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a b s t r a c t

Ligand prediction has been driven by a fundamental desire to understand more about how

biomolecules recognize their ligands and by the commercial imperative to develop new

drugs. Most of the current available software systems are very complex and time-consuming

to use. Therefore, developing simple and efficient tools to perform initial screening of inter-

esting compounds is an appealing idea.

In this paper, we introduce our tool for very rapid screening for likely ligands (either sub-

strates or inhibitors) based on reasoning with imprecise probabilistic knowledge elicited

from past experiments. Probabilistic knowledge is input to the system via a user-friendly

interface showing a base compound structure. A prediction of whether a particular com-

pound is a substrate is queried against the acquired probabilistic knowledge base and a

probability is returned as an indication of the prediction.

This tool will be particularly useful in situations where a number of similar compounds

have been screened experimentally, but information is not available for all possible members

of that group of compounds. We use two case studies to demonstrate how to use the tool.

© 2009 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Considerable investment has been made into the in silico pre-
diction of substrates, and especially, inhibitors of enzymes.
This investment has been driven by a fundamental desire to
understand more about how biomolecules recognize their lig-
ands and by the commercial imperative to develop new drugs.
Almost all pharmaceutical companies include an element of
target-based approaches in their drug discovery programmes.
In this paradigm a key biomolecule (usually an enzyme or
receptor), the “target”, is identified and characterized. A major
effort is then put into discovering small molecules which will
modify the activity of the target in a therapeutically useful

� Note: A preliminary version reporting the theoretical development (not the tool) of this work was presented at the 5th International
Symposium on Imprecise Probability: Theories and Applications, University of Durham, UK, 14–18 July 2009.
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way. For example, if the target is a vital and unique enzyme
in an infectious microorganism, the aim may be to discover
molecules which act as high affinity inhibitors. A variety of
approaches are used to identify suitable molecules includ-
ing high throughput screening of compound libraries against
the target and computational screening of molecules. These
processes are both time-consuming and expensive. Typical
estimates suggest that bringing a novel drug successfully to
market costs approximately $1 billion and takes 10–20 years.
Clearly there is a need to introduce new methods to increase
the speed at which potential drug molecules can be discov-
ered. In addition, the explosion of sequence data in recent
years (primarily resulting from genome sequencing projects),
has identified a large number of enzymes (etc.) whose func-

0169-2607/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
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tions can be guessed at (by application of sequence similarity
searches) but for which experimental determination of their
substrate specificity and range will be required. Again this is
likely to be a time-consuming and expensive process.

Modern programs are increasingly sophisticated and incor-
porate quantum mechanical parameters, attempt to estimate
entropic contributions of the solvent and allow for the inher-
ent flexibility of biological macromolecules. Nevertheless,
despite this complexity, their predictions are not perfect.
Furthermore, with increasing sophistication comes increased
computational times. Thus investigators will generally only
carry out detailed computational studies on molecules which
are either known to be good ligands (by experiments) or which
have been predicted by less complex programmes as being
highly likely to be good ligands.

Probabilistic logic programming is a framework to rep-
resent and reason with imprecise (conditional) probabilistic
knowledge. An agent’s knowledge is represented by a proba-
bilistic logic program (PLP) which is a set of (conditional) logical
formulae with probability intervals. The impreciseness of the
agent’s knowledge is explicitly represented by assigning a
probability interval (or a single probability) to every logical for-
mula indicating that the probability of the formula shall be
in the given interval. For example, (fly(X)|bird(X))[0.8,1.0] is a
probabilistic formula which says that under the condition that
if object X is a bird then the probability of X can fly is within
[0.8, 1] statistically.

Probabilistic logic programming has been used to represent
and reason with probabilistic knowledge in many real-world
applications, e.g. [1–3]. In general, given a PLP, there is a set
of probability distributions satisfying the probabilistic knowl-
edge in the PLP. One approach to determining a single unique
probability distribution among all these possible distributions
is to apply the maximum entropy principle.

The maximum entropy principle is a widely accepted
method for probabilistic reasoning. It can be applied to rea-
son with compatible probabilities implied by an PLPs [4]. Based
on this principle, a single probability distribution is selected
and the selected distribution has the maximum entropy value
among all possible probability distributions. This probability
distribution is assumed to best fit the imprecise probabilistic
knowledge in the PLP.

In this paper, we present our investigation about how
to use PLPs to represent and reason with imprecise proba-
bilistic knowledge obtained from experiments, especially on
substrates prediction in biomedical sciences. We present our
implementation of a probabilistic prediction system which
takes PLPs as input knowledge bases and produces probabilis-
tic results for queries (against a chosen PLP) as output.

