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Abstract—Correctly modelling and reasoning with uncertain
information from heterogeneous sources in large-scale systems is
critical when the reliability is unknown and we still want to
derive adequate conclusions. To this end, context-dependent
merging strategies have been proposed in the literature. In this
paper we investigate how one such context-dependent merging
strategy (originally defined for possibility theory), called largely
partially maximal consistent subsets (LPMCS), can be adapted
to Dempster-Shafer (DS) theory. We identify those measures for
the degree of uncertainty and internal conflict that are available
in DS theory and show how they can be used for guiding LPMCS
merging. A simplified real-world power distribution scenario
illustrates our framework. We also briefly discuss how our
approach can be incorporated into a multi-agent programming
language, thus leading to better plan selection and decision
making.

Keywords-Dempster-Shafer theory; information fusion;
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I. INTRODUCTION

SCADA (Supervisory Control and Data Acquisition) sys-
tems have proven to be a powerful and successful technology,
deployed in various environments such as power generation
and distribution [2]. Developing and managing such systems
is complex, but they can be modelled using multi-agent sys-
tems [12] such as the BDI framework. Each agent in the BDI
framework is modelled by its (B)eliefs (its current belief state),
(D)esires (what it wants to achieve) and (I)ntentions (desires
the agent is acting upon). However, a BDI agent cannot deal
with uncertain, incomplete or conflicting information collected
from multiple sources (e.g sensors or experts). This is often
problematic in realistic SCADA settings as the environment is
pervaded by uncertainty.

In this paper, we address these issues by extending the
BDI framework with a context-dependent merging strategy,
originally proposed in the setting of possibility theory [6].
We adapt the work to the setting of Dempster-Shafer (DS)
theory, which is a well-understood formal framework for
combining multiple sources of evidence. Notably, the explicit
representation of conflict and ignorance makes it an ideal
model for such complex systems. The ability to represent and
reason about the uncertain environment leads to better plan
selection strategies. The best plan is selected by determin-
ing the largely partially maximal consistent subset (LPMCS)
merge of various sources, transforming the merge result into
a probability distribution and then using this distribution for
decision making. To integrate these components into the BDI

architecture, we show how we need to extend concepts such
as a the belief base, as well as provide mechanisms for
conditional merging to alleviate the computational overhead
associated with context-dependent merging.

This paper is organised as follows. Section II provides some
necessary preliminaries, while Section III presents a power
distribution scenario as a running example. In Section IV we
adapt the LPMCS merge from possibility theory to the setting
of DS theory and we show in Section V how the ability to
model and reason about uncertain and conflicting information
leads to better plan selection in a BDI context. Finally in
Section VI we conclude the paper and discuss related work.

II. PRELIMINARIES

Dempster-Shafer [11] is a theory of evidence that is well-
suited for dealing with epistemic uncertainty and sensor fusion.
The frame of discernment Ω = {ω1, . . . , ωn} is defined as the
set of possible events, one of which is true at a particular
time. The basic belief assignment (bba), or mass function, is a
mapping m : 2Ω → [0, 1] if m(∅) = 0 and

∑
A⊆Ωm(A) = 1.

Intuitively, m(A) defines the proportion of evidence that sup-
ports A, but none of its specific subsets. Whenever m(A) < 0
for A ⊆ Ω it is called a focal element of m.

