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Abstract

In this paper, we propose a family of operators for
merging stratified knowledge bases under integrity con-
straints. The operators are defined in a model-theoretic
way. Our merging operators can be used to merge strat-
ified knowledge bases where no numerical information
is available. Furthermore, the original knowledge bases
to be merged can be individually inconsistent. Both log-
ical properties and computational complexity issues of
the operators are studied.

Introduction
Fusion of information coming from different sources is cru-
cial to build intelligent systems (Bloch and Hunter 2001).
In classical logic, this problem is often called belief merg-
ing, which defines the beliefs (resp. goals) of a group of
agents from their individual beliefs (resp. goals). There are
mainly two families of belief merging operators: model-
based ones which select some interpretations that are the
“closest” to the original bases (Revesz 1997; Konieczny
and Pino Pérez 2002; Liberatore and Schaerf 1998; Ever-
aere, Konieczny, and Marquis 2005) and formula-based ones
which pick some formulae in the union of the original bases
(Baral, Kraus, and Minker 1991).

It is well-known that priority or preference (either implicit
or explicit) plays an important role in many Artificial Intel-
ligence areas, such as inconsistency handling (Benferhat et
al. 1993), belief revision (Gärdenfors 1988), belief merging
(Benferhat et al. 2002). When explicit priority or preference
information is available, a knowledge base is stratified or
ranked. In that case, the merging operators in classical logic
are not appropriate to merge those knowledge bases because
the priority information is not used. Merging of stratified
knowledge bases is often handled in the framework of possi-
bilistic logic (Dubois, Lang, and Prade 1994) or ordinal con-
ditional function (Spohn 1988). The merging methods are
usually based on the commensurability assumption, that is,
all knowledge bases share a common scale (usually ordinal
scales such as [0,1]) to order their beliefs. However, this as-
sumption is too strong in practice-we may only have knowl-
edge bases with a total pre-order relation on their elements.
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Furthermore, different agents may use different strategies to
order their beliefs or interpretations. Even a single agent
may have different ways of modeling her preferences for
different aspects of a problem (Brewka 2004). Without the
commensurability assumption, the previous merging meth-
ods are hard to apply. In addition, it is unclear how merging
methods in possibilistic logic and ordinal conditional func-
tion framework can be defined in a model-theoretical way.

In this paper, we propose a family of operators for merg-
ing stratified knowledge bases under integrity constraints.
The operators are defined in a model-theoretic way. We as-
sume that each stratified knowledge base is assigned to an
ordering strategy. First, for each stratified knowledge base
K , the set Ω of possible worlds is stratified as ΩK,X ac-
cording to its ordering strategy X . In this way, a possible
world has a priority level with regard to each knowledge
base which is its priority level in ΩK,X . Second, each possi-
ble world or interpretation is associated with a list of priority
levels in all the original knowledge bases. Then a possible
world is viewed as a model of the resulting knowledge base
of merging if it is a model of the formula representing the
integrity constraint and it is minimal among models of the
integrity constraint w.r.t the lexicographical order induced
by the natural order.

The main contributions of this paper are summarized as
follows: First, we define our merging operators in a model-
theoretic way. When the original knowledge bases are flat,
i.e. there is no rank between their elements, some of our
operators are reduced to existing classical merging opera-
tors. Second, the commensurability assumption is not nec-
essary for our operators. Moreover, each knowledge base
can have its own ordering strategy. By considering the pros
and cons of different ordering strategies, we can deal with
merging of knowledge bases in a more flexible way. Finally,
we generalize the set of postulates proposed in (Konieczny
and Pino Pérez 2002) for merging operators applied to strat-
ified knowledge bases and discuss the logical properties of
our operators based on these postulates.

This paper is organized as follows. Some preliminaries
are introduced in Section 2. In Section 3, we consider the
preference representation of stratified knowledge bases. The
∆PLMIN operators are proposed in Section 4. Section 5
analyzes the computational complexity of our merging op-
erators. We then study the logical properties of our merging
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operators in Section 6. Section 7 is devoted to discussing
related work. Finally, we conclude the paper in Section 8.