To facilitate bioscientists using this system, we imple-
mented a prediction tool for very rapid screening for likely
ligands (either substrates or inhibitors) based on reasoning
with imprecise probabilistic knowledge elicited from past
experiments. This tool has a user-friendly interface which
allows a user to select a base-compound structure to start
with. For example, if a user selects sugar, then the system will
show the base structure associated with sugar. This way, a user
can immediately move on adding any additional compound
information as well as any probabilistic information to this
structure, saving both time and effort to build a knowledge

base. A generated PLP from a user’s input is then displayed on
the screen for inspection. When satisfied, a user can then pose
any queries to the knowledge base to predict other possible
compounds. The saved knowledge base (PLP) can be repeat-
edly used by any users who can access this knowledge base.

We conducted two sets of experiments using the tool, one
is on the human enzyme galactokinase (EC 2.7.1.6), which
uses galactose as a substrate, and the other is on substrate
prediction for human NAD(P)H quinone oxidoreductase (EC
1.6.5.2, NQO1). The experimental results demonstrate that
using imprecise probabilistic knowledge as a first step for
screening potential substrates can be very useful and signifi-
cant in many similar applications, since this initial prediction
could allow bioscientists to selectively experiments on more
hopeful candidates, saving both time and money in the whole
process.

This paper is organized as following. In Section 2, we briefly
review the modelling method used in this paper for represent-
ing probabilistic knowledge. In Section 3, we first introduce
the architecture of our tool and the main system functionali-
ties. We then give some detailed descriptions of the graphical
user interface on how to visually model substrate knowledge
in our system, the input, output and query format, as well as
how we use XML files to store information about base struc-
tures. In Section 4, we illustrate how to use our prediction tool
with two case studies. Finally, we conclude this paper after
comparing our tool with some related systems in Section 5.

2. Computational methodology and theory:
probabilistic logic programming

We briefly review conditional PLPs here [4,5].
Let ˚ be a finite set of predicate symbols and c onstant sym-

bols, and V be a set of variables. An event or logic formula can
be defined from ˚ ∪ V using none or any connectives ¬,∧,∨ as
usually done in first-order logics. We use Greek letters �, , ϕ
for events. For instance, let Peter be a person’s name, then
man(Peter) is a logical formula saying that Peter is a man or let X
be a variable, then man(X) states that predicate man is applied
to variable X. Equally, given a constant talose and a pred-
icate aldohexose, aldohexose(talose) is a logic formula stating
that talose is a (kind of) aldohexose. The Herbrand semantics
commonly used in first-order logics can also be canonically
defined. An assignment � maps each variable (in one or more
statements) to a constant symbol, such that man(Peter) can be
considered as the result of assigning Peter to X.

We use I to stand for a possible world, and use I��� to state
that I is a model of formula � under assignment �. A conditional
event is of the form  |ϕ with events  and �. A p robabilistic
formula is of the form ( |ϕ)[l, u] which means that the probabil-
ity of conditional formula ( |ϕ) is within [l, u]. In the following,
we call [l, u] the probability bound for probabilistic conditional
event  |ϕ[l, u]. For instance (fly(X)|bird(X))[a, b] states that the
probability that a bird can fly falls in the interval [a, b]. A con-
ditional probabilistic logic program (PLP) P is a set of probabilistic
formulae.

A probabilistic interpretation Pr is a probability distribution on
the set of all possible worlds, which is denoted as I˚. The prob-
ability of an event ϕ in Pr is defined as Pr(ϕ) =

∑
I∈ I˚,I��ϕPr(I).
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If Pr(�) > 0, then Pr( |�) exists and it is defined as Pr( |�) =
Pr( 

∧
�)/Pr(�). A probabilistic formula ( |ϕ)[l, u] is satisfied by

a probabilistic interpretation Pr under assignment �, denoted
as Pr�� ( |ϕ)[l, u], iff Pr(ϕ) = 0 or Pr( |ϕ) ∈ [l, u]. A probabilistic
interpretation Pr is a p robabilistic model of a formula ( |ϕ)[l, u]
iff ( |ϕ)[l, u] is satisfied by Pr under all assignments, and this
is denoted as Pr � ( |ϕ)[l, u]. A probabilistic interpretation is a
probabilistic model of a PLP P, denoted as Pr � P, iff Pr is a prob-
abilistic model of all �∈P. A PLP P is satisfiable or c onsistent
iff P has a model. A probabilistic formula ( |ϕ)[l, u] is a conse-
quence of an PLP P, denoted as P � ( |ϕ)[l, u], iff all probabilistic
models of P are also probabilistic models of ( |ϕ)[l, u]. A prob-
abilistic formula ( |ϕ)[l, u] is a tight consequence of P, denoted
as P�tight( |ϕ)[l, u], iff P � ( |ϕ)[l, u], P /� ( |ϕ)[l, u′], P /� ( |ϕ)[l′, u]
for all l < l′ and u > u′ (l′, u′ ∈ [0,1]). Note that, if P � (�|�)[0,0],
then it is canonically defined as P�tight( |�)[1,0], where [1,0]
stands for an empty set.