One of the best known rules to merge bbas is Dempster’s
rule of combination, or conjunctive rule, which is defined as:

m(∅) = 0,m(A) = (mi ⊗mj)(A) = c
∑

B∩C=A6=∅

mi(B)mj(C)

with c a normalisation constant, given by c = 1
1−K with

K =
∑
B∩C=∅mi(B)mj(C). The effect of the normalisation

constant c, with K the degree of conflict between mi and mj ,
is to redistribute the mass value assigned to the empty set.
As such, Dempster’s rule is only well-suited to merge sources
with a low degree of conflict. Dubois and Prade’s disjunctive
consensus rule [5], on the other hand, is defined as:

m(A) = (mi ⊕mj)(A) =
∑

B∪C=A

mi(B)mj(C)

Notably, the disjunctive rule omits normalisation and incor-
porates all conflict. Throughout this paper, irrespective of the
merging rule, we will denote the result of merging mi with mj

as mij . Also, we will interchangeably use evidence sources
and bbas when working with individual sources (e.g. a sensor)
to emphasise the underlying intuition. We assume that these
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TABLE I
EVIDENCE OBTAINED AT TIME δ WITH DISCOUNTING FACTOR α

evidence source value time δ hypotheses discount α
E1 SR1 49.8 (±0.2) δ (n) 0.95
E2 SR 49.7 (±0.1) δ (n) 0.90
E3 SR 49.4 (±0.1) δ (n,l) 0.56
E4 SR 49.7 (±0.2) δ(-5) (n) 0.75
E5 EE2 (50.0 - 50.4) δ n 0.50
E6 EE (49.9 - 50.2) δ n 0.85

1 Sensor Reading 2 Expert Estimation

evidence sources have been converted into bbas as needed,
e.g. in E1 ⊕ E2 with E1 and E2 both evidence sources.

When dealing with multiple sources, their frames of dis-
cernment can be distinct from each other. A multi-valued
mapping [9] one frame of discernment Ω1, to another frame
Ω2 where Γ : Ω1 → 2Ω2 . In other words, a single element from
Ω1 is mapped to a subset of Ω2. To reflect the reliability of
evidence we apply a discounting factor to each bba. Shafer’s
discounting technique [3] is defined as:

mα(A) = α ·m(A),∀A 6= Ω,mα(Ω) = (1− α) + α ·m(Ω)

where α = 0 represents a fully reliable source and α = 1 an
unreliable source.

To measure the (external) conflict between two bbas we use
the distance measure proposed by Jousselme [7], defined for
two bbas mi and mj on Ω as:

d(mi,mj) =

√
1

2
(−→mi −−→mj)TD(−→mi −−→mj)

with −→mi and −→mj the vector representations of mi and mj . We
have that −→mT is the transpose of vector −→m and D is a 2Ω x 2Ω

similarity matrix whose elements are D(A,B) = |A∩B||A∪
B|, with A and B subsets of Ω.

Finally, Smet’s pignistic model [3] allows decisions to be
made on individual hypotheses by transforming a bba m on Ω
into a probability distribution BetPm over Ω such that:

BetPm(ω) =
∑

A⊆Ω,ω∈A

m(A)

|A|

with |A| the number of elements in subset A.

III. POWER DISTRIBUTION SCENARIO

Throughout this paper, we use a power distribution scenario
as a running example. To monitor the overall health of a power
system i.e. to find its true environmental state, a number
of sources with various levels of granularity are considered.
We use frequency sensors to determine the frequency of oscil-
lations of alternating current (AC) in the power grid, nominally
50.0 Hz and expert estimations of the state (i.e. frequency) of
a given grid location at a given time as in Table I.

Sensor readings provide a specific numerical value and
are only accurate up to a given range, e.g. a reading
of 50.0 Hz implies the frequency is within 49.8 Hz
and 50.2 Hz. Sensor readings will map to the hypothe-
ses (l)ow, (n)ormal, (h)igh where Γ({49.0, . . . , 49.5}) = l;
Γ({49.5, . . . , 50.5}) = n; Γ({50.5, . . . , 51.0}) = h. Experts
will not give an exact value, but will instead only pro-
vide their hypotheses. Still, hypotheses among experts may

not be directly comparable. A frequency that is normal for
one expert may already be considered as low by another.
As such, we allow an overlap of values between hypothe-
ses where Γ({49.0, . . . , 49.7}) = l; Γ({49.5, . . . , 50.5}) = n;
Γ({50.3, . . . , 51.0}) = h. Using this scenario, the frame of
discernment that the sources have in common is Ω = {l, n, h}.

