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Abstract

The study of alternative combination rules in DS theory when evidence is in conflict has emerged again recently as an interesting
topic, especially in data/information fusion applications. These studies have mainly focused on investigating which alternative
would be appropriate for which conflicting situation, under the assumption that a conflict is identified. The issue of detection
(or identification) of conflict among evidence has been ignored. In this paper, we formally define when two basic belief assignments
are in conflict. This definition deploys quantitative measures of both the mass of the combined belief assigned to the emptyset before
normalization and the distance between betting commitments of beliefs. We argue that only when both measures are high, it is safe
to say the evidence is in conflict. This definition can be served as a prerequisite for selecting appropriate combination rules.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When the Dempster–Shafer theory of evidence (DS theory) first appeared as a mechanism to model and reason
with uncertain information in intelligent systems, criticisms on the counterintuitive results of applying Dempster’s
combination rule to conflicting beliefs soon emerged (e.g., [18,28,29]) where an almost impossible choice (with a
very lower degree of belief) by both sources came up as the most possible outcome (with a very high degree of belief).

Since then, alternative combination rules have been explored to recommend where the mass of the conflicting
belief from the two sources should land (e.g., [4,19,26]). Recently, due to the increasing applications of DS theory in
intelligent fusion processes, Dempster’s combination rule and its alternatives have been under the microscope again
(e.g., [10,13,14,21]).

In [13], the three well-known alternatives, i.e., Smets’s unnormalized combination rule (known as the conjunctive
combination rule) [19], Dubois and Prade’s disjunctive combination rule [4], and Yager’s combination rule, are ex-
amined and a general combination framework is proposed. This new framework has a component that re-distributes
the mass of the combined belief assigned to the emptyset (the false assumption) in a flexible way that it specifies
which subsets can share this mass and by what proportions. In this way, the three alternatives listed above can all be
subsumed by the framework.
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In [14], the weighted average is recommended in certain situations, such as, one piece of evidence contradicts with
several other pieces of evidence which are consistent, to preserve the opinion from majority sources.

While the above two papers are still circling around the well-known alternatives, the method proposed in [10] takes
a different approach. A new operator called the consensus operator is proposed which reduces a basic belief assign-
ment on a set of values into a basic belief assignment on a binary set (a set with only two values), the combination is
then carried out on this binary set. Three examples, two are commonly regarded as involving conflicting beliefs and
one is with consistent beliefs, are examined in comparison with Dempster’s rule of combination. It was concluded
that the consensus operator could always produce a rational result for combining even conflicting beliefs. However,
since this method always focuses on two elements when performing combinations, it may not be suitable for many
complex situations where multiple values (not just two) should be preserved.

Furthermore, the consensus operator approach does not provide any indication whether the evidence to be combined
may be conflicting. As it was concluded by the author “by looking at the result only, it does not tell whether the original
beliefs were in harmony or in conflict” [10].

To justify whether original beliefs are in conflict has a big impact on selecting alternative combination rules [21].
So far there are no general mechanisms to measure the degree of conflict other than using the mass of the combined
belief assigned to the emptyset before normalization, i.e., m⊕(∅) (see its definition in Section 2). In this paper, we
mainly focus on this rather ignored topic. We study quantitatively when two sources can be defined as conflict. We
argue that the conventional explanation that a high mass value of the combined belief assigned to the emptyset before
normalization indicates a conflict among the original beliefs may not always be accurate. For example, if we have
two distinct and totally reliable sources providing two basic belief assignments m1 and m2 as m1(si) = m2(si) = 0.2
(i = 1,2, . . . ,5), then combining these basic belief assignments with Dempster’s rule yields the mass being assigned
to the emptyset as 0.8 before normalization. Under the current convention, this amount of mass would warrant a
verdict that these two pieces of evidence are in conflict and Dempster’s rule should not be used. In fact, these two
pieces of evidence are consistent and using Dempster’s rule produces a new basic belief assignment which is identical
to either of them.

In order to avoid a wrong claim made by using only m⊕(∅), we propose an alternative method to measure the
conflict among beliefs using a pair of values, the mass of the combined belief allocated to the emptyset before normal-
ization and the distance between betting commitments. We also investigate the effect of these measures on deciding
when Dempster’ rule can be applied. We believe that this result is significant given that it decides subsequently whether
Dempster’s rule is appropriate and if not, what other rule should be considered.

The rest of the paper is organized as follows. In Section 2, we review the basic definitions in DS theory. In Section 3,
we first examine the commonly accepted convention that m⊕(∅) reveals the degree of conflict among two pieces of
evidence and the deficiency associated with this convention. We then investigate the meaning of pignistic transfor-
mation and define the distance between betting commitments from two pignistic transformations. A formal definition
consisting of two measures is proposed to judge when two pieces of evidence are in conflict. We also demonstrate that
the distance between betting commitments is consistent with the distance between two pieces of evidence measured
by the method in [11]. In Section 4, we explore the properties and behaviour of this pair of measures. In Section 5,
we look at the impact of this new definition on the decision of whether Dempster’s rule should be used in general and
then discuss in particular the cases which show the difference in the decisions when using only m⊕(∅) and using both
of the measures. Section 6 concludes the main contribution of the paper and discusses the difference between conflict
analysis and independence analysis among basic belief assignments.

2. Basics of the Dempster–Shafer theory

We review a few concepts commonly used in the Dempster–Shafer theory of evidence, as well as the conjunctive
combination rule [21] and the disjunctive combination rule [4]. Let Ω be a finite set called the frame of discernment.

Definition 1. [20] A basic belief assignment (bba) is a mapping m : 2Ω → [0,1] that satisfies
∑

A⊆Ω m(A) = 1.

In Shafer’s original definition which he called the basic probability assignment [22], condition m(∅) = 0 is re-
quired in Definition 1. Recently, some of the papers on Dempster–Shafer theory, especially since the establishment
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of the Transferable Belief Model (TBM) [16], condition m(∅) = 0 is often omitted. A bba with m(∅) = 0 is called a
normalized bba and is also known as a mass function.

Definition 2. The belief function from a bba m is defined as bel : 2Ω → [0,1],
bel(A) =

∑
B⊆A

m(B).

When m(A) > 0, A is called a focal element of the belief function.

Definition 3. [21] A categorical belief function is a belief function where its corresponding bba m satisfies

m(B) =
{

1 if B = A, where A �= ∅, A �= Ω, B ⊆ Ω,

0 otherwise.
(1)

A categorical belief function has only one focal element and this element is neither empty nor the whole frame. In
other words, a categorical belief function assigns the total belief to a single proper subset of the frame.

