4–100% 4–100%

2 PBTS, 2 PEX 1 PBTS, 2 PEX 2 PBTS, 2 PEX 2 PBTS, 2 PEX

2 5 4–80% 2–40% 4–80%

2 PBTS, 1 PCS, 2 PEX 1 PBTS, 1 PCS, 2 PEX 1 PBTS, 1 PCS, 0 PEX 1 PBTS, 1 PCS, 2 PEX

3 5 2–40% 5–100% 5–100%

2 PBTS, 1 PCS, 2 PEX 0 PBTS, 0 PCS, 2 PEX 2 PBTS, 1 PCS, 2 PEX 2 PBTS, 1 PCS, 2 PEX

4 2 0–0% 2–100% 2–100%

1 PBTS, 1 PEX 0 PBTS, 0 PEX 1 PBTS, 1 PEX 1 PBTS, 1 PEX

5 6 5–83% 4–67% 5–83%

2 PBTS, 2 PCS, 2 PEX 1 PBTS, 2 PCS, 2 PEX 0 PBTS, 2 PCS, 2 PEX 1 PBTS, 2 PCS, 2 PEX

6 7 3–43% 7–100% 7–100%

3 PBTS, 1 PCS, 3 PEX 0 PBTS, 1 PCS, 2 PEX 3 PBTS, 1 PCS, 3 PEX 3 PBTS, 1 PCS, 3 PEX

7 10 1–10% 7–70% 9–90%

4 PBTS, 2 PCS, 4 PEX 0 PBTS, 0 PCS, 1 PEX 3 PBTS, 0 PCS, 4 PEX 4 PBTS, 1 PCS, 4 PE

8 13 2–15% 5–38% 6–46%

6 PBTS, 1 PCS, 6 PEX 0 PBTS, 0 PCS, 2 PEX 4 PBTS, 0 PCS, 1 PEX 5 PBTS, 0 PCS, 1 PEX

Fig. 9. Ground truth and system output for sequence 8.

h

o

c

a

t

c

a

l

s

t

ω

ω

ω

68 70 71 73 74 81 82
ad already exited the bus. The most serious mistakes were made

n person P4. For the person the composite event MBTS18 was in-

orrectly recognised, the composite event PCS17 was not detected in

ddition to mistakenly assigned composite event PEX. To understand

his, Table 6 shows a segment of 18 atomic events that were detected.

From Table 6 we can see that event E127 is of type PM, in fact

orresponding to the male moving up the gangway towards seat 18,

nd the female moving back to the exit and exiting the bus. On the

eft side of Fig. 10 are two images taken from sequence 8 which are a

napshot of the atomic event. Also shown in right side of Fig. 10, are

he corresponding track on ground floor, for the PM event E127.

The partitioning at this point is as follows:

1 = {e1,¬e2, ¬e3, e4,¬e5,¬e6,¬e7, e8, e9,¬e10,¬e11, e12,

¬e13, e14, . . . , e16,¬e17, e18,¬e19, . . . , ¬e22, e23,¬e24,
¬e25,e26,e27,¬e28,¬e29,e30, . . . , e35,¬e36,e37,¬e38,e39,e40,

¬e41, . . . , ¬e43, e44,¬e45, e46,¬e47, e48, e49,¬e50, . . . ,¬e76,

e77, e78,¬e79, . . . ,¬e86, e87,¬e88, e89,¬e90, e91,

¬e92, e93, e94, e95,¬e96, e97,

¬e98,¬e99, e100,¬e101, . . . ,

¬e105, e106,¬e107, e108,¬e109, e110,¬e111, . . . ,¬e113,

e114, . . . , e117,¬e118, e119, ,¬e120, . . . ,¬e123, e124, e125, e126}
2 = {¬e1, . . . ,¬e27, e28, e29,¬e30, . . . ,¬e46, e47,

¬e48, . . . ,¬e51, e52, e53,¬e54, . . . ,¬e67,

e68,¬e69, . . . ,¬e74, e75,¬e76, . . . ,¬e126}
3 = {¬e1, . . . ,¬e53, e54, e55, e56,¬e57, e58,¬e59, e60, . . . , e67,

¬e , . . . ,¬e , e , . . . , e ,¬e , . . . ,¬e , e ,
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Table 6

Eighteen atomic events detected for sequence 8.

Event idx Event ID Event title Start_frame End_frame StartX StartY EndX EndY

E121 −67 gender 3835 3835 0 0 0 0

E122 786 movement id 786 3839 3857 −70 145 −71 144

E123 796 movement id 796 3879 3900 −69 138 −68 138

E124 797 movement id 797 3880 3892 73 130 80 131

E125 808 movement id 808 3911 3919 72 110 70 108

E126 826 movement id 826 3954 3964 73 117 74 116

E127 829 movement id 829 3962 4154 26 −205 27 −195

...

E139 −72 Seat Sensor ON_10 4123 4123 0 0 0 0

Fig. 10. Sequence 8—top-left: image of male moving close to seat 18; bottom-left: image of female moving away from seat 11, towards the bus door; right: trajectory corresponding

to PM event E127 detected by a tracker—TRACK 829.
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¬e83,¬e84, e85, e86,¬e87, . . . ,¬e95, e96,¬e97, . . . ,

¬e100, e101, e102,¬e103, e104, e105,¬e106, . . . ,

¬e108, e109, ¬e110, e111, . . . , e113,¬e114, . . . ,¬e119, e120,

¬e121, e122, e123, ¬e124, . . . ,¬e126}
ω4 = {¬e1, . . . ,¬e120, e121,¬e122, . . . , ¬e126}
When E127 is detected the system has ruled out partitions ω2, ω3

it should be assigned. As its starting half satisfies partition ω4, the

ending half satisfies partition ω1, the system fails to assign it to any

of them. Subsequently at E139 the system incorrectly assigns to ω4.