The principle of maximum entropy is a well known
technique for representing probabilistic knowledge. Given
a distribution Pr, its entropy quantifies its indeterminate-
ness and it is formally defined as H(Pr) = −∑

I∈ I˚Pr(I) log Pr(I).
Given a PLP P, the principle of maximum entropy model (or me-
model) under �, denoted by me� [P], is defined as:

H(me� [P]) = maxH(Pr) = maxPr��P −
∑
I∈ I˚

Pr(I) log Pr(I)

me� [P] is the unique probabilistic interpretation Pr which is a
probabilistic model of P under � and which has the greatest
entropy among all the probabilistic models of P under �.

Let P be a PLP, we say that ( |ϕ)[l, u] is a m e-consequence
of P under �, denoted as P�me� ( |ϕ)[l, u], iff P is unsatisfi-
able, or me� [P]�� ( |ϕ)[l, u]. We say that ( |ϕ)[l, u] is a tight
me-consequence of P under �, denoted by P�me�,tight( |ϕ)[l, u], iff
one of the following conditions holds:

• P�� (ϕ|T)[0,0], l = 1, u = 0,
• me� [P](ϕ) > 0 and me� [P]( |ϕ) = l = u.

Example 1. Let PLP P be defined as follows:

P =

⎧⎨
⎩

(fly(X)|bird(X))[0.98,1]
(bird(X)|penguin(X))[1,1]
(penguin(X)|bird(X))[0.1,1]

⎫⎬
⎭

Based on this knowledge base, a user can query about the
likelihood that a penguin can fly, e.g., ?(fly(t)|penguin(t)).
The results of using our prediction tool based on this knowl-
edge base is

P��,tight(fly(t)|penguin(t))[0,1],and
P�me�,tight(fly(t)|penguin(t))[0.98,0.98].

3. A substrate prediction system

3.1. System architecture

Here we describe our system architecture for rapid substrate
prediction. The system is composed of two main parts: a

Fig. 1 – The process of substrate predicting with our
system.

graphical user interface and a prediction engine. The overall
architecture of our system is illustrated in Fig. 1.

The prediction engine runs a user specified query against
a knowledge base and outputs the prediction result. A knowl-
edge base can be an existing one or a newly created one by
a user for the purpose of this query. A newly created knowl-
edge base is saved as part of knowledge base repository and
any knowledge base in the knowledge base repository can be
revised using an interface component.

The interface consists of several functional components
(see Fig. 2). The first is the knowledge base creation compo-
nent (using the File menu) which allows a user to input a
new knowledge base where new probabilistic knowledge is
elicited (summarized) from experiments in published papers.
To facilitate the input of such knowledge, a graphical interface
is created allowing a user to visualize the base structure first
and then add any additional information. This graphical input,
together with any background knowledge that states the com-
pound structure, is automatically translated into a PLP. The
reasoning about the PLP for prediction is encapsulated and
executed at the back-end, and users do not need to interact
with it.

The second component is the knowledge editing compo-
nent (using the Edit menu). A user can navigate all compounds
and modify them, and can also insert new compounds with
probability intervals. The component structure and the prob-
abilistic knowledge is displayed in the Navigation area. A
revised knowledge base is automatically translated into a PLP
again to either overwrite the existing one or to create a new
one. The translated PLP is displayed just below the Navigation
area.
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Fig. 2 – The compounds and the corresponding PLP.

The third component is about the input facility of queries.
A user is given the option to either construct a new query
using the graphical interface by drawing a specific compound
or to select an existing query by viewing the collection of
compounds stored in the system. In the right-hand column
of Fig. 2, the drop-down menu lists all the available queries
in the system. When a query is selected, its logic expression
is displayed. When a user wants to create a new query, the
user draws the compound in the Navigation area and then
saves it. Once it is saved, the user can then select it from the
drop-down list. By saving previous user specified queries in
the system and creating their graphical structures, a user can
avoid the task of specifying the same query again, should a
user want to re-run the query. The probability of a prediction
is then displayed once a user clicks the Predict button.

The system is programmed mainly in Java with the inte-
gration of some functional components provided in Matlab TM

using EMF (Eclipse Modeling Framework) and Touchgraph TM

libraries. Within the back-end prediction engine, we imple-
mented the efficient algorithms provided in [4,5] for speeding
up the prediction. In these algorithms, the problem of reason-
ing about probabilistic formulae in a PLP is translated into an

Fig. 3 – Select the compound family by names.

equivalent problem of solving a (non-linear) optimization sub-
ject to linear constraints (using the probability bounds). The
optimization problem is then fed into a Matlab optimizer to
obtain a set of probability distributions that are compatible
with the PLP. A preliminary version of the tool was demon-
strated in the European Conference on Artificial Intelligence
2008 Demo session.