Definition 4. Let m1 and m2 be two bbas defined on frame Ω which are derived from two distinct sources. Let the
combined bba be m⊕ = m1 ⊕m2 by Dempster’s rule of combination where ⊕ represents the operator of combination.
Then

m⊕(A) =
∑

B,C⊆Ω,B∩C=A m1(B)m2(C)

1 − ∑
B,C⊆Ω,B∩C=∅ m1(B)m2(C)

, ∀A ⊆ Ω, A �= ∅

when
∑

B,C⊆Ω,B∩C=∅ m1(B)m2(C) �= 1.

∑
B,C⊆Ω,B∩C=∅ m1(B)m2(C) is the mass of the combined belief assigned to the emptyset before normalization

and we denote it as m⊕(∅). In the following, whenever we use m⊕(∅), we always associate it with this explanation
unless otherwise explicitly stated.

The above rule is meaningful only when m⊕(∅) �= 1, otherwise, the rule cannot be applied.

Definition 5. [21] Let m1 and m2 be two bbas defined on frame Ω . Their conjunctive combination, denoted as
m ∩© = m1 ∩© m2, is a new bba on Ω defined as:

m ∩©(A) =
∑

B,C⊆Ω,B∩C=A

m1(B)m2(C), ∀A ⊆ Ω,

where ∩© represents the operator of combination.

Definition 6. [4] Let m1 and m2 be two bbas defined on frame Ω . Their disjunctive combination, denoted as m ∪© =
m1 ∪© m2, is a new bba on Ω defined as:

m ∪©(A) =
∑

B,C⊆Ω,B∪C=A

m1(B)m2(C), ∀A ⊆ Ω

where ∪© represents the operator of combination.

The conjunctive combination rule is applied when it is assumed that the two (distinct) pieces of evidence are both
reliable. When only one of the two is fully reliable, but it is not clear which source it is, the disjunctive combination
rule is recommended.

Definition 7. [20] Let m be a bba on Ω . Its associated pignistic probability function BetPm :Ω → [0,1] is defined as

BetPm(ω) =
∑

A⊆Ω,ω∈A

1

|A|
m(A)

1 − m(∅)
, m(∅) �= 1

where |A| is the cardinality of subset A.
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BetPm can be extended as a function on 2Ω as BetPm(A) = ∑
ω∈A BetPm(ω). The transformation from m to BetPm

is called the pignistic transformation. When an initial bba gives m(∅) = 0, m(A)
1−m(∅)

is reduced to m(A). In the following,

we always assume that function BetPm has been extended to 2Ω .
BetPm(A) tells what is the total mass value that A can carry and it is referred to as the betting commitment to A.

Function BetPm is named the probability expectation function in [10].

3. Relationship between basic belief assignments

3.1. m⊕(∅) versus conflict

So far we have used the word “conflict” without giving it an explicit explanation. In this subsection we investigate
what it means when “two pieces of evidence (or two beliefs) are in conflict” in the context of Dempster–Shafer theory
in the literature and how it is associated with m⊕(∅).

Let us first look at the following example.

Example 1. Let Ω be a frame of discernment with four elements {ω1,ω2,ω3,ω4}. Assume two bbas, from two distinct
sources, are defined as1

m1
({ω1,ω2}

) = 0.9, m1
({ω3}

) = 0.1, m1
({ω4}

) = 0.0,

m2
({ω1,ω2}

) = 0.0, m2
({ω3}

) = 0.1, m2
({ω4}

) = 0.9.

Combining them using Dempster’s rule leads to a new bba m⊕ with m⊕({ω3}) = 1.0 and m⊕(∅) = 0.99 before
normalization.

Neither of the two strongly preferred choices by the two sources is preserved and the least preferred choice by the
two sources is given the full credit after the combination with Dempster’s rule.

The first source is almost certain that the true hypothesis is either ω1 or ω2, whilst the second source is almost
certain that the true hypothesis is ω4. Since at most one and only one of these three hypotheses can be true, the beliefs
from both sources cannot be held simultaneously. Hence these two beliefs largely contradict with each other. When
this happens, it is said that the two beliefs are in conflict. Following this analysis, we give the following qualitative
definition of conflict between two beliefs.

Definition 8. A conflict between two beliefs in DS theory can be interpreted qualitatively as one source strongly sup-
ports one hypothesis and the other strongly supports another hypothesis, and the two hypotheses are not compatible.

In Example 1, if we revise the two bbas as:

m′
1

({ω1,ω2}
) = 1.0, m′

1

({ω3}
) = 0.0, m′

1

({ω4}
) = 0.0,

m′
2

({ω1,ω2}
) = 0.0, m′

2

({ω3}
) = 0.0, m′

2

({ω4}
) = 1.0

then these two bbas totally contradict with each other. This is the situation when the maximal conflict occurs. Further-
more, the extreme case of maximal conflict appears when m1(ωi) = 1 for bba m1 and m2(ωj ) = 1 for bba m2, and
ωi �= ωj , where one source is absolutely sure that ωi is the right hypothesis and the other source is absolutely sure
that ωj is the right hypothesis.

On the other hand, the total absence of conflict occurs when two bbas are identical. In this situation, whatever
supported by one bba is equally supported by the other bba and there is no slightest difference in their beliefs. The
extreme case of total absence of conflict is when m1(A) = m2(A) = 1, especially when |A| = 1.

Example 2. Let the first pair of bbas from two distinct sources on frame Ω = {ω1,ω2,ω3,ω4,ω5} be:

1 This example shares the same spirit as the famous Peter, Mary, Paul murder suspect example. We include more elements in the frame to facilitate
subsequent examples in the paper.
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m1
({ω1}

) = 0.2, m1
({ω2}

) = 0.2, m1
({ω3}

) = 0.2, m1
({ω4}

) = 0.2, m1
({ω5}

) = 0.2,

m2
({ω1}

) = 0.2, m2
({ω2}

) = 0.2, m2
({ω3}

) = 0.2, m2
({ω4}

) = 0.2, m2
({ω5}

) = 0.2.

Dempster’s rule produces a combined bba, denoted as m⊕, which is identical to either of the two original ones and
generates m⊕(∅) = 0.8 before normalization.

Now let the second pair of bbas from two distinct sources on the same frame be:

m3
({ω1}

) = 0.4, m3
({ω1,ω2}

) = 0.4, m3
({ω1,ω2,ω3}

) = 0.2,

m4
({ω1}

) = 0.4, m4
({ω1,ω2}

) = 0.4, m4
({ω1,ω2,ω3}

) = 0.2.

Combining these two bbas produces m′⊕(∅) = 0.0 for the combined bba m′⊕.