Continue on, the system fails to correctly assign remaining events to

partitions ω1 and ω4. Another similar mixed tracker at E214 (Fig. 11),

a type of PM, corresponding to person P2 moving to the exit and per-

son P5 staying on seat 2, results more mistakes in event association

and consequently incorrectly recognised composite events. For this

type of mixed-up atomic events, the system cannot reason to correct

assignments. However, when more atomic events are detected, if only

the system can revise the beliefs of assigning them, previous incorrect

partitions can possibly be corrected.

5.6. Comparison

A simple rule-based approach is chosen as the based line for com-

parison. In [59] Ma et al. proposed a rule based approach to infer-

ring events of interest by applying rules to combine existing events.
heir method employs inference rules to capture new situations, than

odifying custom code, hence ensuring a flexible solution for evolv-

ng situations. It was initially developed for handling single subject

cenarios. It was then adapted by the introduction of linking rules

o work on multiple subject environments. The rules are used to link

tomic events derived from video analytics by measuring the distance

n space or time between two atomic events. Though their inference

ules consider imprecision of atomic events derived from video an-

lytics, both inference rules and linking rules make the assumption

hat the occurrence of each atomic event can be observed, which

s not always true considering imperfect video analytics, in partic-

lar in a dynamic environment such as on a moving bus platform.

hen linking atomic events, their involvements in composite event

nference are not considered at all. Our evidential reasoning approach

owers with the functionality for handling these problems.

We employ DS theory to represent uncertainty in event modelling

nd event reasoning. DS theory is the generalisation of probability

heory, which allows the representation of ignorance due to lack of

nowledge. We compared our evidential approach with Bayesian ap-

roach, by adapting the evidential reasoning system with probabili-

ies instead of mass functions, in recognising composite events from

he set of atomic events having associated to a person. Bayesian ap-

roach lacks abilities of handling the problem of incomplete informa-

ion in event reasoning.

The R values obtained for each sequence with the rule-based ap-

roach and Bayesian approach are shown in the third and fourth
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Fig. 11. Sequence 8—instances of event E214 detected by a tracker—TRACK 1379.
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Table A.1 (continued)

Constraint rule: R3

Statement: A person can only hold one track at a time

Premise: Ei .eType ∈ {PM}, Ej .eType ∈ {PM}

Condition: Ei .time ol Ej .time ∧Ei ∈ Sm∧ei ∈ ωm

Result: Ej ∈ Sn , ej ∈ ωn , n �= m

Constraint rule: R4

Statement: One person can only appear at one place at a time.

Premise: Ei .eType, Ej .eType ∈ {PB, PM, PSIT, PSTD, PE}

Condition: Ei .location �= Ej .location ∧ Ei .time ol Ej .time ∧ Ei ∈ Sm∧ei ∈ ωm

Result: Ej ∈ Sn , ej ∈ ωn , n �= m

Constraint rule: R5

Statement: Two atomic events with the same object ID are carried out by a same

person.

Premise: Ei .eType, Ej .eType ∈ {PB, PM, PSIT, PSTD, PE}

Condition: Ei.oID = Ej .oID∧ Ei ∈ Sm ∧ ei ∈ ωm

Result: Ej ∈ Sm , ej ∈ ωm

Constraint rule: R6

Statement: Any atomic event happens before a person boards the bus is carried

out by other persons.

Premise: Ei .eType ∈ PB, Ej .eType ∈ {PB, PM, PSIT, PSTD, PE}

Condition: Ej .time b Ei .time ∧ Ei ∈ Sm

Result: Ej ∈ Sn , ej ∈ ωn , n �= m

Constraint rule: R7

Statement: Any atomic event happens after a person has exited the bus is carried

out by other persons.

Premise: Ei .eType ∈ PE, Ej .eType ∈ {PB, PM, PSIT, PSTD, PE}

Condition: Ej .time a Ei .time ∧ Ei ∈ Sm

Result: Ej ∈ Sn , ej ∈ ωn , n �= m

Constraint rule: R8

Statement: One person cannot carry out two different atomic events at a time.

Premise: Ei .eType, Ej .eType ∈ {PB, PM, PSIT, PSTD, PE}

Condition: Ej .time ol Ei .time ∧ Ei .eType �= Ej .eType ∧Ei ∈ Sm

Result: Ej ∈ Sn , ej ∈ ωn , n �= m

A

olumns respectively, together with those by our evidential reasoning

ystem in the last columns, in Table 5.

. Conclusions

In this paper, we propose a novel approach for detection and

ecognition of composite events on video sequences where multi-

le subjects present. First, video-analytics and senor measurements

re generated in the shape of events. Second, event association and

omposition are performed by combining the techniques of tempo-

al relation representation, DS theory of evidence and hierarchical

etwork modelling. Our approach can be used to correctly recog-

ise composite events while separating atomic events of multiple

ubjects with the ability of handling the uncertainty in the video

nalytics.