3.2. Representing substrate structure

In general, many organic compounds share the same or simi-
lar molecular formulas. The organic compounds that have the
same or similar molecular formula can be categorized into a
class, for instance, the family of aldohexose has 16 stereoiso-
mers. In our tool, the common structure of a family of organic
compounds, which we call it the b ase structure, is stored as
an XML file. When a user wants to create a knowledge base
using a base structure stored in the system, the user can select
the name of the base structure as shown in Fig. 3, and this
file is uploaded to generate the graphical display of the base
structure. Then the user has the option to instantiate each
base atom (e.g. carbon atom and oxygen atom) and to add any
substituent (e.g. –OH group) attached to it.

For instance, each galactose molecule is arranged as a
hexagonal ring (e.g., the ˛-D-galactose molecule in Fig. 4).
There are six carbon atoms in a galactose molecule and one
oxygen atom. These six carbon atoms are numbered from 1 to
6 with the right-most carbon atom numbered 1, and then the
remaining carbons are numbered clockwise round the ring.
The oxygen atom is not numbered. The other atoms can be
regarded as coming off these carbon atoms. The first four of
the carbon atoms each has an OH molecule attached to it, and
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Fig. 4 – The ˛-D-galactose molecule.

the fifth one has the sixth carbon atom attached to it from out-
side the ring, forming a CH2OH group. The OH group can either
be “up” or “down” (i.e., they are chiral). The combination of ups
and downs gives a specific form of the molecule (in effect, each
form of the molecule is a different compound), and the actual
combination can significantly affect the biochemical behav-
ior of the molecule. Therefore, for the OH groups attached to
these atoms, we need to know if they are up, down or absent.
The sixth carbon is not chiral, and so the OH is neither up nor
down. Hence, the OH for the sixth carbon is marked as either
present or a bsent.

In Fig. 5, we present the XML file for aldohexose (˛-D-
galactose molecule is a specific kind of aldohexose). From this

Fig. 5 – The XML file for sugar family aldohexose.

XML file, we can see that, an aldohexose has a cyclic ring with
five carbon atoms and one oxygen atom, and an extra carbon
atom connected to the carbon in the position ‘C6’. The group
attached to the carbon atoms is not mandatory, i.e. can be
absent.

This XML file indicates that the base atoms in the ring are
arranged clockwise and our graphical user interface will dis-
play these atoms in the sequence as stated in the file. The
base atoms indexed ‘C1’ to ‘C5’ are stated as chiral centers (<
Chiral > true < /Chiral >), which means the group attached
to them can be either up or down. This piece of knowledge is
automatically encoded into probabilistic formulae:

(c1(X, p)|aldohexose(X)
∧
c1(X, u))[1,1]

...
(c5(X, p)|aldohexose(X)

∧
c5(X, u))[1,1]

The XML element (mandatory = “false”) shows that the group
OH that can be attached to ‘C1’, . . ., and ‘C6’ are non-
mandatory, e.g., the group OH can be absent in these positions.
Obviously, any group can not be present and absent simulta-
neously. So this background knowledge is also automatically
encoded into probabilistic formulae:

(c1(X, p)
∧
c1(X, a)|aldohexose(X))[0,0]

...
(c6(X, p)

∧
c6(X, a)|aldohexose(X))[0,0]

In addition, any group that is stated up or down implies that it
is present:

(c1(X, p)|aldohexose(X)
∧
c1(X, d))[1,1]

...
(c5(X, p)|aldohexose(X)

∧
c5(X, d))[1,1]

(c1(X, u)
∧
c1(X, d)|aldohexose(X))[0,0]

...
(c5(X, u)

∧
c5(X, d)|aldohexose(X))[0,0]

The predicate aldohexose(X) is needed in the above prob-
abilistic formulae since statements c1(X, p), c5(X, p), etc. are
legal only when compound X is an isomer of aldohexose. For
instance, c6(X, u) is an illegal logic formula since it is stated in
the XML file that the carbon atom indexed as ‘C6’ is not chiral
(so up is not applicable to c6 here).

Once a base structure name is selected, information stored
in the corresponding XML file is translated into a graphical
structure and this structure is displayed in the Navigation
area. Chemical bonds are generated for each pair of base
atoms that in the adjacent positions in the same cycle or is
stated by the tag ConnectedTo. Chemical bonds are also gen-
erated for each base atom and the group attached to it. Each
group is associated with a pop-up menu, in which a set of
options is given showing how that group should be seen within
this specific compound.