To estimate the basic belief assignment (bba) of each piece
of evidence we apply a reliability discounting factor using
Shafer’s discounting technique to account for sensor accuracy
and the time it was obtained. For sensor readings we can assign
probability to {l, n, h}, whereas for expert estimations we can
assign probability to the set of all possible subsets of Ω. For
example, given E1 in Table I we assign α to {n} and 1-α
to {l} as sensor accuracy causes the value to become closer
to a low hypotheses. Table II shows our estimated bbas after
applying all discounting.

TABLE II
BASIC BELIEF ASSIGNMENTS (BBAS) AFTER APPLYING DISCOUNTING

evidence mbba
i ∅ {l} {n} {h} {l, n} {l, h} {n, h} Ω

E1 m1 0 0.05 0.95 0 0 0 0 0
E2 m2 0 0.10 0.90 0 0 0 0 0
E3 m3 0 0.56 0.44 0 0 0 0 0
E4 m4 0 0.25 0.75 0 0 0 0 0
E5 m5 0 0 0.50 0 0 0.05 0.30 0.15
E6 m6 0 0 0.85 0 0 0.05 0.05 0.05

IV. CONTEXTUAL MERGING IN DS THEORY

Merging uncertain information is often problematic. For
example, a well-known limitation of Dempster’s rule of com-
bination (i.e. a conjunctive merge) is that it cannot be used
to merge sources that are too much in conflict with each
other. Similarly, disjunctively merging sources that are too
non-specific will result in total ignorance as to the true value.

In this section, we explore ideas presented in [6] in the
setting of possibility theory and adapt to DS theory. In
particular, we find suitable replacement for the measures used
in their work to determine the context, including measures for
internal and external conflict as well as measures to identify
the quality of any given source without knowing the actual
true value. By using DS theory, we have the benefit of a more
expressive framework which can more accurately represent the
various forms of uncertainty in the environment.

A. Quality of Information

The best source is commonly the source that is the most
specific, while exhibiting the least amount of internal conflict.
In DS theory we can measure specificity by considering a
measure for non-specificity which is defined by [8]:

N(m) =
∑
A∈F

m(A)log2|A|

with m a mass function, F a set of focal elements and |A|
the cardinality of A. When N(m) = 0 a source m is totally
specific while N(m) = log2|Ω| indicates total ignorance.

To measure internal conflict we consider a measure for
discord. When evidence is uncertain (or in disagreement),
measuring the internal conflict within subsets provides an idea
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TABLE III
UNCERTAINTY MEASURES OF THE SCENARIO IN DS THEORY

mi N(m) S(m) mi N(m) S(m) mi N(m) S(m)
m1 0 0.29 m2 0 0.47 m3 0 0.99
m4 0 0.81 m5 0.59 0.38 m6 0.18 0.32

of how coherent they are. The measure of strife [8], which
improves upon earlier approaches for measuring discord [8],
is defined as:

S(m) = −
∑
A∈F

m(A)log2

∑
B∈F

m(B)
|A ∩B|
|A|

with m a mass function and F a set of focal elements. We
have that S(m) = 0 for a source m that has no conflict, while
S(m) = log2|Ω| indicates total conflict.
Using the measures for non-specificity and discord allows us
to assess the quality of each source and, thus, allows us to
rank sources based on their quality. We have:

Definition 1. (adapted from Def. 5 from [6]) Let E1 and E2

be two evidence sources represented by mass functions m1

and m2, respectively. The quality of m1 is said to be better
than that of m2, denoted as m1 ≺ m2, if N(m1) < N(m2)
or N(m1) = N(m2) and S(m1) < S(m2) holds. Additionally,
we say that two sources are indistinguishable, denoted as
m1 ∼ m2 when N(m1) = N(m2) and S(m1) = S(m2). We say
that m1 is better or equal to m2, denoted as m1 � m2, when
either N(m1) < N(m2) or m1 ∼ m2.