Preliminaries
Classical logic: In this paper, we consider a propositional
languageLPS from a finite setPS of propositional symbols.
The classical consequence relation is denoted as `. An in-
terpretation (or world) is a total function from PS to {0, 1},
denoted by a bit vector whenever a strict total order on PS
is specified. Ω is the set of all possible interpretations. An
interpretation w is a model of a formula φ iff w(φ) = 1.
p, q, r,... represent atoms in PS. We denote formulae in
LPS by φ, ψ, γ,... For each formula φ, we use M(φ) to de-
note its set of models. A classical knowledge base K is a
finite set of propositional formulae (we can also identify K
with the conjunction of its elements). K is consistent iff
there exists an interpretation w such that w(φ) = true for
all φ∈K . A knowledge profile E is a multi-set of knowledge
bases, i.e. E = {K1, ...,Kn}, where Ki may be identical to
Kj for i 6=j. Let

⋃
(E) = ∪n

i=1Ki. Two knowledge profiles
E1 and E2 are equivalent, denoted E1≡E2 iff there exists a
bijection f between E1 and E2 such that for each K∈E1,
f(K)≡K .
Stratified knowledge base: A stratified knowledge base,
sometimes also called ranked knowledge base (Brewka
2004) or prioritized knowledge base (Benferhat et al. 1993),
is a set K of (finite) propositional formulas together with
a total preorder ≤ on K (a preorder is a transitive and re-
flexive relation, and ≤ is a total preorder if either φ≤ψ or
ψ ≤ φ holds for any φ, ψ∈K)1. Intuitively, if φ ≤ ψ,
then φ is considered to be less important than ψ. K can
be equivalently defined as a sequence K = (S1, ..., Sn),
where each Si (i = 1, ..., n) is a non-empty set which con-
tains all the maximal elements of K \ (∪i−1

j=1Sj) w.r.t ≤,
i.e. Si = {φ∈K \ (∪i−1

j=1Sj) : ∀ψ∈K \ (∪i−1
j=1Sj), ψ≤φ}.

Each subset Si is called a stratum of K and i the priority
level of each formula of Si. It is clear that each formula
in Si is more reliable than formulas of the stratum Sj for
j > i. Therefore, the lower the stratum, the higher the pri-
ority level of a formula in it. A stratified knowledge profile
(SKP) E is a multi-set of stratified knowledge bases. Given
a stratified knowledge base K = (S1, ..., Sn), the i-cut of
K is defined as K≥i = S1∪...∪Si, for i∈{1, ..., n}. A sub-
base A of K is also stratified, that is, A = (A1, ..., An)
such that Ai⊆Si, i = 1, ..., n. Two SKPs E1 and E2 are
equivalent, denotedE1≡sE2 iff there exists a bijection f be-
tween E1 and E2 such that for each K = (S1, ..., Sl)∈E1,
f(K) = (S′

1, ..., S
′
l) and Si≡S′

i for all i∈{1, ..., l}.

Preference Representation of Stratified
Knowledge Base

Ordering strategies
Given a stratified knowledge base, we can define some total
pre-orders on Ω.

1For simplicity, we use K to denote a stratified knowledge base
and ignore the total preorder ≤.

• best out ordering (Benferhat et al. 1993): let rBO(ω) =
min{i : ω 6|= Si}, for ω∈Ω. By convention, we have
min∅ = +∞. Then the best out ordering �bo on Ω is
defined as: ω�boω

′ iff rBO(ω)≥rBO(ω′)
• maxsat ordering (Brewka 2004): let rMO(ω) = min{i :
ω |= Si}, for ω∈Ω. Then the maxsat ordering �maxsat

on Ω is defined as: ω�maxsatω
′ iff rMO(ω)≤rMO(ω′)

• leximin ordering (Benferhat et al. 1993): let Ki(ω) =
{φ∈Si : ω |= φ}. Then the leximin ordering �leximin on
Ω is defined as:
ω�leximinω

′ iff |Ki(ω)| = |Ki(ω′)| for all i, or there
is an i such that |Ki(ω′)|<|Ki(ω)|, and for all j < i:
|Kj(ω)| = |Kj(ω′)|, where |Ki| denote the cardinality
of the sets Ki.

Given a preorder � on Ω, as usual, the associated strict par-
tial order is defined by ω≺ω′ iff ω�ω′ and not ω′�ω. An
ordering �X is more specific than another �X′ iff ω≺X′ω′

implies ω≺Xω
′. The total preorders on Ω defined above are

not independent of each other.

Proposition 1 (Brewka 2004) Let ω, ω′∈Ω, K a stratified
knowledge base. The following relationships hold:

(1) ω≺boω
′ implies ω≺leximinω

′;
(2) ω≺boω

′ implies ω�maxsatω
′ and ω≺maxsatω

′ im-
plies ω�boω

′

A new ordering strategy
We now define a new ordering strategy by considering the
“distance” between an interpretation and a knowledge base.