For instance, the talose in the aldohexose group is dis-
played in Fig. 6(a). For each organic compound that has chiral
centers, we use either the up-arrows (↑) or the down-arrows (↓)
to indicate whether a group is up or down respectively. Fig. 6(a)
shows a pop-up menu associated with the group OH attached
to base atom indexed as ‘C2’. The menu items are up, down or
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Fig. 6 – Changing the group attached to ‘C2’ as up.

absent. Once a user has chosen up, the arrow attached to this
group is changed as illustrated in Fig. 6(b).

Each organic compound is translated into a logic formula.
After a user inputs the probability interval about the organic
compound being a substrate, this piece of information is
encoded as a probabilistic formula in the corresponding PLP.

For example, from the XML file in Fig. 5 we can see that for
base atoms indexed as C1,..., and C6, there is only one possi-
ble group (OH) attachable to them. So when translating this
structural knowledge into a logical formula, we simply omit
the trivial statements stating the groups is ‘–OH’ group, such
as talose is expressed as a logic formula shown below without
OH being mentioned explicitly.

aldohexose(talose)
∧

c1(talose, d)
∧

c2(talose, u)
∧

c3(talose, u)

∧
c4(talose, u)

∧
c5(talose, u)

∧
c6(talose, p).

After a user gives the estimation as [0.4,0.6], we can get a
probabilistic formula in PLP:

(sub(talose)|aldohexose(talose)
∧

c1(talose, d)
∧

c2(talose, u)
∧

c3(talose, u)
∧

c4(talose, u)
∧

c5(talose, u)
∧

c6(talose, p))[.4,.6],

which states that the probability of talose being a substrate
falls in the interval [0.4,0.6].

4. Application of the framework to
substrates prediction

The aim of our system is to provide a very rapid screening
for likely ligands (either substrates or inhibitors, depending
on the context). It will be particularly useful in situations
where a number of similar compounds have been screened
experimentally, but information is not available for all pos-
sible members of that group of compounds. By providing a
simple means to encode existing experimental knowledge and

return results within minutes we see this as a valuable addi-
tion to initial computational screening approaches. Since our
prediction engine uses only existing knowledge, it requires no
input concerning the nature of the structure of the target or
about the physical nature of the bond strengths in the bind-
ing site. Thus it will be applicable to targets (or to unknown
proteins identified as a consequence of genome sequencing
projects) for which only limited experimental characteriza-
tion has been carried out. The key advantage will be that the
proposed system can consider all theoretically possible permuta-
tions in a series of ligands and identify, on the basis of limited
initial knowledge, which compounds are also likely to be sub-
strates. Consequently we envisage that the prediction tool
could become part of the early stages of drug discovery result-
ing in time (and cost) savings. In addition it may become a
valuable tool to those investigating the substrate specificities
of newly discovered enzymes.

4.1. Case Study I: rapid sugar kinase enzymes
prediction

The usefulness of probabilistic logic programs to represent
imprecise probabilistic knowledge and harness this knowl-
edge to answer queries can first be demonstrated by an
example from biochemistry on the human enzyme galactok-
inase [11], which uses galactose as a substrate. Galactose has
the molecular formula C6H12O6, but other compounds have
the same or similar formula. Since not all possible substrates
for the enzyme have been tested, the information regard-
ing this enzyme and its substrates is incomplete. Then the
question is: can we predict which will be the substrates for
the human enzyme galactokinase based on incomplete and
imperfect information? Many factors lead to the informa-
tion being imperfect including different research laboratories
using different criteria for scoring a compound as a substrate
and some information is based on galactokinases from other
species, so we cannot be certain that substrate specificity is
conserved for humans.

Initially probabilities were estimated using experimental
data and an element of intuition. Where a particular substrate
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Table 1 – The compounds and their probabilities and products to be substrates, obtained from published papers.

Sugar C1-OH C2-OH C3-OH C4-OH C5- CH2 OH C6-OH P (substrate) Product Source

Galactose D D U U U P 1.0 1 [6,7]
Glucose D D U D U P 0.0 0 [6]
2-Deoxygalactose D A U U U P 1.0 0.47 [6]
Fucose D D U U U A 0.0 0 [6]
Talose D U U U U P [0.4, 0.6] [0.056, 0.084] [8,9]
4-Deoxygluocse D D U A U P [0, 0.5] [0, 0.021] [10]
3-Deoxygalactose D D A D U P [0.6, 0.9] [0.036, 0.054] [10]

had been demonstrated experimentally to be a substrate of
human galactokinase it was assigned a probability of 1.0.
Where there was experimental data indicating that a substrate
was not phosphorylated by human galactokinase, a value of
0 was assigned. Compounds which had been shown to be
substrates of galactokinase from other species were assigned
probabilities between 0 and 1. However, not all substrates are
equally good. Therefore a second measure, the product was
calculated. To calculate this value, the specificity constant
kcat/Km was used, scaled such that the product value with
galactose (which is expected to be the best substrate) was
equal to 1.0.