Example 1. Consider the mass functions mi associated with
the evidence source Ei as provided in Table III. Based on
the quality of mi, the evidence sources can be ordered as
m1 ≺ m2 ≺ m4 ≺ m3 ≺ m6 ≺ m5, i.e. the best quality
source is m1 and the least quality source is m5.

B. Conditions of Conjunctive Merging

The next step is to merge a largely partially consistent
subset of the sources conjunctively. In particular, we apply
certain thresholds to both the internal conflict of the merged
result and the external conflict of the different sources to
merge to determine if we can further extend this subset. These
thresholds are determined by the knowledge engineer, as they
are domain specific, and reflect the degree of uncertainty we
are willing to tolerate. We have:

Definition 2. (adapted from Def. 7 from [6]) Let E1 and E2

be two evidence sources represented by mass functions m1

and m2, respectively. Let m12 be the conjunctively merged
result of m1 and m2. Let K be the associated degree of
conflict with that merge. These mass functions can be merged
conjunctively when K 6 εconflict and S(m12) 6 εstrife where
εconflict ∈ [0, 1] is a pre-defined threshold of the maximum
degree of conflict we tolerate and εstrife ∈ [0, log2|Ω|] is a
maximum degree of strife we are willing to allow. These mass
functions should be merged disjunctively, otherwise.

Example 2. Consider the power distribution scenario. Let
εconflict = 0.25 and εstrife = 0.30 as the maximum degree of
conflict and strife. These thresholds, given the scenario are
acceptable to minimise the internal and external conflict within

and between mass functions. For evidence sources E1 and
E2 we obtain that, given these thresholds, m1 and m2 can
be merged conjunctively as K = 0.14 and S(m12) = 0.05.
However, for E1 and E3, m1 and m3 are not safe to merge
conjunctively as K = 0.55 and S(m13) = 0.33.

Contrary to [6], a measure does not exist in DS theory
to measure the degree of information loss to determine if
applying a conjunctive rule is more suitable. Identifying and
evaluating such a measure is therefore left for future work.

C. Creating a Largely Partially Maximal Consistent Subset
An LPMCS is the result of merging sources that are

largely in agreement with each other. We measure the distance
between sources to assess how similar they are to a given
reference source, so as to maximise the number of sources we
merge in a single LPMCS. In [6], quality measures are used to
define an implicit distance. In DS theory, distance measures
are common to measure conflict. In this paper we use the
widely regarded Jousselme distance [7] to accurately measure
the similarity between sources.

Definition 3. (adapted from Def. 8 from [6]) Let Er be a
reference source represented by mass function mr. Let E1 and
E2 be two evidence sources represented by mass functions m1

and m2, respectively. Let mr1 and mr2 be the conjunctively
merged results of mr and m1, and mr and m2 respectively.
Let D be a distance measure. The distance of m1 is as close or
equal to that of m2 with regard to a reference source, denoted
as m1 �mr

m2, when D(mr,mr1) 6 D(mr,mr2).

Example 3. Consider the power distribution scenario with ev-
idence sources Ei represented by mi. The reference source is
m1 (from Definition 1). The results of applying the Jousselme
distance measure to m1 and m1i for i = 2, . . . , 6 are 0.05,
0.51, 0.20, 0.33 and 0.09, respectively. Since we find m1 is
the closest to m12, we merge m1 with m2.

Using the distance measure, we define a preferred sequence
for merging. The first source in the sequence is the reference
source with the remaining sources ordered given their distance.