In this example, the two pairs of bbas have different characteristics. The bbas in the first pair are actually probability
distributions and the corresponding belief functions are fully dissonant whilst the two bbas in the second pair have
nested sets of focal elements and their corresponding belief functions are in fact necessity measures in possibility
theory and are therefore fully consonant [2,9].

So far, in Dempster–Shafer theory, value m⊕(∅) is commonly taken as the quantitative measure of this qualitative
definition of conflict (e.g., [22]).

With regard to Example 1, qualitatively, the two beliefs are in conflict; quantitatively, the m⊕(∅) value is very
large. Therefore, the m⊕(∅) value seems to accurately reflect the meaning of the qualitative analysis. Furthermore,
Dempster’s rule indeed produces a result that is counterintuitive. As a consequence, there is no dispute about using
m⊕(∅) as a quantitative measure of conflict in this case and all other similar examples appeared in the literature.

However, if we look into Example 2, we see a different picture. First, if we follow the above convention in
Dempster–Shafer theory and use the m⊕(∅) value as the quantitative measure of conflict in beliefs, then the two
bbas in the first pair could be classified as in conflict since m⊕(∅) = 0.8. This conclusion is obviously wrong because
we know already that these two bbas completely agree with each other although both bbas have lower confidence in
every possible hypothesis. Second, m′⊕(∅) = 0.0 goes nicely with the fact that the two bbas in the second pair share
totally the same beliefs. However, in general, it is very likely that m⊕(∅) > 0 holds for two identical bbas except
when they have nested focal elements (like the second pair). Therefore, m⊕(∅) values have no direct relationship with
whether the two bbas under consideration are identical, i.e., absence of conflict.

In summary, it is not difficult to conclude from the above investigation that not all high m⊕(∅) values indicate
a conflict that can be satisfactorily interpreted qualitatively. As demonstrated by the first pair of bbas in Example 2,
where the m⊕(∅) value before normalization is high, but the two beliefs cannot be classified as in conflict qualitatively.

These examples prompt us to conclude that value m⊕(∅) cannot be used as a quantitative measure of conflict
between two beliefs, contrary to what has long been taken as a fact in the Dempster–Shafer theory community.
We argue that m⊕(∅) only represents the mass of uncommitted belief (or falsely committed belief ) as a result of
combination.

Since m⊕(∅) itself is not sufficient as the quantitative measure of conflict between two beliefs, we must look into
other criteria in order to reveal the relationship between two bbas. Let us recall the result of pignistic transformation
BetPm. If BetPm1 and BetPm2 are two pignistic probability functions for two bbas, then what does |BetPm1(A) −
BetPm2(A)| reveal about A?

3.2. Betting commitment versus conflict

Example 3. Let two bbas from two distinct sources on frame Ω = {ω1,ω2,ω3,ω4} be

m1
({ω1,ω2}

) = 0.8, m1
({ω3}

) = 0.1, m1
({ω4}

) = 0.1,

m2
({ω1,ω2}

) = 0.1, m2
({ω3}

) = 0.1, m2
({ω4}

) = 0.8.

Combining them with Dempster’s rule gives m⊕(∅) = 0.83 before normalization. Let A = {ω4} (where focal element
A has the highest mass value in at least one bba), then the betting commitments to A from the two bbas are

BetPm (A) = 0.1, BetPm (A) = 0.8
1 2
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and the difference between them is∣∣BetPm1(A) − BetPm2(A)
∣∣ = 0.7

which is high. It indicates that there is a significant difference from the two sources in believing that the true event is
in A. At the same time, the mass of uncommitted belief after combination is also very high (m⊕(∅) = 0.83).

When both of these values are high, it could be the case that the large difference between betting commitments
has contributed to the high amount of uncommitted belief (m⊕(∅)). However, these two measures can differ in other
situations as demonstrated by the following example.

Example 4. Let m1 and m2 be two bbas defined in Example 2 (the first pair). Let A be a subset of the frame, say {ω1},
and BetPm1 and BetPm2 be the results of two pignistic transformations from m1 and m2 respectively, then∣∣BetPm1(A) − BetPm2(A)

∣∣ = 0.2 − 0.2 = 0.0

which indicates that there is no difference between betting commitments to A from the two sources (and in fact to any
subset).

In this example, two consistent beliefs result in no difference between betting commitments to any subset, whilst
the mass of uncommitted belief after combination is still very high (0.8). Therefore, this amount of uncommitted
belief cannot come from the difference between betting commitments but from other reasons, as a consequence, these
two measures tell us two different aspects of the bbas involved.

Definition 9. Let m1 and m2 be two bbas on frame Ω and let BetPm1 and BetPm2 be the results of two pignistic
transformations from them respectively. Then

difBetPm2
m1

= maxA⊆Ω

(∣∣BetPm1(A) − BetPm2(A)
∣∣)

is called the distance between betting commitments of the two bbas.

Value (|BetPm1(A) − BetPm2(A)|) is the difference between betting commitments to A from the two sources. The
distance of betting commitments is therefore the maximum extent of the differences between betting commitments to
all the subsets. difBetPm2

m1 is simplified as difBetP when there is no confusion as which two bbas are being compared.
Obviously, difBetPm2

m1 = 0 whenever m1 = m2, i.e., the distance between betting commitments is always 0 between
any two identical bbas (total absence of conflict).

Given two bbas and their corresponding pignistic transformations, it is possible that these two bbas have the same
betting commitment to a subset A (that is, BetPm1(A) = BetPm2(A)), but have rather different betting commitments
to another subset B . For this reason, we cannot use either min or mean to replace operator max in the above definition,
since we want to find out the maximum, not the minimum or the average, level of differences between their betting
commitments.

Notation difBetP coincides with the error measurement between a belief function and its approximation defined
in [24], where BetPm1 and BetPm2 represent pignistic probability functions of a belief function and its approximation
respectively.

3.3. Conflict between basic belief assignments

After analyzing the nature of both m⊕(∅) and difBetP, we are now ready to quantitatively define when two bbas
can be said in conflict.

Definition 10. Let m1 and m2 be two bbas. Let cf (m1,m2) = 〈m⊕(∅),difBetP〉 be a two-dimensional measure where
m⊕(∅) is the mass of uncommitted belief when combining m1 and m2 with Dempster’s rule and difBetP be the distance
between betting commitments in Definition 9. m1 and m2 are defined as in conflict iff both difBetP > ε and m⊕(∅) > ε

hold, where ε ∈ [0,1] is the threshold of conflict tolerance.
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Since there does not exist an “absolute meaningful threshold” of conflict tolerance satisfying all pairs of bbas [1],
the choice of ε is largely subjective and application oriented. In general, the closer ε is to 1.0, the greater the conflict
tolerance is. If we let ε be 0.8, then according to Definition 10 the bbas in Example 3 are in conflict. However, if we
upgrade the threshold to 0.9, then the two bbas are not in conflict.

