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Abstract. Recently, the problem of inconsistency handling in description logics
has attracted a lot of attention. Many approaches have been proposed to deal with
this problem based on existing techniques for inconsistency management. In this
paper, we first define two revision operators in description logics; one is called a
weakening-based revision operator and the other is its refinement. Based on the re-
vision operators, we then propose an algorithm to handle inconsistency in a stratified
description logic knowledge base. We show that when the weakening-based revision
operator is chosen, the resulting knowledge base of our algorithm is semantically
equivalent to the knowledge base obtained by applying refined conjunctive maxi-
adjustment (RCMA) which refines disjunctive maxi-adjusment (DMA), known to
be a good strategy for inconsistency handling in classical logic.
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1. Introduction

Ontologies play a crucial role for the success of the Semantic Web
(Berners-Lee, Hendler, and Lassila, 2001). Currently, a large number
of ontologies have been developed in various research domains, or even
within a single domain. Description logics (or DLs for short) comprise
a family of knowledge representation languages with which to represent
ontologies. In many cases, we may need to merge or integrate several
ontologies into a single ontology, and even if the original ontologies
are individually consistent, the merged ontology may be inconsistent.
Current DL reasoners, such as RACER (Haarslev and Möller, 2005)
and FaCT (Horrocks, 1998), can detect logical inconsistency. However,
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they only provide lists of unsatisfiable classes. The process of resolving
inconsistency is left to the user or the ontology engineers. The need to
improve DL reasoners to reason with inconsistency is becoming urgent
to make them more applicable. Many approaches have been proposed
to handle inconsistency in ontologies based on existing techniques for
inconsistency management in traditional logics, such as propositional
logic and nonmonotonic logics (Schlobach and Cornet, 2003; Parsia,
Sirin, and Kalyanpur, 2005; Huang, Harmelen, and Teije, 2005).

It is well-known that priority or preference plays an important role
in inconsistency handling (Baader and Hollunder, 1995b; Benferhat and
Baida, 2004; Meyer, Lee, and Booth, 2005). In (Baader and Hollunder,
1995b), the authors introduced priority to default terminological logic
such that more specific defaults are preferred to more general ones.
When conflicts occur in reasoning with defaults, defaults which are
more specific should be applied before more general ones. In (Meyer,
Lee, and Booth, 2005), an algorithm, called refined conjunctive maxi-
adjustment (RCMA for short) was proposed to weaken conflicting in-
formation in a stratified DL knowledge base and some consistent DL
knowledge bases were obtained. To weaken a terminological axiom, they
extend the DL ALC by a construct that can express global restrictions
on the cardinality of concepts and weaken the axiom by relaxing the
restrictions on the number of elements it may have. However, to weaken
an assertional axiom, they simply delete it. An interesting problem is
to seek and investigate other DL expressions to weaken a conflicting
DL axiom (both terminological and assertional).

In this paper, we first define two revision operators in description
logics: a weakening-based revision operator and its refinement. The
revision operators are defined by nominals The idea is that when a
terminology axiom or a value restriction is in conflict, we simply add
explicit exceptions to weaken it and assume that the number of excep-
tions is minimal. Based on the revision operators, we then propose an
algorithm to handle inconsistency in a stratified description logic knowl-
edge base. We show that when the weakening-based revision operator
is chosen, the resulting knowledge base of our algorithm is semantically
equivalent to that of the RCMA algorithm. However, their syntactical
forms are different and they are applied to different description logics.

This paper is organized as follows. Section 2 gives a brief review of
description logics. We then define two revision operators in Section 3.
The revision-based algorithm for inconsistency handling is proposed in
Section 4. Before the conclusion, we have a brief discussion on related
work.
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2. Description Logics

In this section, we introduce some basic notions of description logics
(DLs), a well-known family of knowledge representation formalisms
(Baader et al., 2003). DLs are fragments of first-order predicate logic.
That is, they can be translated into first-order predicate logic (Borgida,
1994). They differ from their predecessors such as semantic networks
and frames (Quillian, 1967; Minsky, 1981) in that they are equipped
with a formal, logic-based semantics. In DLs, elementary descriptions
are concept names (unary predicates) and role names (binary pred-
icates). Complex descriptions are built from them inductively using
concept and role constructors provided by the particular DL under
consideration.

We consider the DL ALC (Schmidt-Schaußand Smolka, 1991) ex-
tended by nominals (Schaerf, 1994), which is a simple yet relatively
expressive DL. AL is the abbreviation of attributive language and C
denotes “complement”. Let NC and NR be pairwise disjoint and count-
ably infinite sets of concept names and role names respectively. We use
the letters A and B for concept names, the letter R for role names, and
the letters C and D for concepts. ⊤ and ⊥ denote the universal concept
and the bottom concept respectively. The set of ALC concepts is the
smallest set such that: (1) every concept name is a concept; (2) if C and
D are concepts, R is a role name, then the following expressions are
also concepts: ¬C (full negation), C⊓D (concept conjunction), C⊔D

(concept disjunction), ∀R.C (value restriction on role names) and ∃R.C

(existential restriction on role names).
An interpretation I = (∆I , ·I) consists of a set ∆I , called the do-

main of I, and a function ·I which maps every concept C to a subset
CI of ∆I and every role R to a subset RI of ∆I ×∆I such that, for
all concepts C, D, role R, the following properties are satisfied:

(1) ⊤I = ∆I and ⊥I = ∅, (¬C)I = ∆I \ CI ,
(2) (C⊓D)I = CI∩DI , (C⊔D)I = CI∪DI ,
(3) (∃R.C)I = {x|∃ y s.t.(x, y)∈RI and y∈CI},
(4) (∀R.C)I = {x|∀y(x, y)∈RI implies y∈CI}.
For example, the concept description Person ⊓ Female is an ALC-

concept describing those persons that are female. Suppose hasChild

is a role name, the concept description Person ⊓ ∀hasChild.Female

expresses those persons whose children are all female. The concept
∀hasChild.⊥ ⊓ Person describes those persons who have no children.