Definition 4. (adapted from Def. 9 from [6]) Let E, E1, . . . ,Ek
be k+1 evidence sources with corresponding mass functions
m, m1, . . . ,mk. Let m be the reference source. The preferred
sequence for merging is (m,mi, . . . ,mij ,mij+1

, . . . ,mik)
with 1 6 j < k and mij �mj−1 mis with j < s 6 k, where
mj−1 is the conjunctively merged result of the first j sources
in the sequence that meet the specified thresholds.

Example 4. Consider the power distribution scenario, the
preferred sequence for merging is (m1,m2,m6,m4,m5,m3).

We can now define the concept of a largely partially maximal
consistent subset (LPMCS).

Definition 5. (adapted from Def. 10 from [6]) Let
m = {m,mi, . . . ,mij ,mij+1

, . . . ,mik} be the preferred
sequence of merging with reference m. A subset
Sm = {m,mi, . . . ,mij} is called an LPMCS with reference
m if the bbas in Sm can be merged conjunctively but bbas in
Sm ∪ {mij+1} cannot.
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TABLE IV
RESULTS OF LPMCS, CONJUNCTIVE AND DISJUNCTIVE MERGE

merge ∅ {l} {n} {h} {l, n} {l, h} {n, h} Ω
LPMCS 0 0 0.44 0 0.56 0 0 0
conjunctive 0 0 1.0 0 0 0 0 0
disjunctive 0 0 0.12 0 0.31 0 0.08 0.49

TABLE V
RESULTS OF PIGNISTIC TRANSFORMATION

l n h
LPMCS 0.28 0.72 0
conjunctive 0 1.0 0
disjunctive 0.32 0.48 0.21

Example 5. Consider Example 4, the corresponding LPMCS
are {m1,m2,m6,m4,m5} and {m3}. For the first subset
we cannot conjunctively merge m12645 with m3 since we
exceed the thresholds for conflict and strife i.e. K = 0.55 and
S(m126453) = 0.33, respectively. The process is then repeated
for the remaining sources.

D. Result of LPMCS Merge

Finally, once we cannot merge any more sources conjunc-
tively, we perform a disjunctive merge using Dubois and
Prade’s disjunctive consensus rule. The results are shown in
Table IV. For comparative purposes we also apply a conjunc-
tive merge and disjunctive merge. While a conjunctive merge
provides a similar result in this case, it should be noted that
a conjunctive merge would have failed if a trustworthy source
becomes unreliable, in which case the disjunctive merge would
prove valuable. The LPMCS merge, on the other hand, will
provide acceptable results in all these situations. The pignistic
transformation of all three merges is shown in Table V.

V. INTEGRATING LPMCS MERGE INTO AGENTSPEAK

We now propose a new framework to integrate AgentSpeak,
a multi-agent programming language, with LPMCS merge.
In particular, we show how merging different (conflicting)
sources of information can help improve plan selection by
enabling a suitable plan to be selected and executed based on
the agents beliefs about the current environment.

Before we integrate the LPMCS merge into AgentSpeak,
we provide a brief overview of AgentSpeak. An AgentSpeak
agent A is represented as a tuple 〈Bb, P l, E,A, I, Sε, SO, SI〉
where respectively we have its belief base (a set of beliefs),
plan library (a set of plans), event set, action set, intention
set and three selection functions [10] . An AgentSpeak agent
works in a continuous reasoning cycle where it senses its envi-
ronment and generates appropriate events as the environment
changes. There may be multiple events in the event set E, and
selection function Sε is used to select the event that the agent
will deal with in the current reasoning cycle. The plans that
are applicable to deal with this event are selected from Pl.
Again, there may be many plans to deal with a single event
and selection function SO selects one of these plans. This
plan then turns into an intention that may require multiple
reasoning cycles to execute. To ensure a good scheduling of
these intentions, selection function SI selects the intention

which executes during this cycle (as many cycles may be
needed to fully execute any given intention). The cycle then
repeats until there are no events left to deal with and there are
no more intentions to execute.