Therefore, in Table 1, we have a column representing their
probabilities (or intervals) and another column representing
their products of the corresponding compounds to be (good)
substrates. Column source indicates from which published
paper this knowledge is obtained. Probabilistic knowledge on
compounds in Table 1 is translated to a PLP as shown in Fig. 2.

Using this knowledge base, we can predict the probabil-
ity of any structure being a substrate for the combination of
these six carbons. Twenty-six queries detailed in Table 2 were
executed against this PLP and the query results (column Prob-
ability, column Product) are presented in Table 2. Below we
give our analysis about these query results.

Overall, the predictions appear to over-estimate the prob-
abilities for each possible substrate. For example, given that
the fucose (which has the OH group attached to the sixth
carbon atom absent) has been shown experimentally not to
be a substrate, it is surprising to see compounds which also
lack this OH group predicted as having high probabilities as
substrates. Of course in compiling the data in Table 1, all the
information was weighted equally—for example the presence
or absence of the OH group at position 6 was considered of
equal worth to the information about the OH at position 2. In
fact it is likely that some positions are more important than
others in determining substrate specificity. However, in imple-
menting screens such as these, the amount of knowledge to be
included will always be a balance between including enough
to enable valid predictions, but not so much that the initial
knowledge collection and tabulation becomes unreasonably
time-consuming.

Despite these limitations, the predictions do appear to have
some value in that the ranking of the compounds in terms of
their probability of being a substrate seems mostly reason-
able and in line with chemical intuition. Ultimately for such
a system to be useful to bioscientists, it is this ranking which
must be reliable. The most likely use of such a system is to act
as a preliminary screen for potential substrates or inhibitors
followed by experimental testing of those compounds. Time
and expense can be saved if those compounds most likely

to be good substrates (or inhibitors) appear at the top of the
list and are, therefore, prioritized in the experimental work.
Thus the absolute values of the predicted probabilities are less
important than the rank order of the compounds.

4.2. Case Study II: substrate prediction for NQO1

NAD(H)-quinone oxidoreductase 1 (NQO1) is a broad speci-
ficity enzyme which catalyses the reduction of a range of
aromatic compounds. It was chosen for the second case study
as a large variety of different compounds (including quinones,
nitroaromatics and benzimidazoles) have been tested as sub-
strates. In contrast to the galactokinase study, the chemical
diversity of the known substrates is wider leading to a greater
number of variables to consider.

Two of the many compounds which have been tested
experimentally as substrates for NQO1. Shown in Fig. 7(a)
is a quinone compound, benzo-1,4-quinone and in Fig. 7(b)
a nitroaromatic compound 1,4-dinitrobenzene. Representing
these compounds in tabular form required assigning each
position in the six-membered ring a letter descriptor from A to
F. For each molecule, the most oxidised substituent was placed
at the top of the structural representation and designated A.
Positions B through F were then defined by moving round the
ring sequentially in an anti-clockwise fashion. In these initial
studies we concentrated on six membered rings substituted
with ketone, methyl and nitro groups.

In this initial case study, knowledge was collected from a
limited number of papers [12,13] which described the activity
of the enzyme towards a number of structurally related com-
pounds (Table 3). Probabilities were derived from published
data in these papers on specificity constants in which the
error in the experimental determination was used to define
the range of values. The compound given in Table 3 row 5 is
shown in our system in Fig. 8.

Fig. 7 – Examples of NAD(H)-quinone oxidoreductase 1
(NQO1) substrates.
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Table 2 – The probabilities and products of some compounds being a substrate by querying on the PLP.

Sugar C1-OH C2-OH C3-OH C4-OH C5- CH2 OH C6-OH P (substrate) Product

2dAll D A D D U P 0.6529 0.4611
2dGlc D A U D U P 0.6154 0.3939
2dGul D A D U U P 0.6694 0.5000
I D A A D U P 0.5869 0.4083
II D A A U U P 0.6676 0.5376
2,3,4d D A A A U P 0.5509 0.4721
3dAll D D A D U P 0.6003 0.1138
3dMan D U A D U P 0.5539 0.5000
3dTal D U A U U P 0.5636 0.4282
III D D A A U P 0.5321 0.3503
IV D U A A U P 0.5134 0.4785
4dAll D D D A U P 0.5314 0.4611
4dMan D U U A U P 0.4706 0.4282
V D A D D U A 0.5463 0.4811
VI D A U D U A 0.5481 0.4514
VII D A D U U A 0.5481 0.5000
VIII D A A D U A 0.5703 0.4572
IX D A A U U A 0.5682 0.5020
X D A A A U A 0.5233 0.4814
XI D D A D U A 0.5451 0.3518
XII D U A D U A 0.5234 0.5000
XIII D U A U U A 0.5278 0.4670
XIV D D A A U A 0.5146 0.4179
XV D U A A U A 0.5064 0.4895
XVI D D D A U A 0.5144 0.4811
XVIII D U U A U A 0.4879 0.4670

Table 3 – The compounds and their probability intervals,
obtained from published papers.