A general concept inclusion axiom (GCI) or terminology is an in-
clusion statement of the form C⊑D, where C and D are two (possibly
complex) ALC concepts. It is the statement about how concepts are
related to each other. An interpretation I satisfies a GCI C⊑D iff
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CI⊆DI . A finite set of GCIs is called a Tbox. We can also formulate
statements about individuals. We denote individual names as a, b, c.
A concept (role) assertion axiom has the form C(a) (R(a, b)), where
C is a concept description, R is a role name, and a, b are individual
names. An Abox contains a finite set of concepts and role axioms. In
the Abox, one describes a specific state of affairs of an application
domain in terms of concept and roles. To give a semantics to Aboxes, we
need to extend interpretations to individual names. For each individual
name a, ·I maps it to an element aI ∈ ∆I . The mapping ·I should
satisfy the unique name assumption (UNA)1, that is, if a and b are
distinct names, then aI 6=bI . An interpretation I satisfies a concept
axiom C(a) iff aI∈CI , it satisfies a role axiom R(a, b) iff (aI , bI)∈RI .
A DL knowledge base K consists of a Tbox and an Abox, i.e. it is a set
of GCIs and assertion axioms. An interpretation I is a model of a DL
(Tbox or Abox) axiom iff it satisfies this axiom, and it is a model of a
DL knowledge base K if it satisfies every axiom in K. In the following,
we use M(φ) (or M(K)) to denote the set of models of an axiom φ

(or DL knowledge base K). K is consistent iff M(K)6=∅. Let K be an
inconsistent DL knowledge base, a set K ′⊆K is a conflict of K if K ′ is
inconsistent, and any sub-knowledge base K ′′⊂K ′ is consistent. Given
a DL knowledge base K and a DL axiom φ, we say K entails φ, denoted
as K |= φ, iff M(K)⊆M(φ).

To define our approach, we need to extend ALC with nominals
(Schaerf, 1994). A nominal has the form {a}, where a is an individual
name. It can be viewed as a powerful generalization of DL Abox indi-
viduals. The nominal stands for exactly one individual. Semantically,
it is different from an atomic concept, which is interpreted as some set
of individuals. The semantics of {a} is defined by {a}I = {aI} for an
interpretation I. Nominals are included in many DLs, such as SHOQ
(Horrocks and Sattler, 2001).

3. Revision Operators for DLs

3.1. Definition

Belief revision is an important topic in knowledge representation. It
deals with the problem of consistently accommodating new informa-
tion received by an existing knowledge base. Recently, Flouris et al.
discuss how to apply the famous AGM theory (Gardenfors, 1988) in

1 In some very expressive DLs, such as SHOQ, this assumption is dropped.
Instead, they use inequality assertions of the form a 6

.
=b for individual names a and

b, with the semantics that an interpretation I satisfies a 6
.
=b iff a

I 6=b
I .
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belief revision to DLs and OWL (Flouris, Plexousakis and Antoniou,
2005). However, they evaluate only the feasibility of applying the AGM
postulates for contraction in DLs. There is no explicit construction of a
revision operator in their paper. In this section, we propose a revision
operator for DLs and provide a semantic explanation of this operator.

We need some restrictions on the knowledge base to be revised. First,
the original DL knowledge base should be consistent. This assumption
is often accepted in belief revision theory. Second, we consider only
inconsistencies arising due to objects explicitly introduced in the Abox.
That is, suppose K and K ′ are the original knowledge base and the
newly received knowledge base respectively, then for each conflict Kc

of K∪K ′, Kc must contain an Abox statement. For example, we exclude
the following case: ⊤ ⊑ ∃R.C ∈ K and ⊤ ⊑ ∀R.¬C ∈ K ′. The handling
of conflicting axioms in the Tbox has been discussed in some work
recently (Schlobach and Cornet, 2003; Parsia, Sirin, and Kalyanpur,
2005). In this section, we discuss the resolution of conflicting infor-
mation which contains assertional axioms in the context of knowledge
revision.

We give a method to weaken a GCI first. To weaken a GCI, we
simply add some explicit exceptions, and the number of exceptions is
called the degree of the weakened GCI.

DEFINITION 1. Let C⊑D be a GCI. A weakened GCI (C⊑D)weak of
C⊑D has the form (C⊓¬{a1}⊓...⊓¬{an})⊑D, where n is the number
of individuals to be removed from C. We use d((C⊑D)weak) = n to
denote the degree of (C⊑D)weak.

It is clear that when d((C⊑D)weak) = 0, (C⊑D)weak = C⊑D. The idea
of weakening a GCI is similar to that of weakening an uncertain rule
in (Benferhat and Baida, 2004). That is, when a GCI is involved in
conflict, instead of dropping it completely, we remove those individuals
which cause the conflict.

The weakening for an assertion is simpler than that for a GCI. The
weakened assertion φweak of an Abox assertion φ = C(a) is of the
form either φweak = ⊤(a) or φweak = φ. That is, we either weaken
the concept C to ⊤ or keep it intact. The degree of φweak, denoted by
d(φweak), is defined as d(φweak) = 1 if φweak = ⊤(a) and 0 otherwise.