In [10], a belief atom is defined as b(t) where b is a n-ary
predicate symbol. If b(t) and c(t) are belief atoms, b(t), c(t),
b(t)∧c(t) and ¬b(t) are beliefs. Achievement and test goals are
defined as !g(t) and ?g(t) respectively where g is a predicate
symbol. Considering the belief atoms and goals, triggering
events are defined as +b(t), -b(t), +!g(t), -!g(t), +?g(t), -?g(t).
The operators + and - denote addition and deletion of a belief
or goal respectively. An action is defined as a(t) where a is
an action symbol. In all these cases t1,...tn are terms.

A. Collecting and Modelling Evidence

From the continual sensing of the environment, an agent
will acquire percepts representing particular properties of the
current state of the environment. We have:

Definition 6. Let a percept be represented as percept(Ei ,H )
where Ei is an evidence source and X is a subset of a frame
that represents the observable outcomes from source Ei.

Example 6. Consider the power distribution scenario. From
sensing the environment for two sources E1 and E6 we
have percept(E1, {50.0}) and percept(E6, {normal}), for a
frequency sensor and an expert estimation, respectively.

Each percept collected from the environment revises an
agent’s corresponding beliefs to reflect the current state of the
environment. In particular, a percept from a frequency sensor
will map its value to a hypothesis and generate a bba to model
uncertain information, which is included in the agent’s Bb+
base. We have:

Definition 7. Let Bb be a belief base and Ω =
{ω1, . . . , ωn} be a frame of discernment. Let a belief
atom from a percept(Ei ,Hi) be represented in Bb as
senseSource(Ei, S,Hi) where Ei is an evidence id, S is the
source type and Hi is a subset of Ω.

Example 7. Consider the evidence collected from sources
E1 and E6 in Table I. In the belief base Bb, they
are represented as senseSource(E1 ,SR, {49 .8 , . . . , 50 .2})
and senseSource(E6 ,EE , {normal}), respectively where SR
stands for sensor reading, and EE stands for expert estimation.

Note that belief atoms imply that pieces of evidence are
certain. For example, consider E1 and E6 in Example 7, the
bbas are m1 ({n}) = 1 and m6 ({n}) = 1 respectively, for the
two belief atoms. Since sources are unreliable, a discounting
function using the corresponding reliability factor is applied
to derive new bbas. For example, for E1 with reliability
factor 0.95, m1 is derived with m1 ({n})=0.95, m1 ({l})=0.05,
m1 (S )=0 for all other subsets S ⊆ {l, n, h}.

Since a belief base can only be used to store belief atoms,
we need to extend the notion of a belief base so that we can
associate with each belief atom a newly derived bba. We have:

Definition 8. Let b1 = senseSource(E1, S,H1) be a belief
atom in Bb, and mb1 be a bba derived from b1 after applying
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the discounting function, then (b1,mb1) is a belief atom in
Bb+, which is referred to as an extended belief atom, and
Bb+ is referred to as an extended belief base.

Example 8. Consider Example 6 and 7. Given
Ω = {l, n, h}, a belief atom in Bb+ is (b1,mb1)
where b1 = senseSource(E1,SR,normal);
mb1({n}) = 0.95;mb1({l}) = 0.05; mb1(∅) = mb1({h}) =
mb1({l, n}) = mb1({l, h}) = mb1({n, h}) = mb1(Ω) = 0.

Fig. 1. The reasoning cycle for an extended AgentSpeak agent.