The need to use two measures instead of one in Definition 10 is further illustrated by the following example.

Example 5. Let m1 and m2 be two bbas from two distinct sources on Ω = {ω1, . . . ,ω5} as

m1
({ω1}

) = 0.8, m1
({ω2,ω3,ω4,ω5}

) = 0.2, and

m2(Ω) = 1.

Then the mass of uncommitted belief is 0.0, i.e., m⊕(∅) = 0.0, when m1 and m2 are combined with Dempster’s rule,
which is traditionally explained as there is no conflict between the two bbas. Indeed, they do not contradict with each
other as what is qualitatively defined in Definition 8. However, m1 is more committed whilst m2 is less sure about
its preference. The difference in their opinions is reflected by difBetP = 0.6. It says that the two sources have rather
different beliefs as where the true hypothesis lies.

To summarize, a large distance between betting commitments alone does not guarantee that the beliefs under
consideration can be qualitatively interpreted as in conflict, nor does a high m⊕(∅) value itself. Only these two values
together can serve this purpose.

3.4. Betting commitment versus a distance measure approach

In [11], a method for measuring the distance between bbas is proposed. This distance is defined as

dBPA(m1,m2) =
√

1

2
( �m1 − �m2)T

D= ( �m1 − �m2)

where
D= is a (2Ω × 2Ω)-dimensional matrix with d[i, j ] = |A ∩ B|/|A ∪ B|, and A ∈ 2Ω , B ∈ 2Ω are the names

of columns and rows respectively (note, we define |∅ ∩ ∅|/|∅ ∪ ∅| = 0). Given a bba m on frame Ω , �m is a 2Ω -
dimensional column vector (can also be called a 2Ω × 1 matrix) with mA∈2Ω (A) as its 2Ω coordinates.

( �m1 − �m2) stands for vector subtraction and ( �m)T is the transpose of vector (or matrix) �m. When �m is a 2Ω -

dimensional column vector, ( �m)T is its 2Ω -dimensional row vector with the same coordinates. (( �m)T
D= �m) thus is the

result of normal matrix multiplications (twice).
For example, let Ω = {a, b} be the frame and let m({a}) = 0.6, m(Ω) = 0.4 be a bba on Ω . Then

�m =
⎡
⎢⎣

0.0
0.6
0.0
0.4

⎤
⎥⎦

is a 4-dimensional column vector with row names (∅, {a}, {b}, Ω) and ( �m)T = [0.0 0.6 0.0 0.4] is the corresponding

row vector with column names (∅, {a}, {b}, Ω).
D= is thus a 4 × 4 square matrix with (∅, {a}, {b}, Ω) as the names

for both rows and columns. (( �m)T
D= �m) therefore means that matrix ( �m)T is multiplied by

D= first to produce a new
4-dimensional row vector and then this row vector is multiplied by column vector �m to obtain a single numerical
result.

In the examples provided by [11], among two bbas, one of them is always a categorical belief function, i.e., the
total mass value is awarded to a proper subset of the whole frame. Most of the time, this subset contains only a single
element.

We now take an example from the paper (Example 2, Fig. 6 in [11]) to see the relationship between the distance
measure (dBPA) and the distance between betting commitments (difBetP).

Example 6. Let Ω be a frame of discernment with 20 elements (or any number of elements that is pre-defined). We
use 1,2, etc. to denote element 1, element 2, etc. in the frame. The first bba, m1, is defined as
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m1
({2,3,4}) = 0.05, m1

({7}) = 0.05, m1(Ω) = 0.1, m1(A) = 0.8,

where A is a subset of Ω . The second bba used in the example is

m2
({1,2,3,4,5}) = 1.

There are 20 cases where subset A increments one more element at a time, starting from Case 1 with A = {1} and
ending with Case 20 when A = Ω as shown in Table 1. The comparison between dBPA defined in [11] and the distance
between betting commitments difBetP for m1 and m2 for these 20 cases is detailed in Table 1 and graphically illustrated
in Fig. 1.

Table 1
Comparison of dBPA , difBetP, and m⊕(∅) values of m1 and m2 when subset A changes. Here
m⊕ = m1 ⊕ m2

Cases dBPA difBetP m⊕(∅)

A = {1} 0.7858 0.605 0.05
A = {1,2} 0.6866 0.426 0.05
A = {1,2,3} 0.5633 0.248 0.05
A = {1, . . . ,4} 0.4286 0.125 0.05
A = {1, . . . ,5} 0.1322 0.125 0.05
A = {1, . . . ,6} 0.3883 0.258 0.05
A = {1, . . . ,7} 0.5029 0.355 0.05
A = {1, . . . ,8} 0.5705 0.425 0.05
A = {1, . . . ,9} 0.6187 0.480 0.05
A = {1, . . . ,10} 0.6553 0.525 0.05
A = {1, . . . ,11} 0.6844 0.560 0.05
A = {1, . . . ,12} 0.7081 0.591 0.05
A = {1, . . . ,13} 0.7274 0.617 0.05
A = {1, . . . ,14} 0.7444 0.639 0.05
A = {1, . . . ,15} 0.7592 0.658 0.05
A = {1, . . . ,16} 0.7658 0.675 0.05
A = {1, . . . ,17} 0.7839 0.689 0.05
A = {1, . . . ,18} 0.7944 0.702 0.05
A = {1, . . . ,19} 0.8042 0.714 0.05
A = {1, . . . ,20} 0.8123 0.725 0.05

Fig. 1. Comparison of dBPA and difBetP values of the two bbas detailed in Table 1 when subset A changes. The X-axis shows the sizes of subset A

and the Y-axis gives the scale of dBPA and difBetP.
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Table 2
Comparison of dBPA, difBetP, and m⊕(∅) values of the three
pairs of bbas in Example 7

bbas dBPA difBetP m⊕(∅)

m1
1,m1

2 0.70 0.700 0.83

m2
1,m2

2 0.574 0.464 0.19

m3
1,m3

2 0.721 0.600 0.00

From the figure we can see that both measures go up and down consistently, when the size of A changes. However,
the difBetP values are always smaller than the corresponding dBPA values, because the former selects the maximum
value of the differences between betting commitments to all the subsets while the latter is the accumulated distance
between two bbas.

The major drawback of dBPA is its inability to distinguish between a large mass of uncommitted belief (i.e., m⊕(∅)

is large, but difBetP is small) and a large difference between betting commitments (i.e., m⊕(∅) is small, but difBetP
is large). This situation can be seen in the last few cases where the distance measure dBPA between the two bbas is
getting larger along with the growth of the size of A. Clearly the change in distances is caused by the difference
between betting commitments not the amount of uncommitted belief. In fact, in all the cases value m⊕(∅) remains
unchanged. The following example makes the situation even more explicit.