Next, we consider the weakening of a DL knowledge base.

DEFINITION 2. Let K and K ′ be two consistent DL knowledge bases.
Suppose K∪K ′ is inconsistent. A DL knowledge base Kweak,K′ is a
weakened knowledge base of K w.r.t K ′ if it satisfies:

− Kweak,K′ ∪K ′ is consistent, and
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− There is a bijection f from K to Kweak,K′ such that for each
φ∈K, f(φ) is a weakening of φ.

The set of all weakened bases of K w.r.t K ′ is denoted by WeakK′(K).

In Definition 2, the first condition requires that the weakened base
should be consistent with K ′. The second condition says that each
element in Kweak,K′ is uniquely weakened from an element in K.

EXAMPLE 1. Let K = {bird(tweety), bird⊑flies} and K ′ = {¬flies

(tweety)}, where bird and flies are two concepts and tweety is an in-
dividual name. It is easy to check that K∪K ′ is inconsistent. Let K1 =
{⊤(tweety), bird⊑flies}, K2 = {bird(tweety), bird⊓¬{tweety}⊑flies},
then both K1 and K2 are weakened bases of K w.r.t K ′.

The degree of a weakened base is defined as the sum of the degrees
of its elements.

DEFINITION 3. Let Kweak,K′ be a weakened base of a DL knowledge
base K w.r.t K ′. The degree of Kweak,K′ is defined as

d(Kweak,K′) = Σφ∈Kweak,K′d(φ)

In Example 1, we have d(K1) = d(K2) = 1.
We now define a revision operator.

DEFINITION 4. Let K be a consistent DL knowledge base. K ′ is
a newly received DL knowledge base. The result of weakening-based
revision of K w.r.t K ′, denoted as K◦wK ′, is defined as

K◦wK ′ = {K ′∪Ki : Ki∈WeakK′(K), and 6 ∃

Kj∈WeakK′(K), d(Kj) < d(Ki)}.

The result of revision of K by K ′ is a set of DL knowledge bases, each
of which is the union of K ′ and a weakened base of K with the minimal
degree. K◦wK ′ is a disjunctive DL knowledge base2 defined in (Meyer,
Lee, and Booth, 2005).

We now consider the semantic aspect of our revision operator.
In (Meyer, Lee, and Booth, 2005), an ordering relation was defined

to compare interpretations. It was claimed that only two interpretations
having the same domain and mapping the same individual names to
the same element in the domain can be compared. Given a domain

2 A disjunctive DL knowledge base (or DKB) is a set of DL knowledge bases.
A DKB K is satisfied by an interpretation I iff I is a model of at least one of the
elements of K.
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∆, a denotation function d is an injective mapping which maps every
individual a to a different aI in ∆. Then a pre-interpretation was
defined as an ordered pair π = (∆π, dπ), where ∆π is a domain and
dπ is a denotation function. For each interpretation I = (∆I , ·I),
its denotation function is denoted as dI . Given a pre-interpretation
π = (∆π, dπ), Iπ is used to denote the class of interpretations I with
∆I = ∆π and dI = dπ. It is also assumed that a DL knowledge base is a
multi-set3 of GCIs and assertion axioms.We now introduce the ordering
between two interpretations defined in (Meyer, Lee, and Booth, 2005).

DEFINITION 5. Let π be a pre-interpretation, I ∈ Iπ, φ a DL axiom,
and K a multi-set of DL axioms. If φ is an assertion, the number of
φ-exceptions eφ(I) is 0 if I satisfies φ and 1 otherwise. If φ is a GCI
of the form C⊑D, the number of φ-exceptions for I is:

eφ(I) =

{

|CI∩(¬DI)| if CI∩(¬DI) is finite
∞ otherwise.

(1)

The number of K-exceptions for I is eK(I) = Σφ∈Keφ(I). The ordering
�π

K on Iπ is: I �π
K I

′ iff eK(I)≤eK(I ′).

We give a proposition to show that our weakening-based revision
operator captures some kind of minimal change.

PROPOSITION 1. Let K be a consistent DL knowledge base. K ′ is
a newly received DL knowledge base. Let Π be the class of all pre-
interpretations. ◦w is the weakening-based revision operator. We then
have

M(K◦wK ′) = ∪π∈Πmin(M(K ′),�π
K).

Proposition 1 says that the models of the resulting knowledge base
of our revision operator are models of K ′ which are minimal w.r.t the
ordering �π

K induced by K, i.e., models of K ′ with the minimal number
of K-exceptions.

The proofs of proposition 1 and other propositions can be found in
the appendix.

Let us illustrate the weakening-based revision operator by an exam-
ple.

EXAMPLE 2. Let K = {∀hasChild.RichHuman(Bob), hasChild(Bob,

Mary), RichHuman(Mary), hasChild(Bob, Tom)}. Suppose we now
receive new information K ′ = {hasChild(Bob, John),¬RichHuman

(John)}. It is clear that K∪K ′ is inconsistent. Since ∀hasChild.Rich

3 A multi-set is a set in which an element can appear more than once.
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Human(Bob) is the only assertion axiom involved in conflict with K ′,
we only need to weaken it to restore consistency, that is, K◦wK ′ =
{hasChild(Bob, Mary), RichHuman(Mary), hasChild(Bob, Tom),
hasChild(Bob, John),¬RichHuman(John),⊤(Bob)}.