A B C D E F Probability

NO2 H H H H H [0, 0]
NO2 H NO2 H H H [0, 0]
NO2 H H CHO H H [0, 0]
NO2 NO2 H H H H [0, 0]
NO2 H H NO2 H H [0, 0]
O H H O H H [0.20, 0.28]
O CH3 H O H H [0.17, 0.31]
O CH3 H O CH3 H [0.19, 0.33]
O CH3 CH3 O CH3 H [0.20, 0.28]

When used to make predictions about unknown com-
pounds (Table 4), the results were broadly similar to those
seen in Case Study I. Table 4 gives the summary of 16 queries
based on the probabilistic knowledge given in Table 3. There
appeared to be a tendency to over-estimate probabilities (espe-
cially for compounds closely related in structure to those with
low, or zero, experimentally determined activity). Neverthe-
less, if these compounds are excluded the rank order of the
remaining ones appears sensible. Although further work is
required, this method has the potential to provide a valu-
able, additional tool for the rapid prediction of substrates and
inhibitors of enzymes.

5. Related work and conclusion

From IT system’s perspective, a few systems have been imple-
mented to modeling and querying probabilistic knowledge, for
example, SPIRIT [14] and PIT [15].

In order to manage imprecise probabilistic reasoning, an
expert system shell, SPIRIT, was implemented which uses the
principle of maximum entropy to avoid the request of precise
probability distributions. Knowledge acquisition is performed
by specifying probabilistic facts and rules on discrete variables
in an extended propositional logic syntax. The shell generates
the unique probability distribution which respects all facts
and rules and maximizes entropy. After creating this distri-
bution the shell is ready for answering simple and complex
queries. System PIT (Probability Induction Tool) was imple-

Fig. 8 – One example of NQO1 substrate.
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Table 4 – The predictions for some compounds.

A B C D E F Probability

NO2 H H H NO2 H 0.0000
NO2 H H NO2 CH3 H 0.3194
NO2 H H CHO CH3 H 0.3194
NO2 H H O CH3 H 0.3294
NO2 H NO2 H CH3 H 0.3217
NO2 H NO2 NO2 H H 0.1949
NO2 H NO2 O H H 0.2235
NO2 NO2 H O H H 0.2172
O H H H NO2 H 0.2949
O H H NO2 CH3 H 0.3917
O H H CHO CH3 H 0.3197
O H H O CH3 H 0.3629
O H NO2 H CH3 H 0.4000
O H NO2 NO2 H H 0.3612
O H NO2 O H H 0.3477
O NO2 H O H H 0.3338

mented based on propositional logic, the probability calculus
and the concept of model-quantification. The task of PIT is to
deliver decisions under incomplete knowledge but to keep the
necessary additional assumptions as minimal as possible.

In contrast, our system deploys the reasoning mecha-
nism in conditional probabilistic logic programming which is
based on first-order logics, rather than propositional logics.
In addition, we provided a tailored graphical user interface
for bioscientists to input knowledge and to query against a
knowledge base.

Our system differs from most others used for the screen-
ing of potential ligands. Typically, such systems attempt to
create computational representations of the physical envi-
ronment in the enzyme’s active site. Therefore, considerable
information is required to contribute to the so-called force
fields which contain data about the strengths of different types
of bonds and interactions. The simplest force fields represent
atoms as balls and bonds as springs which obey basic phys-
ical laws (e.g. Hooke’s law of stretching). However, modern
forcefields (e.g. CHARMM, GROMOS and AMBER [16–18]) also
incorporate quantum mechanical parameters in order to pro-
vide a more realistic model of molecular interactions at the
atomic level. Typical investigations involve docking of ligands
into active sites, followed by minimization of the calculated
energy of interaction. Thus the process involves the utilization
of a series of algorithms and programs, often selected by the
user on the basis of previous experience. In contrast, the sys-
tem described here works only with existing knowledge about
the ligands. Consequently, it is potentially applicable to any
target-based drug discovery programme where some exper-
imental information is available on a range of compounds
with related structures. This includes those situations where
there is limited functional or structural information about
the target. Indeed it may even be applicable when the pre-
cise, biochemical nature of the target is not known but where
there is considerable, quantitative information about biolog-
ical responses to a range of compounds (e.g. microbial cell
death in the presence of potential, novel antibiotics).

In this paper, we introduced and detailed a rapid substrate
prediction tool developed based on reasoning with imprecise
probabilistic knowledge. To make the use of tool easier to
bioscientists, we developed a graphical user interface which

can display the visual structure of a compound. To facilitate
the management of the collection of base compound struc-
tures and the exchange of this dataset with other systems, we
represented the information about base compound structures
using XML files—a popular structure for exchanging data with
web-based applications.