Our framework has been evaluated on a real bus environment. The

esults show the promising performance of the proposed framework.

omprehensive tests on more video data collected from applications

nd comparison against state-of-art techniques are being performed

s future work.
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ppendix A. Constraint rules

able A.1

ist of rules for partitioning.

Golden rule: R0

Statement: An atomic event cannot be carried out by more than one person.

Premise: Ei .eType ∈ {PB, PM, PSIT, PSTD, PE}

Condition: Ei ∈ Sm ∧ ei ∈ ωm

Result: Ei �∈ Sn , ¬ei ∈ ωn , n �= m

Constraint rule: R1

Statement: If only one person presents in a period of time, all atomic events can

only be undertaken by the person.

Premise: Ei.eType ∈ {PB, PM, PSIT, PSTD, PE}
Condition: S = S1 ∧ � = ω1

Result: Ei ∈ S1, ei ∈ ω1

Constraint rule: R2

Statement: A person can only aboard a bus once in a period of time.

Premise: Ei .eType ∈ {PB}∧Ej .eType ∈ {PB}

Condition: Ei ∈ Sm∧ei ∈ ωm

Result: Ej �∈ Sm , ¬ej ∈ ωm

(Continued)
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ppendix B. Case study

To help illustrate how our system works, we describe here an ap-

lication scenario. In this scenario, two subjects, Alice and Bob, take

bus journey. The bus is a standard single deck bus in use by pub-

ic transport in Northern Ireland. For recording, two cameras are de-

loyed, one pointing at the front door of the bus, the other at the

aloon.

cenario 1. At a bus stop, Bob boards the bus and moves to a seat on a

ow in the middle of the bus saloon, and sits down (Fig. B1a). Alice boards

he bus at the next stop and moves to a window seat on the first row, left-

and side, and sits down (Fig. B1b). While Bob stands up and moves to

he seat next to Alice and sits down (Fig. B1c). At the following stop, Alice

tands up and moves to the door and alights the bus (Fig. B1d). Then Bob

tands up and moves to the exit and exits the bus.

For the purposes of our application scenario, we are interested in

he following atomic events: PB = “male or female boards bus”, PM

“person moves from X to Y”, PSIT = “person sits”, PSTD = “person

http://dx.doi.org/10.13039/501100000266
http://dx.doi.org/10.13039/501100000266
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Fig. B1. Four instances of the scenario sequence: (a) female enters; (b) female seats and male stands up, moves; (c) male and female seated; (d) female exits.
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stands” and PE = “person exits”. The composite events we want to

infer from atomic events are: PBTS = “person boards bus and transits

to seat”, PCS = “person changes seat”, and PEX = “person exits bus”.

B.1. Atomic event detection

An atomic event E is represented by tuple (eType, oID, date, time,

location, source, reliaR, vFrame, m) as in Definition 3. eType is the type

of the atomic event, such as PB and PM. oID is the identify number

assigned by detection. date is the date on which the atomic event has

detected. time is an interval of its starting time and ending time. lo-

cation is the context of spaces the atomic event has covered. source

shows which analytic module has provided the detection. reliaR is

the reliability of the source. vFrame is the frame of discernment that

holds all values that an atomic event of the type can have. For the four

types of atomic events, we have

PB : vFrame = {MB, FB};
PM : vFrame = {MS1, . . . , MS20, MGW, MDR};
PSIT : vFrame = {SIT1, . . . , SIT20, ¬SIT};
PSTD : vFrame = {STD1, . . . , STD20, ¬STD};
PE : vFrame = {EX, ¬EX}.
m is the mass function obtained from a detection.

For the first type of atomic events we employ a camera pointing

at the door of the bus. The well-known Jones and Viola face detector

is then applied to the acquired video. The output of this is then input

to a face-based gender classifier. The resulting output is the probabil-

ity of the face as being either male or female. Thus, for example, we

might have p(male) = 0.7 and p( f emale) = 0.3. Based on our train-

ing classification accuracy, the module is deemed to have a reliabil-

ity of r = 0.9. Thus, from Eq. (4) we obtain the corresponding mass

distribution,

m({male}) = 0.7 × 0.9 = 0.63, m({ f emale}) = 0.3 × 0.9 = 0.27,

m(�) = 1 − m({male}) − m({ f emale}) = 0.1.
s the camera is pointing at the entrance, when we detect a male or

emale face in its field-of-view, we infer from this either MB or FB,

espectively.

({MB}) = 0.63, m({FB}) = 0.27, m(�) = 0.1.

For the PM event we employ a 3d tracker onto the acquired video

rom the camera pointing at the saloon of the bus. The output of the

racker is a trajectory from which we determine the start-point and

he end-point. We then calculate the distance from these points to

everal schematic locations nearby. These schematic locations con-

ist of all seats, gangway, and door exit. We then use the distance of

he tracker to a two closest schematic locations to calculate the mass

alues for the PM event. For example, for a tracker the distances of

ts endpoint to the two closest schematic locations, seat 5 and 6, are

alculated as dist(seat5) = 78 and dist(seat6, gangway) = 26. The

orresponding mass functions are then given by

({MS5}) = 26/104 × 0.8 = 0.2,

({MS6, MGW}) = 78/104 × 0.8 = 0.6, m(�) = 0.2

here the reliability of 0.8 is derived from the accuracy measure-

ents of the tracker as reported in [56].