3.2. Refined weakening-based revision

In weakening-based revision, to weaken a conflicting assertion axiom,
we weaken the concept to ⊤. However, this may result in counterin-
tuitive conclusions. In Example 2, after revising K by K ′ using the
weakening-based operator, we cannot infer that RichHuman(Tom)
because ∀hasChild.RichHuman(Bob) is discarded, which is counterin-
tuitive. From hasChild(Bob, Tom) and ∀hasChild.RichHuman(Bob)
we should have known that RichHuman(Tom) and this assertion is
not in conflict with information in K ′. The solution for this problem is
to treat John as an exception and that all children of Bob other than
John are rich humans.

Next, we propose a new method for weakening Abox assertions. For
an Abox assertion of the form ∀R.C(a), it is weakened by dropping
some individuals which are related to the individual a by the relation
R, i.e. its weakening has the form ∀R.(C ⊔ {b1, ..., bn})(a), where bi

(i = 1, n) are individuals to be dropped. For other Abox assertions φ,
we either keep them intact or replace them by ⊤(a).

DEFINITION 6. Let φ be an assertion in an Abox. A weakened asser-
tion φweak of φ is defined as:

φweak =

{

∀R.(C ⊔ {b1, ..., bn})(a) if φ = ∀R.C(a)
⊤(a) or φ otherwise.

(2)

The degree of φweak is d(φweak) = n if φ = ∀R.C and φweak = ∀R.(C ⊔
{b1, ..., bn})(a), d(φweak) = 1 if φ6=∀R.C and φweak = ⊤(a), and d(φweak)
= 0 otherwise.

We refer to the weakened base obtained by applying weakening of GCIs
in Definition 1 and weakening of assertions in Definition 6 as a refined
weakened base. We then replace the weakened base by the refined
weakened base in Definition 4 and get a new revision operator, which
we call a refined weakening-based revision operator and is denoted as
◦rw.

Let us have a look at Example 2 again.

EXAMPLE 3. (Example 2 Continued) According to our discussion
before, ∀hasChild. RichHuman(Bob) is the only assertion axiom in-
volved in conflict in K and John is the only exception which makes
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∀hasChild.RichHuman(Bob) conflicting, so K◦rwK ′ = {∀hasChild.

(RichHuman⊔{John})(Bob), hasChild(Bob, Mary), RichHuman(Mary),
hasChild(Bob, Tom), hasChild(Bob, John),¬RichHuman(John)}. We
then can infer that RichHuman(Tom) from K◦rwK ′.

To give a semantic explanation of the refined weakening-based revi-
sion operator, we need to define a new ordering between interpretations.

DEFINITION 7. Let π be a pre-interpretation, I ∈ Iπ, φ a DL axiom,
and K be a multi-set of DL axioms. If φ is an assertion of the form
∀R.C(a), the number of φ-exceptions for I is:

eφ
r (I) =

{

|RI(aI)∩(¬CI)| if RI(aI)∩(¬CI) is finite
∞ otherwise,

(3)

where RI(aI) = {b∈∆I : (aI , b)∈RI}. If φ is an assertion which is
not of the form ∀R.C(a), the number of φ-exceptions eφ

r (I) is 0 if I
satisfies φ and 1 otherwise. If φ is a GCI of the form C⊑D, the number
of φ-exceptions for I is:

eφ
r (I) =

{

|CI∩(¬DI)| if CI∩(¬DI) is finite
∞ otherwise.

(4)

The number of K-exceptions for I is eK
r (I) = Σφ∈Keφ

r (I). The refined
ordering �π

r,K on Iπ is: I �π
r,K I

′ iff eK
r (I)≤eK

r (I ′).

We have the following propositions for the refined weakening-based
revision operator.

PROPOSITION 2. Let K be a consistent DL knowledge base, and let
K ′ be a newly received DL knowledge base. Let Π be the class of all pre-
interpretations, and let ◦rw be the weakening-based revision operator.
We then have

M(K◦rwK ′) = ∪π∈Πmin(M(K ′),�π
r,K).

Proposition 2 says that the refined weakening-based operator can be
accomplished with minimal change.

PROPOSITION 3. Let K be a consistent DL knowledge base, and let
K ′ be a newly received DL knowledge base. We then have

K◦rwK ′ |= φ, ∀φ∈K◦wK ′.

By Example 3, the converse of Proposition 3 is false. Thus, we have
shown that the resulting knowledge base of the refined weakening-based
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revision contains more original information than that of the weakening-
based revision.

4. A Revision-based Algorithm

In this section, we define an algorithm for handling inconsistency in
a stratified DL knowledge base, i.e., where each element of the base
is assigned a rank, based on the weakening-based revision operator.
More precisely, a stratified DL knowledge base is of the form Σ =
{K1, ..., Kn}, where for each i∈{1, ..., n}, Ki is a finite multi-set of
DL sentences. Sentences in each stratum Ki have the same rank or
reliability, while sentences contained in Kj such that j > i are seen
as less reliable. The stratification can be either given by experts or
computed automatically (Haase and Völker, 2005; Ma, Qi, Hitzler, Lin,
2007).

4.1. Revision-based algorithm

We first need to generalize the (refined) weakening-based revision by
allowing the newly received DL knowledge base to be a disjunctive DL
knowledge base. That is, we have the following definition.