Example 7. Let us consider three pairs of bbas on a frame with five elements:

1st pair m1
1

({ω1,ω2}
) = 0.8, m1

1

({ω3}
) = 0.1, m1

1

({ω4}
) = 0.1,

m1
2

({ω1,ω2}
) = 0.1, m1

2

({ω3}
) = 0.1, m1

2

({ω4}
) = 0.8;

2nd pair m2
1

({ω1,ω2,ω4}
) = 0.8, m2

1

({ω3}
) = 0.1, m2

1

({ω4}
) = 0.1,

m2
2

({ω1,ω2}
) = 0.1, m2

2

({ω3}
) = 0.1, m2

2

({ω4}
) = 0.8;

3rd pair m3
1

({ω1}
) = 0.8, m3

1

({ω2,ω3,ω4,ω5}
) = 0.2,

m3
2(�) = 1.0.

The summary of dBPA, difBetP, and m⊕(∅) values of the three pairs is given in Table 2.
For the first pair the distance measure dBPA between them reflects both the high values of difBetP and m⊕(∅), while

the distance measure dBPA in the third pair mainly reveals the difference between betting commitments of the pair,
not the mass of uncommitted belief. By looking at these two dBPA values alone, it is not possible to tell the difference
between the first and the third pairs.

In summary, although the distance measure, dBPA, between two bbas is a useful indicator as how different the belief
distributions from the evidence are, however, this value itself cannot differentiate whether a pair of bbas are in conflict.

Since dBPA and difBetP behave similarly, an interesting question is whether difBetP can be replaced by dBPA in
Definition 10 with a slightly lower threshold. We argue that this substitution, although looks feasible, offers a less
accurate measure of the maximum degree of the difference between betting commitments (i.e., the degree of con-
tradiction) of the two beliefs. Let us look at Example 7 again. The first pair of bbas are more contradictory in their
beliefs (one strongly believes in {ω1,ω2} and another strongly believes in {ω4}) than the two bbas in the third pair
are. In the meantime, the difBetP value of the first pair is larger than that of the 3rd pair. That is, difBetP values
are consistent with the severeness of the degree of contradiction in beliefs. In contrast, the dBPA value for the first
pair is smaller than that of the third pair, so these two values are not consistent with the severeness of the degree
of contradiction in beliefs. Therefore, difBetP is a better measure than dBPA for judging how contradict the two be-
liefs are.
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4. Properties and behaviour of the new measures

We deploy the examples (called cases) detailed in Table 3 to assist the explanation of the properties and behaviour
of the two measures of cf (m1,m2) defined in Definition 10. We assume that two bbas, m1 and m2, are from two
distinct sources. We first examine their properties.

Lemma 1. cf (m1,m2) = 〈1,1〉 iff (
⋃

Ai) ∩ (
⋃

Bj ) = ∅, where Ai and Bj are the focal elements of the two belief
functions with m1 and m2 as their corresponding bbas.

Lemma 1 says that when cf (m1,m2) = 〈1,1〉, the two sources contradict completely in predicting what the true
hypothesis is, i.e., the maximal conflict occurs, as shown by Case 10 in Table 3.

Lemma 2. If two bbas belong to one of the categories below then cf (m1,m2) = 〈0.0,0.0〉: (a) identical categorical
belief functions; (b) one of them is a vacuous belief function and the other is a probability function with evenly
distributed probabilities; (c) two identical bbas with identical nested sets of focal elements.

Lemma 2 implies that when cf (m1,m2) = 〈0.0,0.0〉, the two bbas do not have even slightest contradiction in
predicting what the true hypothesis is, see Cases 11 and 12 of Table 3 for the first two situations.

Lemma 3. cf (m0 ⊕ m1,m0 ⊕ m2) �= cf (m1,m2) for most bbas.

For example, if we let m1 and m2 be the two bbas as defined in Case 5 of Table 3, and m0 be a bba as

m0
({1,2}) = 0.8, m0

({1,3}) = 0.2,

then cf (m1,m2) = 〈0.0, difBetP〉 whilst cf (m0 ⊕ m1,m0 ⊕ m2) = 〈m⊕(∅) > 0.0,difBetP〉, where m⊕(∅) is the mass
of uncommitted belief after combining bbas obtained from m0 ⊕ m1 and m0 ⊕ m2 respectively.

All these lemmas can be proved easily.
Let us now describe the behaviour of cf (m1,m2). Given two bbas, m1 and m2, that are from distinct sources,

there are four situations as how this pair of measures, cf (m1,m2) = 〈m⊕(∅),difBetP〉, would reveal the relationship
between the bbas.

A: when both m⊕(∅) and difBetP have very low values, this pair of values indicate that there is little contradiction
between m1 and m2, although there exists a focal element A of m1 and B of m2 such that A ∩ B = ∅, see Case 8 in
Table 3. The extreme situation for this category is cf (m1,m2) = 〈0.0,0.0〉.

B: when m⊕(∅) has a relatively high value and difBetP has a relatively low value, this pair of values indicate that
the two bbas have no apparent severe difference between betting commitments. However, most of the pairs of focal
elements from the two bbas may have the empty intersection. It is also highly likely that none of the focal elements
has a particularly high mass value, see Case 9 in Table 3. The extreme situation for this category is when difBetP = 0.0
which suggests that there is no difference between their betting commitments, see Case 2 in Table 3.

C: when m⊕(∅) has a relatively low value and difBetP has a relatively high value, this pair of values indicate a
strong difference between betting commitments, but with little amount of mass of uncommitted belief. Therefore,
the focal elements from the two belief functions that do not share any common elements (empty intersection) cannot
both have large amounts of mass values, such as Case 7 in Table 3. The extreme situation for this category is when
m⊕(∅) = 0.0, such as Case 3 in Table 3.

D: both m⊕(∅) and difBetP have high values. This pair of values reveal that the difference between betting com-
mitments is high and the mass of uncommitted belief is also high. This is the situation where the two bbas may be said
in conflict, subject to the actual value of the threshold of conflict tolerance, such as Case 6 in Table 3. The extreme
situation for this category is cf (m1,m2) = 〈1,1〉.