For the PSIT and PSTD events a 3D tracker is used to estimate

he shoulder level of an individual in real world space. The resulting

utput is sitting if the shoulder level goes below a threshold, oth-

rwise standing. PSIT and PSTD are paired together. That means, for

xample, if there is a SIT9, there should be a STD9 afterwards. Based

n our training accuracy, the module is deemed to have a reliability

f r = 0.9. Thus, from Eq. (4) we obtain the corresponding mass

istribution,

({SIT9}) = 1.0 × 0.9 = 0.9, m(�) = 1 − m({SIT9}) = 0.1.

From the outputs of video analytics, 26 atomic events are de-

ected for the sequence of scenario 1. The details of oID, eType, time in

he format of an interval [Start frame, End frame], and mass function

, are given in Table B.1. For simplicity, the details of date, location,
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Table B.1

List of atomic events.

Event oID eType Start End Mass function

frame frame

E1 −2 PB 55 55 m({MB}) = 0.81, m(�) = 0.19

E2 3 PM 194 259 m({MS14}) = 0.43, m({MS11, MGW}) = 0.37, m(�) = 0.2

E3 −4 PB 769 769 m({MB}) = 0.09, m({FB}) = 0.81, m(�) = 0.1

E4 14 PM 894 906 m({MDR}) = 0.72, m({MS3, MGW}) = 0.08, m(�) = 0.2

E5 −5 PSIT 896 896 m({SIT2}) = 0.9, m(�) = 0.1

E6 −6 PSTD 927 927 m({STD2}) = 0.9, m(�) = 0.1

E7 −7 PSIT 948 948 m({SIT2}) = 0.9, m(�) = 0.1

E8 18 PM 948 950 m({MS4}) = 0.64, m({MS3, MGW}) = 0.16, m(�) = 0.2

E9 −8 PSIT 950 950 m({SIT4}) = 0.9, m(�) = 0.1

E10 18 PM 950 1062 m({MS4}) = 0.45, m({MS8}) = 0.35, m(�) = 0.2

E11 20 PM 961 1062 m({MS3, MGW}) = 0.62, m({MS4}) = 0.18, m(�) = 0.2

E12 −9 PSTD 977 977 m({STD2}) = 0.9, m(�) = 0.1

E13 −11 PSIT 1062 1062 m({SIT3}) = 0.9, m(�) = 0.1

E14 18 PM 1062 1361 m({MDR}) = 0.55, m({MS3, MGW}) = 0.25, m(�) = 0.2

E15 20 PM 1062 1359 m({MS3, MGW}) = 0.58, m({MS4}) = 0.22, m(�) = 0.2

E16 44 PM 1170 1184 m({MS7, MGW}) = 0.64, m({MS8}) = 0.16, m(�) = 0.2

E17 −13 PSTD 1359 1359 m({STD4}) = 0.9, m(�) = 0.1

E18 20 PM 1359 1577 m({MDR}) = 0.54, m({MS3, MGW}) = 0.26, m(�) = 0.2

E19 −15 PE 1370 1370 m({EX}) = 0.8, m(�) = 0.2

E20 66 PM 1428 1438 m({MS9}) = 0.47, m({MS13}) = 0.33, m(�) = 0.2

E21 68 PM 1445 1455 m({MS9}) = 0.49, m({MS13}) = 0.31, m(�) = 0.2

E22 −16 PSIT 1448 1448 m({SIT5}) = 0.9, m(�) = 0.1

E23 82 PM 1516 1531 m({MS9}) = 0.45, m({MS13}) = 0.35, m(�) = 0.2

E24 −19 PSTD 1578 1578 m({STD5}) = 0.9, m(�) = 0.1

E25 −18 PSTD 1578 1578 m({STD3}) = 0.9, m(�) = 0.1

E26 −20 PE 1586 1586 m({EX}) = 0.8, m(�) = 0.2

Fig. B2. Three evidential event networks.
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ource, reliaR are not listed. vFrame has given at the beginning of this

ubsection.

.2. Evidential event networks

Three categories of composite events are concerned: Male/Female

oards bus and Transits to Seat x(PBTS: MBTS/FBTS), Person Changes

eat (PCS), Person EXits bus (PEX). Composite events are consisted of

tomic events. For the case study, we can construct three evidential

vent networks: EENPBTS, EENPCS and EENPEX, presenting the hierar-

hical structures of the composite events with their atomic events.

ig. B2a –c illustrate three EEN respectively.

By Definition 5, we have EENPBTS = (NDPBTS, EGPBTS, MMPBTS),

ENPCS = (NDPCS, EGPCS, MMPCS), and EENPeX = (NDPEX, EGPEX, MMPEX).

D is a set of event nodes, NDPBTS = {AE1, AE2, AE3, CE1}, NDPCS = {AE2,

E3, CE2}, NDPEX = {AE2, AE4, CE3}. An atomic event node is same as

n atomic event in Section B.1, except that it has attribute pID indicat-

ng to whom it concerns, level telling it is an atomic event (or a com-

osite event for a composite event node). For example, AE1.pID = 1,

E1.level = ‘atomic’. For a composite event node, its date is same as

ts children at the atomic level, and its time interval is decided by the

tart time of the first child node and the end time of the last child

ode. oID, location source and reliaR are not required for an composite
vent node. For the case study, the details of atomic events have been

iven above. The frame of discernment for a composite event node is

s follows:

BT S : vFrame = {MBT S1, . . . , MBT S20, MBTGW,

FBT S1, . . . , FBT S20, FBTGW, ¬PBT S}
PCS : vFrame = {PCS1, . . . , PCS20, ¬PCS}
PEX : vFrame = {PEX, ¬PEX}

Each arc of EG in an evidential event network represents the re-

ationship between one node to another, which can be represented

y a multivalued mapping in MM. Table B.2 shows the multivalued

appings for the case study.