DEFINITION 8. Let K be a consistent DL knowledge base. K′ is a
newly received disjunctive DL knowledge base. The result of (refined)
weakening-based revision of K w.r.t K′, denoted as K◦wK

′, is defined
as

K◦wK
′ = {K ′∪Kweak,K′ : K ′∈K′, Kweak,K′∈

WeakK′(K) & 6 ∃Ki∈WeakK′(K),

d(Ki) < d(Kweak,K′)}.

Revision-based Algorithm (R-Algorithm)
Input: a stratified DL knowledge base Σ = {K1, ..., Kn}, a (refined)
weakening-based revision operator ◦ (i.e. ◦ = ◦w or ◦rw), a new DL
knowledge base K

Result: a disjunctive DL knowledge base K
begin
K←K1◦K;
for i = 2 to n do
K←Ki◦K;

return K
end
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The idea originates from the revision-based algorithms proposed
in (Qi, Liu, and Bell, 2005). That is, we start by revising the set of
sentences in the first stratum using the new DL knowledge base K,
and the result of revision is a disjunctive knowledge base. We then
revise the set of sentences in the second stratum using the disjunctive
knowledge base obtained by the first step, and so on.

EXAMPLE 4. Let Σ = {K1, K2} and K = {⊤⊑⊤}, where K1 =
{W (t),¬F (t), B(c)} and K2 = {B⊑F, W⊑B} (W , F , B, t and c

abbreviate Wing, Flies, Bird, Tweety and Chirpy). Let ◦ = ◦w in R-
Algorithm. Since K1 is consistent, we have K = K1◦wK = {K1}. Since
K1∪K2 is inconsistent, we need to weaken K2. Let K ′

2 = {B⊓¬{t}⊑F,

W⊑B} and K ′′
2 = {B⊑F, W⊓¬{t}⊑B}, so K ′

2, K ′′
2∈Weak(K2) and

d(K ′
2) = d(K ′′

2 ) = 1. It is easy to check that K ′
2∪K1 and K ′′

2∪K1 are
both consistent and they are the only weakened bases of K2 which are
consistent with K1. So K2◦wK = {K1∪K ′

2, K1∪K ′′
2 } = {{W (t),¬F (t),

B(c), B⊓¬{t}⊑F, W⊑B}, {W (t),¬F (t), B(c), B⊑F, W⊓¬{t}⊑B}}. It
is easy to check that F (c) can be inferred from K2◦wK.

Based on Proposition 3, it is easy to prove the following proposition.

PROPOSITION 4. Let Σ = {K1, ..., Kn} be a stratified DL knowl-
edge base and K be a DL knowledge base. Suppose K1 and K2 are
disjunctive DL knowledge bases resulting from the R-Algorithm using
the weakening-based operator and the refined weakening-based operator
respectively. We then have, for each DL axiom φ, if K1 |= φ then
K2 |= φ.

Proposition 4 shows that the resulting knowledge base of R-Algorithm
w.r.t the refined weakening-based operator contains more information
than that of R-Algorithm w.r.t the weakening-based operator.

In the following we show that if the weakening-based revision oper-
ator is chosen, then our revision-based approach is equivalent to the re-
fined conjunctive maxi-adjustment (RCMA) approach (Meyer, Lee, and
Booth, 2005). The RCMA approach is defined in a model-theoretical
way as follows (Meyer, Lee, and Booth, 2005).

DEFINITION 9. Let Σ = {K1, ..., Kn} be a stratified DL knowledge
base. Let Π be the class of all pre-interpretations. Let π ∈ Π, I, I ′ ∈ Iπ.
The lexicographically combined preference ordering �π

lex is defined as
I�π

lexI
′ iff ∀j∈{1, ..., n}, I�π

Kj
I ′ or I≺π

Ki
I ′ for some i < j. Then the

set of models of the consistent DL knowledge base extracted from Σ by
means of �π

lex is ∪π∈Πmin(Iπ,�π
lex).
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The following proposition shows that our revision-based approach is
equivalent to the RCMA approach when the weakening-based revision
operator is chosen.

PROPOSITION 5. Let Σ = {K1, ..., Kn} be a stratified DL knowledge
base and K = {⊤ ⊑ ⊤}. Let K be the resulting DL knowledge base of
R-Algorithm. We then have

M(K) = ∪π∈Πmin(Iπ,�π
lex).

In (Meyer, Lee, and Booth, 2005), an algorithm was proposed to com-
pute the RCMA approach in a syntactical way. The main difference
between our algorithm and the RCMA algorithm is that the strate-
gies for resolving terminological conflicts are different. The RCMA
algorithm uses a preprocess to transform all the GCIs Ci⊑Di to car-
dinality restrictions (Baader, Buchheit, and Hollander, 1996) of the
form ≤0Ci⊓¬Di, i.e. the concepts Ci⊓¬Di do not have any elements.
Then those conflicting cardinality restrictions ≤0Ci⊓Di are weakened
by relaxing the restrictions on the number of elements C may have,
i.e. a weakening of ≤0Ci⊓Di is of the form ≤nCi⊓Di where n > 1.
The resulting knowledge base contains cardinality restrictions and as-
sertions and is no longer a DL knowledge base in a strict sense. By
contrast, our algorithm weakens the GCIs by introducing nominal and
role constructors. So the resulting DL knowledge base of our algorithm
still contains GCIs and assertions.