Definition 1 (Everaere, Konieczny, and Marquis 2005) A
pseudo-distance between interpretations is a total function
d from Ω × Ω to N such that for every ω1, ω2∈Ω: (1)
d(ω1, ω2) = d(ω2, ω1); and (2) d(ω1, ω2) = 0 if and only if
ω1 = ω2.

A “distance ” between an interpretation ω and a knowledge
base S can then be defined as d(ω, S) = minω′|=Sd(ω, ω′).
When S is inconsistent, d(ω, S) = +∞. That is, all the
possible worlds have the same distance with an inconsis-
tent knowledge base. Two common examples of such dis-
tances are the drastic distance dD and the Dalal distance
dH , where dD(ω1, ω2) = 0 when ω1 = ω2 and 1 otherwise,
and dH(ω1, ω2) is the Hamming distance between ω1 and
ω2.

Definition 2 The distance-based ordering �d on Ω is de-
fined as:
ω�dω

′ iff d(ω, Si) = d(ω′, Si) for all i, or there is an i
such that d(ω, Si)<d(ω′, Si), and for all j < i: d(ω, Sj) =
d(ω′, Sj).
It is clear that the distance-based orderings are total pre-
orders on Ω. Suppose d = dH , the ordering �dH is equiva-
lent to the total preorder ≤K,Lex which is defined to charac-
terize the minimal change of a revision operator in (Qi, Liu,
and Bell 2005).
Proposition 2 Let ω, ω′∈Ω, and K be a stratified knowl-
edge base. Suppose d = dD or dH , then we have:
(1) ω�dω

′ implies ω�boω
′ and ω�dω

′ implies
ω�maxsatω

′; (2) ω≺boω
′ implies ω≺dω

′
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All proofs of this paper can be found in the accompanying
technical report (Qi, Liu, and Bell 2006).

Given a stratified knowledge base K , Ω can be stratified
with regard to the total preorder � on it obtained by an or-
dering strategyX as ΩK,X = (Ω1, ...,Ωm) in the same way
as stratifying a knowledge base. For two interpretations ω1,
ω2, if ω1∈Ωi and ω2∈Ωj , where i < j, then ω1 is preferred
toω2. We use lK,X(ω) to denote the priority level of the stra-
tum where ω belongs to, i.e. if ω ∈ Ωi, then lK,X(ω) = i.

∆PLMIN Operators
Definition
We first introduce the lexicographical ordering.

Definition 3 (Moulin 1988) Given two lists of numbers ~a =
(a1, ..., an) and ~b = (b1, ..., bn), where ai and bj are in-
tegers. Let σ be a permutation on {1, ..., n} such that
aσ(i)≤aσ(i+1) and bσ(i)≤bσ(i+1) for all i. The lexicograph-

ical ordering ≤lex between ~a and~b is defined as:
~a≤lex

~b if and only if ai = bi for all i or ∃i such that
aσ(i)<bσ(i) and aσ(j) = bσ(j) for all j < i.

Our preference representation and lexicographical order-
ing based (PLMIN for short) merging operator is defined as
follows.

Definition 4 Let E = {K1, ...,Kn} be a multi-set of
stratified knowledge bases, where Ki = {Si1, ..., Simi},
and µ be an integrity constraint. Suppose Xi (i =
1, ..., n) are ordering strategies attached to Ki. Let X =
(X1, ..., Xn). Let �Ki,Xi be the total preorder on Ω in-
duced by the ordering strategy Xi. For each interpreta-
tion ω, we can associate with it a list of numbers ~lE(ω) =
(lK1,X1(ω), ..., lKn,Xn(ω)), where lKi,Xi(ω) is the priority
level of the stratum of ΩKi,Xi where ω belongs to. The
resulting knowledge base of PLMIN merging operator, de-
noted by ∆PLMIN,X

µ (E), is defined in a model-theoretic
way as follows:
ω∈M(∆PLMIN,X

µ (E)) iff ω∈M(µ) and ∀ω′∈M(µ),
~lE(ω)≤lex

~l(ω′).
In Definition 4, each possible world is associated with

a list of numbers consisting of the priority levels of the
strata of ΩKi . Then any two possible worlds can be com-
pared w.r.t the lexicographical preference defined by Defi-
nition 3. The models of the result of the ∆PLMIN,X

µ merg-
ing operator is the models of µ that are minimal w.r.t the
lexicographic preference. In our definition, different strati-
fied knowledge bases may have different ordering strategies.
That is, each agent can choose her own strategy to order in-
terpretations.