B. Conditions of LPMCS Merge

In AgentSpeak, the LPMCS merge (from Section IV) is
executed when a new percept obtained from some source has
an associated bba that is considerably in conflict with the
current bba that we have in Bb+ for that source. To identify
the (degree of) conflict, we measure the distance between both
bbas. If the new bba is sufficiently similar to the existing
bba we assume that the real state has not changed in any
meaningful way and we do not perform a new merge. This
helps us to avoid the computational cost involved with merging
and to ensure the reactiveness of the agent (a key property of
any BDI agent). Otherwise, a merge needs to be executed to
ensure that the beliefs of the agent are up-to-date. We have:

Definition 9. Let E1, . . . , Ek be k evidence sources with
corresponding mass functions m1, . . . ,mk and k > 2. Let Ei
be any evidence source with an existing mass function mi and
a new mass function mnew

i . Let D be a distance measure. The
mass functions m1, . . . ,mi−1,m

new
i ,mi+1, . . . mk should be

merged using LPMCS merge when D(mi,m
new
i ) > εdist with

εdist a threshold of the similarity between mi and mnew
i .

Example 9. Consider the power distribution scenario. Let
εdist = 0.15 as the maximum degree of conflict allowed
between an existing bba and a new bba so that they are
sufficiently similar. Let an evidence source E1 have a previous
reading m1({n})=0.95, m1({l})=0.05. For a new reading with
mnew

1 ({l})=0.95, mnew
1 ({n})=0.05, the distance is 0.90. As

such the LPMCS merge is executed. On the other hand, if
a new reading is mnew′

1 ({n})=0.85, mnew′

1 ({n})=0.15, the
distance is 0.10. An LPMCS merge is not executed.

C. Result of LPMCS Merge

After the LPMCS merge, a new belief atom is inserted
into Bb+ to reflect the effect of combined evidence. This is
represented as (bn,mn), where mn is the merged bba and bn

is a belief atom in Bb defined as combinedSource(N,−,−)
with N the number of sources that were combined and ‘−−’
reflecting the Nil source type and Nil hypotheses.

Definition 10. Let P be the pignistic probability function over
Ω. For every ωi ∈ Ω, when P (ωi) > etrue, belief atom
default(N,−, ωi) is added to the agent’s belief base Bb, where
default is used to denote this belief atom is not from sensor
readings, but from a combined result.

Example 10. Consider the power distribution scenario with
Ω = {l, n, h} representing the states (l)ow, (n)ormal, (h)igh re-
spectively. Let etrue = 0.70 be the threshold where a state is ac-
ceptable. A new belief atom in Bb+ is represented as (bn,mn)
where bn = combinedSource(6,−,−) and mn({n}) = 0.44;
mn({l, n}) = 0.56. Now, after transforming this bba mn,
we get P (n) = 0.72, P (l) = 0.28, and P (h) = 0. Since
P (n) > etrue, a new belief atom default(6,−, n) is inserted
into the agent belief base Bb. Using this example, the grid
is in a normal state. However, if no probability of any
element in Ω exceeds the threshold, no new belief atoms are
generated, so an agent has the same beliefs as prior to this new
observation (reflecting that no significant changes occurred in
the environment).

In this example the conjunctive merge provides the correct
results. Due to space constraints, we do not consider an
example where a faulty sensor could cause the conjunctive
merge to incorrectly associate complete trust with the incorrect
result of that sensor. In such a case, a LPMCS and disjunctive
merge would correctly conclude that the actual state of the
environment is not known with a degree of probability given
that a conclusive result cannot be derived. As such the agent
is ignorant about the actual state of the environment resulting
in updating the belief and selecting a plan accordingly.

D. Plan Selection

Plan selection is an important component of any agent-based
system as it affects how the agent behaves based on its beliefs.
In the power distribution setting, the goal of an agent is to
select plans to achieve a safe and efficient supply of electrical
power to meet consumer demand. This might involve sub-
goals such as shutting down a substation when the voltage is
outside of the normal range. However, selecting the best plans
becomes error-prone when information about the environment
is incomplete, uncertain or in conflict. A plan is defined in [10]
as λ : b1 ∧ · · · ∧ bn ← h1; . . . ;hn with λ a triggering event,
b1, . . . , bn the context of the plan, h1; . . . ;hn the body of a
plan. Intuitively, the triggering event determines the events
for which the plan can be used, the context determines when
a plan is applicable and the plan body is the sequence of
actions/subgoals to execute in order to accomplish the goal.