.3. Atomic event association

Now 26 derived atomic events are going to be partitioned into

wo groups, which are associated to two passengers respectively.

et � = {E1, . . . , E26} and � = {e1, ¬e1, . . . , e26,¬e26}. The goal

f event association is to have S = S1 ∪ S2, S1 ∩ S2 = ∅, that also

eans to have ω1 ⊂� and ω2 ⊂�, satisfying Proposition 1. The as-

ociation goes through: partitioning � by applying the constraint

ules, and if more than two partitionings arise, optimisation by
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Table B.2

List of multi-valued mappings.

Relationship Multivalued mapping.

AE1 → CE1 �({MB}) = {MBT S1, . . . , MBT S20, MBTGW},
�({FB}) = {FBT S1, . . . , FBT S20, FBTGW}, �(�AE1) = �CE1

AE2 → CE1 �({MS1}) = {MBT S1, FBT S1}, . . . �({MS20}) = {MBT S20, FBT S20},
�({MGW}) = {MBTGW, FBTGW}, �({MDR}) = {¬PBT S}, �(�AE2) = �CE1

AE3 → CE1 �({SIT1}) = {MBT S1, FBT S1}, . . . �({SIT20}) = {MBT S20, FBT S20},
�({¬SIT}) = {¬PBT S}, �(�AE3) = �CE1

AE2 → CE2 �({MS1}) = {PCS1}, . . . �({MS20}) = {PCS20},
�({MGW}) = {¬PCS}, �({MDR}) = {¬PCS}, �(�AE2) = �CE2

AE3 → CE2 �({SIT1}) = {PCS1}, . . . �({SIT20}) = {PCS20},
�({¬SIT}) = {¬PCS}, �(�AE3) = �CE2

AE2 → CE3 �({MS1}) = {¬PEX}, . . . �({MS20}) = {¬PEX},
�({MGW}) = {¬PEX}, �({MDR}) = {PEX}, �(�AE2) = �CE3

AE4 → CE3 �({EX}) = {PEX}, �({¬EX}) = {¬PEX}, �(�AE4) = �CE3
selecting the most probable partitioning with a minimum conflict

factor.

With domain knowledge, we have constraints to guide the associ-

ation of the atomic events. The specific constraints being applied to

the scenario example are listed in Table A.1 of Appendix A.

Stage 1—Partitioning

Start from E1 until E26; Golden Rule R0 always applies;

(1–2) E1.eType = PB, E2.eType = PM

Condition: S = S1

Apply: R1

Results: e1, e2 ∈ ω1

Partitioning:

ω1 = {e1, e2, e3, ¬e3, . . . , e26,¬e26}
(3) E3.eType = PB

Condition: E3.eType = PB; (e1, e2) ∈ ω1

Apply: R2 and R6

Results: initialise ω2 = �, e3 ∈ ω2, ¬e3 ∈ ω1; (¬e1,¬e2) ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, e4,¬e4, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e4, . . . , e26,¬e26}

(4) E4.eType = PM

Condition: ω = ω1 ∪ ω2; E4.eType = PM, E4.location −
E2.location > τlocation, E4.location − E3.location < τlocation, e2

∈ ω1, e3 ∈ ω2

Apply: R3

Results: ¬e4 ∈ ω1, e4 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3,¬e4, e5,¬e5, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4, e5,¬e5, . . . , e26,¬e26}

(5) E5.eType = PSIT

Condition: ω = ω1 ∪ ω2; E5.eType = PSIT, E5.location −
(E2, E4).location > τlocation, e2 ∈ ω1, e4 ∈ ω2

Apply: R4

Results: ¬e5 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2, ¬e3,¬e4,¬e5, e6,¬e6, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5, e6,¬e6, . . . , e26,¬e26}

(6) E6.eType = PSTD

Condition: ω = ω1 ∪ ω2; E6.eType = PSTD, E6.location =
E5.location, e5 �∈ (ω1, ω2)

Apply: R4

Results: ¬e6 ∈ (ω1, ω2)

Partitioning:
ω1 = {e1, e2,¬e3,¬e4,¬e5,¬e6, e7,¬e7, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6, e7,¬e7, . . . , e26,¬e26}

(7) E7.eType = PSIT

Condition: same as in (5)

Apply: R4

Results: ¬e7 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1,e2,¬e3,¬e4,¬e5,¬e6,¬e7, e8,¬e8, . . . , e26,¬e26}
ω2 = {¬e1,¬e2,e3, e4,¬e5,¬e6,¬e7, e8,¬e8, . . . , e26,¬e26}

(8) E8.eType = PM

Condition: ω = ω1 ∪ ω2; E8.eType = PM, E8.location − E2.

location > τlocation, E8.location − E4.location < τlocation, e2 ∈
ω1, e4 ∈ ω2

Apply: R4

Results: ¬e8 ∈ ω1, e8 ∈ ω2

Partitioning:

ω1 = {e1, e2,¬e3,¬e4,¬e5, . . . ,¬e8, e9,¬e9, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9,