5. Related Work

This work is closely related to the work on inconsistency handling
in propositional and first-order knowledge bases in (Benferhat et al.,
2004; Benferhat and Baida, 2004), the work on knowledge integration
in DLs in (Meyer, Lee, and Booth, 2005) and the work on revision-
based inconsistency handling approaches in (Qi, Liu, and Bell, 2005). In
(Benferhat et al., 2004), a very powerful approach, called the disjunctive
maxi-adjustment (DMA) approach, was proposed for weakening con-
flicting information in a stratified propositional knowledge base. The
basic idea of the DMA approach is that starting from the information
in the lowest stratum where formulae have the highest level of priority,
when inconsistency is encountered in the knowledge base, it weakens
the conflicting information in the higher strata iteratively. When ap-
plied to a first-order knowledge base directly, the DMA approach is
not satisfactory because some important information is lost. A new
approach was proposed in (Benferhat and Baida, 2004). For a first-order
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formula, called an uncertain rule, with the form ∀xP (x)⇒ Q(x), when
it is involved in a conflict in the knowledge base, instead of deleting it
completely, the formula is weakened by dropping the instances of this
formula that are responsible for the conflict. The idea of weakening
GCIs in Definition 1 is similar to this idea. In (Meyer, Lee, and Booth,
2005), the authors proposed an algorithm for inconsistency handling
by transforming every GCI in a DL knowledge base into a cardinality
restriction, and a cardinality restriction responsible for a conflict is
weakened by relaxing the restrictions on the number of elements it
may have. So their strategy of weakening GCIs is different from ours.
Furthermore, we proposed a refined revision operator which weakens
not only the GCIs but also assertions of the form ∀R.A(a). The idea
of applying revision operators to deal with inconsistency in a stratified
knowledge base was proposed in (Qi, Liu, and Bell, 2005). However,
this work is only applicable in propositional stratified knowledge bases.
The R-Algorithm is a successful application of the algorithm to DL
knowledge bases.

There is much other work on inconsistency handling in DLs (Baader
and Hollunder, 1995b; Baader and Hollunder, 1995a; Parsia, Sirin,
and Kalyanpur, 2005; Quantz and Royer, 1992; Haase et. al., 2005;
Schlobach, 2005; Schlobach and Cornet, 2003; Friedrich and Shcheko-
tykhin, 2005; Flouris, Plexousakis and Antoniou, 2005; Huang, Harme-
len, and Teije, 2005). In (Baader and Hollunder, 1995a; Baader and
Hollunder, 1995b), Reiter’s default logic (Reiter, 1980) is embedded
into terminological representation formalisms, where conflicting infor-
mation is treated using exceptions. To deal with conflicting default
rules, each rule is instantiated using individuals appearing in an Abox
and two existing methods are applied to compute all extensions. How-
ever, in practical applications, when there is a large number of individ-
ual names, it is not advisable to instantiate the default rules. Moreover,
only conflicting default rules are dealt with and it is assumed that there
is no error in the Abox. This assumption is dropped in our algorithm,
that is, an assertion in an Abox may be weakened when it is involved in
a conflict. Another work on handling conflicting defaults can be found
in (Quantz and Royer, 1992). The authors proposed a preference se-
mantics for defaults in terminological logics. As pointed out in (Meyer,
Lee, and Booth, 2005), this method does not provide a weakening of
the original knowledge base and the formal semantics is not cardinality-
based. Furthermore, it is also assumed that there is no error in the
Abox. In recent years, several methods have been proposed to debug
erroneous terminologies and have them repaired when inconsistencies
are detected (Schlobach and Cornet, 2003; Schlobach, 2005; Parsia,
Sirin, and Kalyanpur, 2005; Friedrich and Shchekotykhin, 2005). A
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14 Guilin Qi, Weiru Liu, David Bell

general framework for reasoning with inconsistent ontologies based on
concept relevance was proposed in (Huang, Harmelen, and Teije, 2005).
The idea is to select from an inconsistent ontology some consistent
sub-theories based on a selection function, which is defined on the syn-
tactic or semantic relevance. Then standard reasoning on the selected
sub-theories is applied to find meaningful answers. A problem with de-
bugging of erroneous terminologies methods in (Schlobach and Cornet,
2003; Schlobach, 2005; Parsia, Sirin, and Kalyanpur, 2005; Friedrich
and Shchekotykhin, 2005) and the reasoning method in (Huang, Harme-
len, and Teije, 2005) is that both approaches delete terminologies in a
DL knowledge base to obtain consistent subbases, thus the structure
of DL language is not exploited.

6. Conclusions and Further Work

In this paper, we have proposed a revision-based algorithm for handling
inconsistency in description logics. We mainly considered the following
issues:

1. A weakening-based revision operator was defined in both syntacti-
cal and semantic ways. Since the weakening-based revision operator
may result in counter-intuitive conclusions in some cases, we de-
fined a refined version of this operator by introducing additional
expressions in DLs.

2. A revision-based algorithm was presented to handle inconsistency
in a stratified knowledge base. When the weakening-based revision
operator is chosen, the resulting knowledge base of our algorithm
is semantically equivalent to that of the RCMA algorithm. The
main difference between these algorithms is that the strategies for
resolving terminological information are different.

There are several problems worthy of further investigation. Our R-
Algorithm is based on two particular revision operators. Clearly, if a
normative definition of revision operators in DLs is provided, then the
R-Algorithm can be easily extended. Unfortunately, such a definition
does not exist as yet. As far as we know, the first attempt to deal
with this problem can be found in (Flouris, Plexousakis and Antoniou,
2005). However, the authors studied only the feasibility of AGM’s
postulates for a contraction operator and their results are not very
positive. That is, they have showed that in many important DLs, such
as SHOIN (D) and SHIQ, it is impossible to define a contraction
operator that satisfies the AGM postulates.
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Appendix

Proof of Proposition 1: Before proving Proposition 1, we need to
prove two lemmas.