The graphical illustration of these situations is given in Fig. 2. The dark grey square within rectangle C in Fig. 2
shows those situations where m⊕(∅) is small and which can be mistaken as that Dempster’s rule is applicable. If
Dempster’s rule is applied, most of the masses of the combined belief will be assigned to some very small intersection
subsets, since a high difBetP value means that many of the focal elements from the two bbas create either an empty
intersection or a small intersection. The dotted square within rectangle B shows those situations where m⊕(∅) is
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Table 3
Twelve cases of two bbas on Ω with |Ω| = 10. We use 1,2, etc. to denote element 1, element 2 etc. in Ω . A pair of
values ({1},0.8) (resp. ({2},0.2)) in Case 1 under column name m1 means m1({1}) = 0.8 (resp. m1({2}) = 0.2)

Case m1 : m2 : cf (m1,m2)

1 {1},0.8; {2},0.2 {1},0.8; {2},0.2 〈0.32,0.0〉
2 {i},0.1 {i},0.1 〈0.9,0.0〉
3 {1,2,3,4},1.0 {4,5},0.8; {3,6},0.2 〈0.0,0.65〉
4 Ω,1.0 {4,5},0.5; {2},0.5 〈0.0,0.4〉
5 {1,2, },0.8; {2,4},0.2 {1,2,3},0.8; {2,3,4},0.2 〈0.0,0.23〉
6 m1

1 in Ex 7 m1
2 in Ex 7 〈0.83,0.7〉

7 m2
1 in Ex 7 m2

2 in Ex 7 〈0.19,0.464〉
8 {1,2},0.8; {1,3},0.2 {1},0.5; {2},0.1; {1,3},0.4 〈0.02,0.3〉
9 {1},0.3; {2},0.3 {1},0.2; {2},0.2 〈0.76,0.1〉

{3},0.2; {4},0.2 {3},0.3; {4},0.3
10 {1,2},1.0 {3,4,5},1.0 〈1.0,1.0〉
11 {1,2},1.0 {1,2},1.0 〈0.0,0.0〉
12 {i},1/|Ω| Ω , 1.0 〈0.0,0.0〉

Fig. 2. An illustrative explanation of cf (m1,m2) where k = m⊕(∅). The two squares and two rectangles, denoted as A, D, B and C respectively,
generated by the dotted lines starting with 0.25 on both axes correspond to the four situations above.

large and which traditionally suggests that Dempster’s rule cannot be applied. On the contrary, this square contains
those cases where applying Dempster’s rule produces rational results, since the high m⊕(∅) value is likely due to
the low masses assigned to the focal elements, not the difference between betting commitments. The dotted triangle
in square D shows some delicate situations. For example, when the (m⊕(∅),difBetP) pair is closer to square A, it
might still be feasible to apply Dempster’s rule, but when the pair is further away from square A, it becomes more
problematic to apply the rule.

5. Impact on applying Dempster’s rule

There are several alternative combination rules to Dempster’s original version that aim at merging a pair of bbas
when it is believed that Dempster’s rule is not adequate to use. In [21], Smets discussed in detail which rule should
be used for what situation for both the categorical and general bba combinations. For example, when the mass of the
combined belief m⊕(∅) �= 0.0 and it is believed that one source is reliable and the other is not, the disjunctive rule [4]
should be used. Alternatively, when there is no apparent reason for conflict, register the conflict with the conjunctive
rule (the unnormalized Dempster’s rule) [21].

In summary, no matter for categorical or general bba combinations in [21] or in any other papers that investigate the
alternative combination rules, as long as the combined m⊕(∅) �= 0.0 (especially when this value is high), Dempster’s
rule of combination is deemed to be inadequate. In this paper, we have demonstrated using various examples that
this convention does not always hold. We argue that Dempster’s rule gives the most acceptable results in some of the
situations where traditionally this rule is excluded from use on the basis that the m⊕(∅) value is high. On the other
hand, the perception that Dempster’s rule is applicable whenever m⊕(∅) = 0.0 is questioned when the application
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of the rule narrows down the conclusion considerably. Therefore, we propose the following definition to recommend
when Dempster’s rule should be used and when it should not, given two bbas from two distinct sources.

Definition 11. Let cf (m1,m2) = 〈m⊕(∅),difBetP〉 be the two-dimensional measure defined in Definition 10 for bbas
m1 and m2 from two distinct sources. Dempster’s rule of combination is not applicable when Condition 1 holds;
Dempster’s rule of combination is advised not to be applied when Condition 2 holds; Dempster’s rule of combination
should be applied with caution when Condition 3 holds; and Dempster’s rule is applicable when Condition 4 holds

1. m1 and m2 are in conflict according to Definition 10 (such as when ε = 0.85),
2. difBetP � ε2,
3. difBetP ∈ (ε1, ε2),
4. difBetP � ε1.

Here threshold ε1 ∈ [0,1] is assumed sufficiently small, such as 0.3 and threshold ε2 ∈ [0,1] is assumed sufficiently
large, such as 0.8.

All these thresholds are subject to individual application requirements and indeed there is a very fine line (or a
grey area) between Conditions 2 and 3. We will discuss the implications of these threshold values in Section 5.3.
Condition 1 covers typical cases where a counterintuitive result will be generated, if the rule is used, as commonly
accepted. The 2nd condition says that the rule should not be applied since it may eliminate most of the possible
hypotheses given in the original evidence, even though the combined result is not necessarily counterintuitive. An
exception to this scenario is when one bba is a vacuous belief function and the other assigns a high proportion of its
belief to a subset. In this case the combined result does not eliminate hypotheses that are strongly supported by the
2nd bba. Our definition above does not include this situation, as we believe that combining a vacuous belief function
with another bba is less interesting in practice. It should be pointed out that although Condition 2 subsumes Condi-
tion 1 and it can be refined to exclude Condition 1, i.e., to include a condition on m⊕(∅), we feel that the current
description of Condition 2 is simpler and Condition 1 should always be checked before Condition 2 is applied. The
3rd condition advises that the rule should be used cautiously in order not to eliminate the true hypothesis during
combination, although the result may not appear counterintuitive. Finally, the 4th condition implies two situations:
(1) when m⊕(∅) is small, the rule is perfectly applicable, as it is understood and practiced with most of the appli-
cations of DS theory; (2) when m⊕(∅) is large, the rule is still applicable, as contrary to what most of the literature
concluded.

5.1. Categorical belief functions

Now we apply this rule selection principle to categorical belief functions first.
Let two bbas from two distinct sources be m1 and m2 where each has one focal element with certainty. Let the

frame of discernment be Ω = {ω1,ω2, . . . ,ω10}. We consider 10 cases listed in Table 4. The “Rule selection” column
indicates our conclusions as whether Dempster’s rule should be used based on Definition 11, in particular, the bold-
faced suggestions are against the commonly accepted protocol.