¬e9, . . . , e26,¬e26}
(9) E9.eType = PSIT

Condition: ω = ω1 ∪ ω2; E8.eType = PM, E9.eType = PSIT,

E8.time = E9.time, E8.location = E9.location; ¬e8 ∈ ω1, e8 ∈
ω2

Apply: R4

Results: ¬e9 ∈ ω1, e9 ∈ ω2

Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e9, e10,¬e10, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,

¬e10, . . . , e26,¬e26}
(10) E10.eType = PM

Condition: ω = ω1 ∪ ω2; E8.oID = E10.oID, ¬e8 ∈ ω1, e8 ∈ ω2

Apply: R5

Results: ¬e10 ∈ ω1, e10 ∈ ω2

Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e11, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10, e11,

¬e11, . . . , e26,¬e26}
(11) E11.eType = PM

Condition: ω = ω1 ∪ ω2; E11.eType = PM; E2.eType = PM,

E2.location = E11.location; E10.eType = PM, E10.time ol E11.

time; e2 ∈ ω1, e10 ∈ ω2

Apply: R4 and R5

Results: e11 ∈ ω1, ¬e11 ∈ ω2

Partitioning:
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(

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11, e12,¬e12, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11, e12,

¬e12, . . . , e26,¬e26}
(12) E12.eType = PSTD

Condition: same as in (6)

Apply: same as in (6)

Results: ¬e12 ∈ ω1, ¬e12 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11,¬e12, e13,

¬e13, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12, e13,¬e13, . . . , e26,¬e26}
(13) E13.eType = PSIT

Condition: ω = ω1 ∪ ω2; E11.eType = PM, E13.eType = PSIT,

E11.time = E13.time, E11.location = E13.location; e11 ∈ ω1, ¬e11

∈ ω2

Apply: R4

Results: e13 ∈ ω1, ¬e13 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11,¬e12, e13, e14,

¬e14, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12, ¬e13, e14,¬e14, . . . , e26,¬e26}
(14) E14.eType = PM

Condition: same as in (10)

Apply: R5

Results: ¬e14 ∈ ω1, e14 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14,

e15, ¬e15, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12, ¬e13, e14, e15,¬e15, . . . , e26,¬e26}
(15) E15.eType = PM

Condition: ω = ω1 ∪ ω2; E15.oID = E11.oID, e11 ∈ ω1, ¬e11 ∈
ω2

Apply: R5

Results: e15 ∈ ω1, ¬e15 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15, e16,

¬e16, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12, ¬e13, e14,¬e15, e16,¬e16, . . . , e26,¬e26}
(16) E16.eType = PM

Condition: ω = ω1 ∪ ω2; (E14, E15, E16).eType = PM, (E14,

E15). time ol E16.time, e15 ∈ ω1, e14 ∈ ω2

Apply: R3

Results: ¬e16 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,¬e16,

e17,¬e17, . . . , e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12, ¬e13, e14,¬e15,¬e16, e17,¬e17, . . . , e26,¬e26}
(17) E17.eType = PSTD

Condition: ω = ω1 ∪ ω2; E17.eType = PSTD, E9.eType =
PSIT, E17.location = E9.location, ¬e9 ∈ ω1, e9 ∈ ω2

Apply: R4
Results: ¬e17 ∈ ω1, e17 ∈ ω2

Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,

¬e16,¬e17, e18,¬e18, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,¬e12,

¬e13, e14,¬e15,¬e16, e17, e18,¬e18, . . . , e26,¬e26}
(18) E18.eType = PM

Condition: same as in (15)

Apply: R5

Results: e18 ∈ ω1, ¬e18 ∈ ω2

Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,¬e16,

¬e17, e18, e19,¬e19, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12,¬e13, e14,¬e15,¬e16, e17,¬e18, e19,

¬e19, . . . , e26,¬e26}
(19) E19.eType = PE

Condition: ω = ω1 ∪ ω2; E19.eType = PE, E18.eType = PM,

E18. time ol E19.time, E17.eType = PM, E17.location −
E19.location < τlocation; e18 ∈ ω1, e17 ∈ ω2

Apply: R4

Results: ¬e19 ∈ ω1, e19 ∈ ω2

Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,¬e16,

¬e17, e18,¬e19, e20,¬e20, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,

¬e11,¬e12,¬e13, e14,¬e15,¬e16, e17,¬e18, e19, e20,

¬e20, . . . , e26,¬e26}
(20) E20.eType = PM

Condition: ω = ω1 ∪ ω2; E20.eType = PM, E18.eType = PM,

E18.time ol E20.time, E19.eType = PE; e18 ∈ ω1, e19 ∈ ω2

Apply: R3 and R7

Results: ¬e20 ∈ (ω1, ω2)

Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,¬e16,

¬e17, e18,¬e19,¬e20, e21,¬e21, . . . , e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12,¬e13, e14,¬e15,¬e16, e17,¬e18, e19,¬e20, e21,

¬e21, . . . , e26,¬e26}
21–24) (E21, E23).eType = PM, E22.eType = PSIT, E24.eType = PSTD

Condition: same as in (20)

Apply: R3 and R7

Results: (¬e21, . . . , ¬e24) ∈ (ω1,ω2)
Partitioning:

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,¬e16,

¬e17, e18,¬e19, . . . ,¬e24, e25,¬e25, e26,¬e26}
ω2 = {¬e1,¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12,¬e13, e14,¬e15,¬e16, e17,¬e18, e19,