LEMMA 1. Let K and K ′ be two consistent DL knowledge bases and
I be an interpretation such that I |= K ′. Suppose K ∪K ′ is inconsis-
tent. Let l = min(d(Kweak,K′) : Kweak,K′∈WeakK′(K), I |= Kweak,K′).
Then eK(I) = l.

Proof: We need only to prove that for each Kweak,K′∈WeakK′(K)
such that I |= Kweak,K′ and d(Kweak,K′) = l, eK(I) = d(Kweak,K′).

(1) Let φ ∈ K be an assertion axiom of the form C(a). Suppose
eφ(I) = 1, then I 6|= φ. Since I |= Kweak,K′, φ 6∈ Kweak,K′ So φweak =
⊤(a) and then d(φweak) = 1. Conversely, suppose d(φweak) = 1, then
φweak = ⊤(a). We must have I 6|= φ. Otherwise, let K ′′

weak,K′ =

(Kweak,K′ \ {⊤(a)})∪{φ}. Since I |= φ, then K ′′
weak,K′ is consistent. It

is clear d(K ′′
weak,K′) < d(Kweak,K′), which is a contradiction. So I 6|= φ,

we then have eφ(I) = 1. Thus, eφ = 1 iff d(φ) = 1.
(2) Let φ = C⊑D be a GCI axiom and φweak = (C⊑D)weak∈Kweak,K′.

Suppose d(φweak) = n. That is, φweak = C⊓¬{a1, ..., an}⊑D. Since
I |= Kweak,K′, I |= φweak. Moreover, for any other weakening φ′

weak

of φ, if d(φ′
weak) < n, then I 6|= φ′

weak (because otherwise, we find
another weakening K ′

weak,K′ = (Kweak,K′ \{φweak})∪{φ
′
weak} such that

d(K ′
weak,K′) < d(Kweak,K′) and I |= K ′

weak,K′). Since I |= φweak, CI \

{aI1 , ..., aIn} ⊆ DI . For each ai, we must have ai∈C and ai 6∈D. Other-
wise, we can delete such ai and obtain φ′

weak = C⊓{a1, ..., ai−1, ai+1, ...,

an} ⊑ D such that d(φ′
weak) < d(φweak) and I |= φ′

weak, which is a con-
tradiction. So |CI∩¬DI |≤n. Since for each ai, let φ′

weak = C⊓{a1, ...,

ai−1, ai+1, ..., an} ⊑ D, then I 6|= φ′
weak, so |CI∩¬DI |≥n. Therefore,

we have |CI∩¬DI | = n = d(φweak).
(1) and (2) together show that eK(I) = l.

LEMMA 2. Let K and K ′ be two consistent knowledge bases and I
be an interpretation such that I |= K ′. Suppose K ∪ K ′ is incon-
sistent. Let dm = min(d(Kweak,K′) : Kweak,K′∈WeakK′(K)). Then
I∈

⋃

π∈Π min(M(K ′),�π
K) iff eK(I) = dm.

Proof: “If Part”
Suppose eK(I) = dm. By Lemma 1, for each I ′ such that I ′ |= K ′,

eK(I ′) = l, where l = min(d(Kweak,K′) : Kweak,K′∈WeakK′(K), I ′ |=
Kweak,K′). That is, there exists Kweak,K′ ∈WeakK′(K) such that I ′ |=
Kweak,K′ and eK(I ′) = d(Kweak,K′). Since d(Kweak,K′)≤dm, we have
eK(I ′)≤eK(I). So I∈

⋃

π∈Π min(M(K ′),�π
K).

“Only If Part”
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16 Guilin Qi, Weiru Liu, David Bell

Suppose I∈
⋃

π∈Π min(M(K ′),�π
K). We need to prove that for all

I ′ |= K ′, eK(I)≤eK(I ′). Suppose I ∈ Iπ for some π = (∆π, dπ). It is
clear that ∀I ′∈Iπ, eK(I)≤eK(I ′). Now suppose I ′∈Iπ′

for some π′ 6= π

such that π′ = (∆π′
, dπ′

). We further assume that eK(I ′)=min(eK(Ii) :
Ii |= K ′). Let Ind(K) and Ind(K ′) be sets of individual names ap-
pearing in K and K ′ respectively. By the unique name assumption,
for each individual name a in Ind(K)∪Ind(K ′), there is a unique el-
ement a1 in ∆I and a unique element a2 in ∆I′

such that aI = a1

and aI
′
= a2. For notational simplicity, we assume that aI=aI

′
=a for

every individual name a. So Ind(K)∪Ind(K ′)⊆∆π∩∆π′
. We take an

I ′′ ∈ Iπ which satisfies the following conditions: 1) for each concept C

appearing in K, suppose ∆ = CI∩(Ind(K)∪Ind(K ′)), then ∆⊆CI′′
; 2)

eK(I ′′) = min(eK(I) : I |= K ′ I ∈ Iπ). We now prove Σφ∈Keφ(I ′) =
Σφ∈Keφ(I ′′). By 1) and 2), suppose φ is an assertion of the form C(a),

where C is a concept, then aI
′
∈CI′

iff aI
′′
∈CI′′

, so eφ(I ′) = eφ(I ′′).
Suppose φ is a GCI of the form C⊑D and b∈CI′

∩¬DI′
. Then we

must have b∈Ind(K)∪Ind(K ′). Otherwise, define I ′′′ = (∆I′
\{b}, ·I

′′′
)

such that for each concept name C, CI′′′
= CI′

\ {b} and for all R,
RI′′′

= RI′
\ ({(b, ai) : ai∈∆I′

} ∪ {(ai, b) : ai∈∆I′
}). It is easy to

check that I ′′′ |= K ′ and eK(I ′′′) < eK(I ′), which is a contradiction. So
b∈CI′