For Cases 1 and 2, it is clear from Definition 10 that the two bbas are in conflict, therefore, there is no ambiguity
that Dempster’s rule should not be applied.

For all the other cases, the common feature is that the mass of uncommitted belief gives m⊕(∅) = 0.0. Therefore,
the default combination rule is Dempster’s and the combined belief is assigned to the intersection of the two focal
elements from the two bbas, regardless the size of each focal element as well as the size of the interaction. However,
the distance between betting commitments gives a range of values which are almost in the reverse order of the ratio
between the commonly supported subset (the intersection) and the union of the two focal elements, i.e., |A∩B|

|A∪B| . When
the distance between two betting commitments is low, such as Case 10, Dempster’s rule is recommended to combine
the bbas. However, when this value is high, such as Case 4, it is questionable whether the intersection of the two focal
elements should still be the subset that carries all the combined belief, since these two bbas only agree on a small
collection of elements.
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Table 4
Ten cases of two categorical belief functions on Ω with |Ω| = 10. We use 1,2, etc. to denote element 1, element 2 etc. in Ω .
m1 : (A,1) (resp. m2 : (B,1)) means bba m1 (resp. m2) assigns mass value 1 to subset A (resp. B). Case 1 and Case 2 etc. show
the actual elements in A and B in different situations. The thresholds used are as defined in Definition 11 and the numerical
number in the “Rule selection” column indicates which condition in Definition 11 is applied

Case m1 : (A,1) m2 : (B,1)
|A∩B|
|A∪B| cf (m1,m2) Rule selection

1 {3} {5} 0 〈1.0,1.0〉 not Dempster’s (1)
2 {1,2,3} {5,6,7,8,9} 0 〈1.0,1.0〉 not Dempster’s (1)
3 {3,4} {4,5} 1/3 〈0.0,0.5〉 caution with

Dempster’s (3)
4 {1,2,3,4} {4,5,6,7,8,9} 1/9 〈0.0,0.83〉 not

Dempster’s (2)
5 {1,2,3,4} {2,3,4,5} 3/5 〈0.0,0.25〉 Dempster’s (4)
6 {1,2,3,4} Ω \ {1} 3/10 〈0.0,0.67〉 caution with

Dempster’s (3)
7 {3,4,5} {4} 1/3 〈0.0,0.67〉 caution with

Dempster’s (3)
8 A A 1 〈0.0,0.0〉 Dempster’s (4)
9 Ω Ω 1 〈0.0,0.0〉 Dempster’s (4)
10 {3, . . . ,9} {1, . . . ,7} 5/9 〈0.0,0.286〉 Dempster’s (4)

Table 5
Twelve cases of two bbas on Ω with |Ω| = 10. We use 1,2, etc. to denote element 1, element 2 etc. in Ω . A pair of values
({1},0.8) (resp. ({2},0.2)) in Case 1 under column name m1 means m1({1}) = 0.8 (resp. m1({2}) = 0.2). The thresholds used are
as defined in Definition 11 and the numerical number in the “Rule selection” column indicates which condition in Definition 11
is applied

Case m1 : m2 : cf (m1,m2) Rule selection

1 {1},0.8; {2},0.2 {1},0.8; {2},0.2 〈0.32,0.0〉 Dempster’s (4)
2 {i},0.1 {i},0.1 〈0.9,0.0〉 Dempster’s (4)
3 {1,2,3,4},1.0 {4,5},0.8; {3,6},0.2 〈0.0,0.65〉 caution with

Dempster’s (3)
4 Ω,1.0 {4,5},0.5; {2},0.5 〈0.0,0.4〉 caution with

Dempster’s (3)
5 {1,2},0.8; {1,2,3},0.8; 〈0.0,0.23〉 Dempster’s (4)

{2,4},0.2 {2,3,4},0.2
6 m1

1 m1
2 〈0.83,0.7〉 caution with

in Example 7 in Example 7 Dempster’s (3)
7 m2

1 m2
2 〈0.19,0.464〉 caution with

in Example 7 in Example 7 Dempster’s (3)
8 {1,2},0.8; {1},0.5; {2},0.1; 〈0.02,0.3〉 Dempster’s (4)

{1,3},0.2 {1,3},0.4
9 {1},0.3; {2},0.3; {1},0.2; {2},0.2; 〈0.76,0.1〉 Dempster’s (4)

{3},0.2; {4},0.2 {3},0.3; {4},0.3
10 {1,2},1.0 {3,4,5},1.0 〈1.0,1.0〉 not Dempster’s (1)
11 {1,2},1.0 {1,2},1.0 〈0.0,0.0〉 Dempster’s (4)
12 {i},1/|Ω| Ω,1.0 〈0.0,0.0〉 Dempster’s (4)

5.2. General belief functions

Let us now re-examine the cases reported in Table 3 with Definition 11. Similar to Table 4, in Table 5 the bold-faced
suggestions in the “Rule selection” column are based on Definition 11 and are in disagreement with traditional views
of using Dempster’s rule.

We first look at Cases 2 and 9 in detail. Both cases work well with Dempster’s rule, so does the rule of average.
However, other rules all fail. In Case 2, the mass of uncommitted belief (m⊕(∅)) is very high, yet this does not affect
the use of Dempster’s rule. Case 9 would be another similar example where Dempster’s rule produces the same result
as the average operator. Next, let us compare Cases 6 and 7. Based on Condition 3 of Definition 11, both cases can be



922 W. Liu / Artificial Intelligence 170 (2006) 909–924
Fig. 3. Squares F and E are generated by the dotted lines starting with values b and a on both axes respectively, where k = m⊕(∅).

combined with Dempster’s rule with caution. However, an interesting question is shall we be more cautious of Case 6
than of Case 7?

To summarize, a large m⊕(∅) value itself does not rule out the possible application of Dempster’s rule. On the
contrary, a large m⊕(∅) value coupled with a lower difBetP value strongly suggest the use of Dempster’s rule.

5.3. Where the boundary lies

When defining conflict in Definition 10, we require that both of the values, m⊕(∅) and difBetP, are greater than
a threshold ε. An important question facing this is how large should ε be. We argue that the choice of ε is entirely
subjective to the nature of an application. If an application can tolerate only a small amount of difference between
two sources, then ε has to be a relatively smaller value such as 0.75 (square F in Fig. 3 shows the conflict situations).
On the other hand, if it is possible to tolerate a great deal of difference between sources, then ε can be very close
to 1.0 (square E in Fig. 3 shows the conflict situations). The former says that two sources have to be largely consis-
tent to avoid being called in conflict, while the latter says that only when two sources provide highly contradictory
information, they can be said in conflict.