Example 1 Let E = {K1,K2,K3} be a SKP consisting of
three stratified knowledge bases, where

- K1 = {S11, S12, S13}, where S11 = {p1∨p2, p3}, S12 =
{¬p1,¬p2, p2∨¬p3, p4}, S13 = {¬p3 ∨ ¬p4}

- K2 = {S21, S22}, where S21 = {p1, p2∨p3} and S22 =
{¬p2, p4}

- K3 = {S31, S32}, where S31 = {p1, p3} and S32 =
{p2}.

The integrity constraint is µ = {¬p1∨p2}. The set of models
of µ is M(µ) = {ω1 = 0111, ω2 = 0101, ω3 = 0110, ω4 =
0100, ω5 = 0011, ω6 = 0001, ω7 = 0010, ω8 =
0000, ω9 = 1111, ω10 = 1101, ω11 = 1110, ω12 = 1100}.
We denote each model by a bit vector consisting of truth val-
ues of (p1, p2, p3, p4). For example, ω1 = 0111 means that
the truth value of p1 is 0 and the truth values of other atoms
are all 1. Let X = {X1, X2, X3}, where X1 = X2 = bo
and X3 = dH . That is, the best out ordering strategy is
chosen for bothK1 andK2, whilst the Dalal distance-based
ordering is chosen for K3. The computations are given in
Table 1 below.

ω K1 K2 K3
~lE(ω)

0111 1 3 3 (1,3,3)
0101 2 3 5 (2,3,5)
0110 1 3 3 (1,3,3)
0100 2 3 5 (2,3,5)
0011 2 3 4 (2,3,4)
0001 2 3 6 (2,3,6)
0010 2 3 4 (2,3,4)
0000 2 3 6 (2,3,6)
1111 1 2 1 (1,2,1)
1101 2 2 3 (2,2,3)
1110 1 2 1 (1,2,1)
1100 2 2 3 (2,2,3)

Table 1: ∆PLMIN,X
µ operator

In Table 1, the column corresponding to Ki gives the
priority levels of strata of ΩKi where ωi belongs to (Ω
is stratified by an ordering strategy induced by Ki). The
column corresponding to ~lE(ω) gives the lists of num-
bers of the priority levels of possible worlds. We ex-
plain how to obtain the column corresponding to K2

(other columns can be obtained similarly). Let ω13 =
1011, ω14 = 1001, ω15 = 1010 and ω16 = 1000.
Since rBO(ωi) = 1 for all 1≤i≤8, rBO(ωi) = 2
for 9≤i≤12 and 14≤i≤16, rBO(ω13) = +∞, we have
ΩK2,bo = ({ω13}, {ω9, ..., ω12, ω14, ..., ω16}, {ω1, ..., ω8}).
So lK2,bo(ωi) = 3 for 1≤i≤8 and lK2,bo(ωi) = 2 for
9≤i≤12. By Def. 4, it is easy to see that ω9 and ω11 are two
minimal possible worlds in Table 1. SoM(∆PLMIN,X

µ (E))
= {1111, 1110}. That is, ∆PLMIN,X

µ (E) = p1∧p2∧p3.

The following proposition states relationships between
different ∆PLMIN operators when considering different or-
dering strategies.

Proposition 3 Let E = {K1, ...,Kn} be a SKP, and µ be
the integrity constraint. Let X1 = {X1, ..., Xn} and X2 =
{X ′

1, ..., X
′
n} be two vectors of ordering strategies, where

both Xi and X ′
i are ordering strategies for Ki. Suppose

�Xi is more specific than �X′
i
, for all i, where Xi∈X1 and

X ′
i ∈ X2, then ∆PLMIN,X2

µ (E) |= ∆PLMIN,X1
µ (E).

Proposition 3 shows that the operator with regard to the
set of more specific ordering strategies can result in a knowl-
edge base which has stronger inferential power. By Propo-
sition 2 and 3, we have the following result: Suppose
Xi = bo and X ′

i = d for all i, then ∆PLMIN,X2
µ (E) |=

∆PLMIN,X1
µ (E).
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Let us go back to Example 1.

Example 2 (continue Example 1) Suppose X′ =
{X ′

1, X
′
2, X

′
3}, where X ′

1 = bo, X ′
2 = X ′

3 = dH .
The computations are given in Table 2 below.