¬e20, . . . ,¬e24, e25,¬e25, e26,¬e26}
(25) E25.eType = PSTD

Condition: ω = ω1 ∪ ω2; E25.eType = PSTD, E13.eType =
PSIT, E25.location = E13.location, e13 ∈ ω1, E19.eType = PE,

e19 ∈ ω2

Apply: R4 and R7

Results: e ∈ ω , ¬e ∈ ω
25 1 25 2
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Partitioning:

ω1 = {e1, e2, ¬e3, . . . , ¬e10, e11,¬e12, e13,¬e14, e15,

¬e16,¬e17, e18,¬e19, . . . , ¬e24, e25, e26,¬e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,

¬e12, ¬e13, e14,¬e15,¬e16, e17,¬e18, e19,

¬e20, . . . ,¬e25, e26,¬e26}
(26) E26.eType = PE

Condition: ω = ω1 ∪ ω2; E26.eType = PE, E25.eType = PSTD,

E25.location − E26.location < τlocation, e25 ∈ ω1, E19.eType =
PE, e19 ∈ ω2

Apply: R7

Results: e26 ∈ ω1, ¬e26 ∈ ω2

Partitioning:

ω1 = {e1, e2, ¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14, e15,¬e16,

¬e17, e18,¬e19, . . . ,¬e24, e25, e26}
ω2 = {¬e1, ¬e2, e3, e4,¬e5,¬e6,¬e7, e8, e9, e10,¬e11,¬e12,

¬e(13), e14,¬e15,¬e16, e17,¬e18, e19,¬e20, . . . ,¬e26

}
In this scenario, there is no multiple partitionings raised. There-

fore, the optimisation does not apply.

The final results of atomic event association are as follows.

S = S1 ∪ S2,

S1 = {E1, E2, E11, E13, E15, E18, E25, E26},
S2 = {E3, E4, E8, E9, E10, E14, E17, E19}.
ω = ω1 ∪ ω2,

ω1 = {e1, e2,¬e3, . . . ,¬e10, e11,¬e12, e13,¬e14,

e15, ¬e16, ¬e17, e18,¬e19, . . . ,¬e24, e25, e26},
ω2 = {¬e1, ¬e2, e3, e4,¬e5, . . . ,¬e7, e8, e9, e10,

¬e11, . . . ,¬e13, e14,¬e15,¬e16, e17,¬e18, e19,

¬e20, . . . ,¬e26}.

B.4. Composite event recognition

Now the atomic events associated to a passenger are going to be

transferred to the evidential event networks and to infer the compos-

ite events.

Passenger 1 has associated with the atomic event set {E1, E2,

E11, E13, E15, E18, E25, E26}. E2.eType = PM, E11.eType = PM, E2.mend ∩
E11.mstart = MS14, E11.starttime � E2.endtime, E2.startlocation �=
E2.endlocation, E25.eType = PSTD, E11.startlocation �= E11.endlocation,

therefore E11 indicates that a composite event ends and another

starts. E25.eType = PSTD, E25 is used as a point that ends a composite

event and starts another composite event. E15 and E18 take place be-

tween E13 and E25, their evidence support E13 staying at seat 3. Thus

E15 and E18 do not contribute to inference of the composite events.

E1 and E2 become the nodes at the lower-level in the network

EENPBTS as shown in Fig. B2 a, are used to infer the composite event

CE1: PBTS as the node at the higher-level. E26 is in the network EENPEX,

Fig. B2 c, and is going to infer CE3: PEX.

The inference of composite event CE1 starts at translating the

mass functions of the nodes at the lower-level into the node at the

higher-level, and then combine these together. On the combined

mass function, BetP on each single element is calculated. The final

decision is made on the element with the highest BetP.

On the event network CE1: PBTS,

(i) mE1
and mE2

are transferred onto CE1 by using Eq. (2) and ap-

plying the multivalued mappings in Table B.2. Therefore, we have m1

and m2 along vacuous m3 representing no knowledge on node AE3,

as follows.
1({MBT S1, . . . , MBT S20, MBTGW})
= mE1

({MB}) = 0.81; m1(�) = mE1
(�) = 0.19.

2({MBT S14, FBT S14}) = mE2
({MS14}) = 0.43;

2({MBT S11, MBTGW, FBT S11, FBTGW})
= mE2

({MS11, MGW}) = 0.37;
2(�) = mE2

(�) = 0.2.

3(�) = mE3
(�) = 1.

ii) Combining (m1⊕m2)⊕m3 by Eq. (3), we have m:

({MBT S14}) = 0.35; m({MBT S11, MTGW}) = 0.30;
({MBT S1, . . . , MBT S20, MBTGW}) = 0.16;

m({MBT S14, FBT S14}) = 0.08;
({MBT S11, MBTGW, FBT S11, FBTGW}) = 0.07; m(�) = 0.04.

iii) From m, we can calculate BetP by Eq. (5):

etP({MBT S14}) = 0.40; BetP({MBT S11}) = 0.18;
etP({FBT S14}) = 0.04; BetP({FBT S11}) = 0.02.

ith the highest BetP({MBTS14}), we reach the decision that compos-

te event MBTS14: the male boards the bus and transits to sit on seat

4, is inferred.

On the event network CE2: PCS, E11 and E13 are used to infer CE2.

he same steps are gone through to reach the decision that composite

vent PCS3: the person changes to seat 3, with BetP({PCS3}) = 0.92,

s inferred.

On the event network CE3: PEX, E25 as AE5 is used to infer CE3. The

ecision is that composite event PEX: the person exits the bus with

etP({PEX}) = 0.9, is inferred.