Example 11. Consider the power distribution scenario where
agent A represents a distribution substation. In the belief base
of A, a belief atom such as default(N,−, ωi) records the
result from merging evidence where ωi is either low, normal or
high. Other belief atoms include distributing and calibrating
where power is distributing and sensors are calibrated and
adjusted. Actions to be executed by A include senseSources,
distribute and switchOff which indicate obtaining sensor read-
ings, the power distributes and the system switches off. Given
the environment, the following subset of plans specify the
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behaviour of A. Specifically, plans P1 to P3 use merged
results, while P4 uses a single reading. Plan P1, is triggered
when power is available on the grid in which case the agent
proceeds by gathering percepts to continuously validate the
state of the grid. In particular, if power is distributing and the
grid is normal, the agent continues to distribute power, while
sensing for future fluctuations.
P1: +!power : default(6,-,normal) & distributing ←

distribute; senseSources; !power.

Plan P2, is applicable when the pignistic result is high and
power is distributing. The agent will send an alert, switch off
and calibrate the sensors.
P2: +!power : default(6,-,high) ← alert; calibrate;

switchOff; !switchOn.

Plan P3, is triggered when the system is switched on and
applicable when the sensors have calibrated and power is not
distributing. The agent will then take the actions to distribute
power and gather percepts.
P3: +!switchOn : calibrated & not distributing ←

distribute; senseSources; !power.

Plan P4, is applicable when a single reading is normal and
power is distributing. The agent will gather the percept.
P4: +!power : default(1,-,normal) & distributing ←

senseSources; !power.

Clearly, the ability of the agent to merge uncertain infor-
mation has a positive effect on plan selection. In particular,
it becomes possible to create plans that are only applicable
when sufficient sources agree on the state of the grid, while
we retain the ability to base our decisions on only a single
source (e.g. when only a single sensor is available).

VI. RELATED WORK AND CONCLUSION

A context-dependent form of merging was suggested in [3]
for use in DS theory, where maximally consistent subsets
are created from uncertain and conflicting sources. However,
their approach only allows to discount all bbas with the same
reliability factor, whereas our approach allows a reliability
to be associated with each source. Furthermore, our work
integrates tightly with BDI, allowing for uncertainty reasoning
within a BDI setting. Several approaches to combining BDI
with uncertainty modelling have been proposed in the litera-
ture. In [4], an agent collects (uncertain) percepts which are
fed into a probabilistic graphical model (PGM), revising the
agent’s epistemic state after uncertainty propagation. Beliefs
are updated to a classical belief base where beliefs are either
true or false. Further to [4], work in [1] uses the BDI
architecture CANPLAN to consider an uncertain belief base
where an agent can reason about uncertainty on its own.
Actions are also modelled that are affected by uncertainty.
Contrary to those approaches, our work focuses on merging
different sources of information, which is not considered in
the aforementioned papers.

In this paper we presented a largely partially maximal
consistent subset (LPMCS) merging strategy in the Dempster-
Shafer (DS) setting. In particular, we adapted an existing ap-
proach from the setting of possibility theory and show how the

various measures required for an LPMCS merge are available
in the DS setting. Furthermore, we integrated and showed this
merging strategy in a BDI setting to model uncertainty and rea-
son about merged sensor readings. Specifically, we extended
the classical belief base of a BDI agent to accommodate basic
belief assignments, introduced a mechanism for conditional
merging and showed that the new framework allows for
better plan selection through considering the uncertainty of
the environment. As for future work, we are going to explore
the potential of an iterative LPMCS merge, as well as a
full evaluation of our framework. Such a merge would avoid
the difficulties associated with a conditional merge (e.g. the
context-dependent nature of when such a merge should occur)
could further improve the computational characteristic of our
new BDI framework.
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