Another interesting point with Definition 10 is whether we need one threshold for both measures or we need two
different thresholds. Indeed, if two different thresholds are chosen, then it indicates that the measure that requires
a smaller threshold plays a more important role than the other measure. For instance, when the threshold for difBetP is
1.0, cf (m1,m2) is reduced to the situation where only m⊕(∅) is essential. Likewise, when the threshold for m⊕(∅) is
1.0, cf (m1,m2) is reduced to the situation where only difBetP is useful. As we have demonstrated in examples earlier,
neither of the two measures alone is capable of defining a conflict accurately. Therefore, both thresholds are essential
to ensure that the two measures are used adequately.

Finally, it is a very fine line between when to caution the use of Dempster’s rule and when not to use the rule, as
shown between rectangles G and H in Fig. 3. To be more precise, when is difBetP too large so that not to use the rule
and when is it large enough to caution the rule? The same question applies to the boundary between Conditions 3
and 4 in Definition 11. It is assumed these thresholds are fuzzy linguistic terms, just like how tall is tall in terms of a
person’s height, and there will be no universally agreed thresholds to satisfy all the applications.

6. Conclusions

Analyzing the relationship between a pair of bbas is important given that different combination rules can produce
rather different results. A common perception of rejecting Dempster’s rule is when the mass of uncommitted belief
m⊕(∅) is large and this value is widely taken as the reflection of conflict between the given beliefs. In this paper, we
have investigated what really constitutes a conflict among two bbas. We examine not only the m⊕(∅) value but also the
distance between betting commitments, and conclude that only this pair of values together can reveal a real conflict.
Neither m⊕(∅) nor difBetP taken alone is adequate to precisely describe a conflict between two bbas. Whether there
exists a single numerical measure, or another measure that can replace difBetP, to serve the same purpose as that of
cf (m1,m2) remains to be an interesting question which deserves to be further investigated.

We also proposed a set of rules guiding whether Dempster’s rule can be used, should be cautioned, is advised not
to be used, or cannot be applied at all. The rejection of Dempster’s combination rule on the ground that m⊕(∅) is
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large alone is no longer valid. Instead, this guideline can be applied along with suitability selected thresholds to tailor
a particular application. When Dempster’s rule is not applicable, the analysis of what has caused this and what other
rule can substitute it is thoroughly discussed in [21].

In the past, apart from using m⊕(∅) as the quantitative measure of conflict among two bbas, some other methods
were proposed to measure the conflict or confusion or non-specificity in a single belief function, such as [3,5,8,12,17,
25]. Since these approaches are designed for a single belief function only, they cannot be used to measure the conflict
among pairs of belief functions in general and hence are not comparable with our method. Nevertheless, one may be
attempted to apply these measures to the combined and unnormalized bba after combining two bbas with Dempster’s
rule. However, great care should be taken when using these measures. First, some of these methods are not applicable
when m⊕(∅) > 0 (e.g., [8,25]), so adaptations of the methods are needed. Second, how should we interpret the value
calculated with such a method, that is, are we examining this value on its own or are we comparing it with the results of
using the same method to the two original bbas? These questions need to be fully investigated before these measures
should be applied.

Another issue often surrounding the applicability of Dempster’s rule is whether the two bbas to be combined are
independent. There have been many papers discussing this, among them notably [27], on the justification of applying
Dempster’s rule. These discussions rely on the construction of an underlying probabilistic model to justify if the two
bbas are probabilistically independent. In a situation where there does not exist an underlying probability model or it
is too complex to establish the underlying probability model, the judgement of independence of the bbas cannot be
done. Furthermore, belief functions can be interpreted in two ways [6], one is to take them as generalized probabilities
and another is to take them as representing evidence. For the latter case, evidence can be the result of an agent’s
epistemic beliefs which does not necessarily come from probabilistic information. Two identical bbas do not suggest
automatically that they must be dependent.

Nevertheless, it is worth to point out the distinction between the independence of sources and the independence
of observations. With two bbas m1 and m2 derived from two independent sources (e.g., readings from two distinct
sensors), the conflict analysis method developed in this paper can tell if these two bbas are in conflict and therefore
whether they should be combined with Dempster’s combination rule or with an alternative rule. In contrast, when
these two bbas are from the same source (e.g., two readings at different time points from the same sensor), the conflict
analysis between them can indicate whether there is a sudden change of the situation being observed (e.g., the target).
Two bbas of this nature should not be combined regardless if they are in conflict. When there is no (or little) conflict
between the two bbas, there is no dramatic change in the situation under observation. However, if the conflict does
exist, then either the situation has changed completely or the source (e.g., the sensor) fails to function properly. In
either case, the cause of the change, that is, the cause of the conflict between the old and the new bbas should be
investigated.

The focus of this paper is not on the independence of bbas, rather, it is on whether two bbas are in conflict, no
matter whether one has the intension to apply Dempster’s rule. When one does want to combine two bbas from
distinct sources, the conflict analysis between them defined in the paper will help to determine if Dempster’s rule is
appropriate. Therefore, fundamentally, this paper discusses a totally different issue from the independence requirement
in the Dempster–Shafer theory of evidence.

When bbas are taken as a method to model an agent’s beliefs, a bba defined by an agent can also be viewed as a
way of expressing the agent’s preferences over choices, with respect to masses assigned to different hypotheses (focal
elements in terms of DS theory). The larger the mass assigned to a hypothesis is, the more preferred the hypothesis
is. Therefore, hypotheses can be ordered according to the degree that they are preferred. Under this context, when the
degree of disagreement of preferences is high as defined in social choice theory, we may then be able to conclude that
the agents’ beliefs are in conflict. An interesting future work here is whether numerous definitions of the degree of
disagreement of preferences in social choice theory can be deployed to measure the conflict among bbas, and if so,
how effective these measures could be in comparison with the approach proposed in this paper.

Finally, we would like to mention briefly logic-based interpretations of belief functions which may give us some
insight on what a conflict means. Several papers (e.g. [7,15,23]) have discussed logic-based interpretations of DS
theory, we follow the modal logic interpretation in [7] here. In terms of modal logic, the degree of belief on a hypoth-
esis A (e.g., a subset A of a frame) can be taken as the accumulated sum of probabilities on those possible worlds
in which A is necessarily true (defined by the valuation function with the modal operators). Let us denote the set of
possible worlds (interpretations) in which A is necessarily true as Mod(A). Under this notation, two belief functions,
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bel1 and bel2, are said in conflict when Mod(A)∩ Mod(B) = ∅ holds, where both m1(A) and m2(B) for bel1 and bel2
respectively are very large (close to 1). In other words, two belief functions are in conflict when there does not even
exist one possible world that simultaneously supports the two hypotheses that are believed strongly by the two belief
functions.
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