∩¬DI′
∩(Ind(K)∪Ind(K ′)). Since CI′

∩(Ind(K)∪Ind(K ′)) = CI′′

∩(Ind(K)∪Ind(K ′)) and DI′
∩(Ind(K)∪Ind(K ′)) = DI′′

∩(Ind(K)∪
Ind(K ′)), we have CI′

∩¬DI′
∩(Ind(K)∪Ind(K ′)) = (Ind(K)∪Ind(K ′))

∩CI′′
∩¬DI′′

. It follows that b∈CI′′
∩¬DI′′

∩(Ind(K) ∪Ind(K ′)). We
then have CI′

∩¬DI′
⊆CI′′

∩¬DI′′
. Similarly, we can prove that CI′′

∩
¬DI′′

⊆ CI′
∩¬DI′

. So CI′′
∩¬DI′′

=CI′
∩¬DI′

. That is, eφ(I) = eφ(I ′′).
Thus, we can conclude that eK(I ′) = eK(I ′′). Since eK(I ′′) = eK(I),
we have eK(I) = eK(I ′). Therefore, for all I ′ |= K ′, eK(I)≤eK(I ′). It
is clear that there exists an I ′ |= K ′ such that eI

′
= dm. So eK(I) = dm.

We continue the proof of Proposition 1. Suppose I |= K◦wK ′,
then I |= K ′∪Kweak,K′ , for some Kweak,K′∈WeakK′(K) such that
d(Kweak,K′) = dm (dm is defined in Lemma 2). By Lemma 1, I |= K ′

and eK(I) = dm. By Lemma 2, I∈
⋃

π∈Π min(M(K ′),�π
K). Conversely,

suppose I∈
⋃

π∈Π min(M(K ′),�π
K). By Lemma 2, I |= K ′ and eK(I) =

dm. By Lemma 1, I |= K ′∪Kweak,K′ , for some Kweak,K′∈WeakK′(K)
such that d(Kweak,K′) = dm. So I |= K◦wK ′. This completes the proof.

Proof of Proposition 2: The proof of Proposition 2 is similar to that
of Proposition 1. The only problem is that we need to extend the proofs
of Lemma 1 and Lemma 2 by considering the weakening of assertion
axioms of the form ∀R.C(a), which can be proved similar to the case
of GCIs.
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Proof of Proposition 3: We need only to prove that M(K◦rwK ′)⊆
M(K◦wK ′). Suppose I|=K◦rwK ′, then by Proposition 2, I |= K ′ and
eK
r (I) = min(eK

r (I ′) : I ′ |= K ′). We now prove that for any I ′ 6=I,
eK(I)≤eK(I ′). Suppose φ is an assertion of the form ∀R.C(a) and
eφ
r (I)≥1, then there exists b such that bI ∈ RI(aI)∩(¬DI). Since I 6|=
∀R.C(a), we have eφ(I) = 1. Since eφ

r (I ′)≥eφ
r (I), we have eφ

r (I ′)≥1.
Similarly, we have eφ(I ′) = 1. So eφ(I)=eφ(I ′). Suppose eφ

r (I)=0 and
eφ
r (I ′)≥1, then eφ(I) = 0 < 1 = eφ(I ′). Thus, eφ(I)≤eφ(I ′). If φ is an

assertion which is not of the form ∀R.C(a) or it is a GCI, then it is easy
to prove that eφ(I)=eφ(I ′). Therefore, eK(I)≤eK(I ′). By Proposition
1, I∈M(K◦wK ′).

Proof of Proposition 5: Let Iπ
1 = min(Iπ,�π

K1
), and Iπ

i = min(Iπ
i−1,

�π
Ki

) for all i > 1. It is clear that M(K) = Iπ
n. So we only need to

prove that Iπ
n = min(Iπ,�π

lex). Suppose I∈Iπ
n, then we must have

I∈min(Iπ,�π
lex). Otherwise, there exists I ′∈Iπ such that I ′≺lexI. That

is, there exists i such that I ′≺π
Ki
I and I ′≃π

Kj
I for all j < i, where

I ′≃π
Kj
I means I ′�π

Kj
I and I�π

Kj
I ′. Since I ′≃π

Kj
I, it is clear that

I, I ′∈Iπ
i−1 by the definition of Iπ

i−1. Since I ∈ Iπ
n, we have I ∈ Iπ

i =
min(Iπ

i−1,�
π
Ki

), which is contradictory to the assumption that I ′≺π
Ki
I.

Thus we prove that Iπ
n⊆min(Iπ,�π

lex). Conversely, suppose I∈min(Iπ,

�π
lex), then we must have I∈Iπ

n. Otherwise, there exists an i such that
I6∈Iπ

i and I∈Iπ
j for all j < i. Suppose I ′∈Iπ

i , then I ′∈Iπ
j for all j < i.

We then have I ′ ≃π
Kj
I for all j < i. Since I ′∈Iπ

i and I6∈Iπ
i , it follows

that I ′≺π
Ki
I. That is, I ′≺π

lexI, which is a contradiction. Thus we prove
that min(Iπ,�π

lex)⊆Iπ
n. This completes the proof.
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