Two case studies were used to demonstrate the initial
results of predictions based on two extracted knowledge
bases. Due to the fact that the two knowledge bases are
relatively small in size, the prediction results cannot at the
moment determine which compounds are extremely likely
to be substrates. We anticipate that with more knowledge
being added to these two bases, the prediction accuracy will
increase.

Conflict of interest

The authors declare that they have no conflict of interests.

Acknowledgement

This work is funded by the EPSRC project with reference num-
ber: EP/D070864/1.

r e f e r e n c e s

[1] N. Fuhr, Probabilistic datalog: implementing logical
information retrieval for advanced applications, JASIS 51 (2)
(2000) 95–110.

[2] C. Baral, M. Hunsaker, Using the probabilistic logic
programming language p-log for causal and counterfactual
reasoning and nonnaive conditioning, in: Proceedings of
International Joint Conference on Artificial Intelligence,
2007, pp. 243–249.

[3] L.D. Raedt, A. Kimmig, H. Toivonen, Problog: a probabilistic
prolog and its application in link discovery, in: Proceedings
of International Joint Conference on Artificial Intelligence,
2007, pp. 2462–2467.

[4] G. Kern-Isberner, T. Lukasiewicz, Combining probabilistic
logic programming with the power of maximum entropy,
Artificial Intelligence 157 (1–2) (2004) 139–202.

[5] T. Lukasiewicz, Probabilistic logic programming, in:
Proceeding of European Conference on Artificial Intelligence
(ECAI), 1998, pp. 388–392.

[6] D.J. Timson, R.J. Reece, Sugar recognition by human
galactokinase, BMC Biochemistry 4 (2003) 16,
http://www.biomedcentral.com/1471–2091/4/16.

[7] D.J. Timson, R.J. Reece, Functional analysis of
disease-causing mutations in human galactokinase,
European Journal of Biochemistry 270 (8) (2003) 1767–1774.

[8] C.A. Sellick, R.J. Reece, Contribution of amino acid side
chains to sugar binding specificity in a galactokinase, Gal1p,
and a transcriptional inducer, Gal3p, Journal of Biological
Chemistry 281 (25) (2006) 17150–17155.

[9] J. Yang, L. Liu, J.S. Thorson, Structure-based enhancement of
the first anomeric glucokinase, ChemBioChem 5 (7) (2004)
992–996.

[10] J. Yang, X. Fu, Q. Jia, J. Shen, J.B. Biggins, J. Jiang, J. Zhao, J.J.
Schmidt, P.G. Wang, J.S. Thorson, Studies on the substrate
specificity of Escherichia coli galactokinase, Organic Letters
5 (13) (2003) 2223–2226.



Author's personal copy

54 c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 9 8 ( 2 0 1 0 ) 45–54

[11] H.M. Holden, J.B. Thoden, D.J. Timson, R.J. Reece,
Galactokinase: structure, function and role in type II
galactosemia, Cellular and Molecular Life Sciences (CMLS)
61 (2004) 2471–2484.

[12] N. Cenas, A. Nemeikaite-Ceniene, E. Sergediene, H.
Nivinskas, Z. Anusevicius, J. Sarlauskas, Quantitative
structure–activity relationships in enzymatic single-electron
reduction of nitroaromatic explosives: implications for their
cytotoxicity, Biochimica et Biophysica Acta 1528 (1) (2001)
31–38.

[13] Z. Anusevicius, J. Sarlauskas, N. Cenas, Two-electron
reduction of quinones by rat liver NAD(P)H:quinone
oxidoreductase: quantitative structure–activity
relationships, Archives of Biochemistry and Biophysics 404
(2) (2001) 254–262.

[14] W. Rödder, E. Reucher, F. Kulmann, Features of the
expert-system-shell spirit, Logic Journal of the IGPL 14 (3)
(2006) 483–500.

[15] M. Schramm, V. Fischer, Probabilistic reasoning with
maximum entropy—the system pit (system description),
www.pit-systems.de/Pit/P Lit/P Download/SF97.ps, 1997.

[16] D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M.
Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods Jr.,
The Amber biomolecular simulation programs, Journal of
Computational Chemistry 26 (2005) 1668–1688.

[17] B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S.
Swaminathan, M. Karplus, CHARMM: a program for
macromolecular energy, minimization, and dynamics
calculations, Journal of Computational Chemistry 4 (1983)
187–217.

[18] C. Oostenbrink, A. Villa, A.E. Mark, W.F. van Gunsteren, A
biomolecular force field based on the free enthalpy of
hydration and solvation: the GROMOS force-field parameter
sets 53A5 and 53A6, Journal of Computational Chemistry 25
(2004) 1656–1676.