The same procedure applies to passenger 2 with the associated

tomic event set {E3, E4, E8, E9, E10, E14, E17, E19}. The composite events

nferred are FBTS4: the female boards the bus and transits to sit on

eat 4, PEX: the person exits the bus.

ppendix C. Bus sequences

The first sequence presents a normal bus journey and consists

f a male and female boarding the bus, moving into the saloon to a

eat and sitting down. After a short period they stand up, move back

own the gangway and exit. Fig. C1 shows the example frames of

equence 1.

Sequences 2–3 present a journey in which a passenger changes

eat while the bus is moving. This is unusual and is indicative of a

assenger who may feel threatened or one who is trying to threaten

nother passenger. These consist of a male and female entering the

aloon and then moving along the gangway to seats and sitting down.

fter a short period one of them stands and moves to a different seat.

t the next bus stop, both passengers stand up and move back down

he gangway and exit the bus. With sequence 3, the example frames

f the scenario are illustrated in Fig. C2. It is worthy to point out

hat sequence 2 is used to interpret case studies in the appendices

Appendix B).

Sequence 4 presents a type of threatening behaviour in which one

assenger loiters near another who is seated. At a bus stop, a female

assenger boards and moves to a seat and sits down. The male at the

ext stop enters and moves to beside the seat occupied by the female

assenger and loiters in the gangway. At the following stop, the fe-

ale passenger stands up and moves to the exit and exits. The male

assenger then follows and moves to the exit and eventually exits.

ig. C3 shows the example frames of sequence 4.

Sequence 5 presents a more threatening behaviour in which both

assengers change seat. In this sequence the female passenger en-

ers the bus and moves to seat and sits down. At a different stop, the

ale passenger enters the bus and moves to the seat right behind the

emale passenger and sits down. The female passenger then stands
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Fig. C1. Example frames of sequence 1.

Fig. C2. Example frames of sequence 3.

Fig. C3. Example frames of sequence 4.

Fig. C4. Example frames of sequence 5.
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p and moves to a different seat and sits down. The male passenger

tands up and moves to the seat beside the female and sits down.

he female passenger stands up and moves to the exit and exits the

us. The male stands up and moves to the exit and exits the bus. The

xample frames of the scenario are shown in Fig. C4.

Sequence 6 consists of three passengers, 2 male and 1 female.

ig. C5 shows the example frames of the sequence. In this experiment,

he female passenger enters and moves to seat C-10 and sits down.

he first male passenger enters and moves nearby seat C-10 and loi-

ers in the gangway. The female passenger stands up and moves to

eat C-3 and sits down. The male passenger sits down on seat C-10,

reviously occupied by the female passenger. The second male pas-

enger then boards, and moves to beside seat C-3 and loiters in the

angway. The female stands up, moves to the exit and exits the bus.

he second male then sits down on seat C-3, vacated by the female

assenger. The first male stands up and moves to the exit and exits

he bus. Afterwards, the second male passenger stands up and moves
o the exit and exits the bus. e
Sequence 7 presents a complicated sequence consisting of two

ale and female passengers with several seat changes and loitering

ncidents. The scenario is illustrated with the example frames shown

n Fig. C6. In this sequence, the first male passenger boards at the first

us stop and moves to seat C-19 and sits down. At the second bus

top, the first female passenger boards and moves to seat C-9 and sits

own. At the third stop, the second male passenger boards and moves

o the gangway, beside seat C-9, and loiters. The first male passenger

tands and moves to gangway. The second male moves to seat C-19

acated by the first male passenger and sits down. The first male pas-

enger moves to seat C-1 and sits down. At the fourth stop, the second

emale passenger boards, moves to seat C-2 and sits down. She then

tands, moves to seat C-3 and sits down. At the next stop, the first

ale passenger stands, moves to the exit and exits the bus. The sec-

nd male passenger stands, moves to the exit and exits the bus. At

he last bus stop, the second female passenger then stands, moves to

he exit and exits the bus. Lastly, the first female stands, moves to the
xit and exits the bus.
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Fig. C5. Example frames of sequence 6.

Fig. C6. Example frames of sequence 7.

Fig. C7. Example frames of sequence 8.
The final sequence, 8, is the most complicated one with six people

involved, three each of male and female gender. This again involves

several seat changes and loitering incidents, and also consists of two

passenger passing each other in the gangway. The first female pas-

senger boards, moves to seat C-11 and sits down. At the next stop, the

first male passenger boards, moves to seat C-19 and sits down. At the

following stop, the second female passenger boards, moves to seat C-

9 and sits down. At the fourth stop, the second male passenger boards

and moves along the gangway. Meanwhile, the first female passenger

stands and exits the bus, and the second male passenger sits down

on seat C-18. At the following stop, the third female passenger boards

the bus, moves to seat C-2 and sits down. The second male passenger

moves to the window seat C-17. At the sixth stop, the third male pas-

senger boards and moves to the gangway. At the same time, the first

male passenger stands and passes the third male passenger in the

gangway. The first male passenger exits the bus and the third male

sits down on seat C-19. At the last stop, the third female stands and

exits the bus. The second female moves to the exit and exits the bus,

and the second male moves to the gangway. The third male stands.

The second male exits the bus, and the third male moves to the gang-

way, then the exit and exits the bus. Fig. C7 shows the example frames

in this video sequence.

Supplementary material

Supplementary material associated with this article can be found,

in the online version, at 10.1016/j.cviu.2015.10.017.
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