ω K1 K2 K3
~lE(ω)

0111 1 5 3 (1,5,3)
0101 2 5 5 (2,5,5)
0110 1 6 3 (1,6,3)
0100 2 6 5 (2,6,5)
0011 2 4 4 (2,4,4)
0001 2 7 6 (2,7,6)
0010 2 5 4 (2,5,4)
0000 2 8 6 (2,8,6)
1111 1 2 1 (1,2,1)
1101 2 2 3 (2,2,3)
1110 1 3 1 (1,3,1)
1100 2 3 3 (2,3,3)

Table 2: ∆PLMIN,X′

µ operator
According to Table 2, ω9 = 1111 is the only mini-

mal model in M(µ). So the result of merging by the
∆PLMIN,d operator is M(∆PLMIN,X′

µ (E)) = {1111}.

So ∆PLMIN,X′

µ (E) = p1∧p2∧p3∧p4. It is clear that

M(∆PLMIN,X′

µ (E)) |= M(∆PLMIN,X
µ (E)).

Flat case
In this section, we apply our merging operators to the classi-
cal knowledge bases. Since our merging operators are based
on the ordering strategies, we need to consider the ordering
strategies for classical knowledge bases.

Proposition 4 Let K be a classical knowledge base. Sup-
pose X is an ordering strategy, then

1. for X = bo and X = maxsat, we have ω�Xω
′ iff ω |=

K

2. forX = leximin, letK(ω) = {φ∈K : ω |= φ}, we have
ω�Xω

′ iff |K(ω)|≥|K(ω′)|
3. for X = d, we have ω�Xω

′ iff d(ω,K)≤d(ω,K ′).

By Proposition 4, the best out ordering and the maxsat or-
dering are reduced to the same ordering when knowledge
base is classical. Furthermore, the leximin ordering can be
used to order possible worlds when the knowledge base is
inconsistent.

Proposition 5 Let E be a knowledge profile and µ be a for-
mula. Let MAXCONS(E, µ) = {F⊆E :

⋃
(F )∪{µ} 6|=

⊥, and if F⊂E′⊆E, then
⋃

(E′) ∪ {µ} |= ⊥}. That
is, MAXCONS(E, µ) is the set of maximal subsets of E
which are consistent with µ. Let CardM(E, µ) = {F ∈
MAXCONS(E, µ) : 6 ∃F ′∈MAXCONS(E, µ), |F | <
|F ′|}. Suppose Xi = bo or maxsat for all i, then
∆PLMIN,X

µ (E) =
∨

F∈CardM(E,µ)(∧φ∈Fφ ∧ µ).

Proposition 5 shows that the ∆PLMIN,X operator is equiv-
alent to the 4C4 operator defined in (Konieczny, Lang, and
Marquis 2004), which selects the set of consistent subsets
of E∪{µ} that contain the constraints µ and that are maxi-
mal with respect to cardinality, when each knowledge base

is viewed as a formula and ordering strategy of it is the best
out strategy or maxsat strategy.

When Xi = d for all i, the corresponding ∆PLMIN,X
µ

operators are similar to the 4d,Gmin
µ operators defined as

follows.

Definition 5 (Everaere, Konieczny, and Marquis 2005) Let
d be a pseudo-distance, µ an integrity constraint, E =
{K1, ...,Kn} a profile and let ω be an interpretation. The
“distance” between ω and E, denoted by dd,Gmin(ω,E), is
defined as the list of numbers (d1, ..., dn) obtained by sort-
ing in increasing order the set {d(ω,Ki) : Ki∈E}. The
models of 4d,Gmin

µ (E) are the models of µ that are mini-
mal w.r.t the lexicographical order induced by the natural
order.

Our ∆PLMIN
µ operators and the 4d,Gmin

µ operators differ
in that the lists of numbers attached to models are different.
The former uses the priority levels of a model w.r.t all the
knowledge bases and the latter uses the distance between a
model and each knowledge base.

Proposition 6 Let E = {K1, ...,Kn} a profile and µ
an integrity constraint. dD is the drastic distance and
X = (X1, ..., Xn) is a set of ordering strategies attached
to Ki (i = 1, ..., n), where Xi = dD for all i. Then
∆PLMIN,X

µ (E) ≡ 4dD,Gmin
µ (E).

Proposition 6 shows that the ∆PLMIN,X
µ operator and the

4dD,Gmin
µ operator are equivalent when the drastic distance

is chosen.
Propositions 5 and 6 only consider 4d,Gmin

µ operators
where all knowledge bases have the same ordering strategy.
When hybrid ordering strategies are used, we can get more
operators. For example, if we use the leximin ordering for
those knowledge bases which are inconsistent, then our op-
erators can be applied to merging a set of knowledge bases
which may be individually inconsistent. Now let us look at
an example.

Example 3 Let E = {K1,K2}, where K1 =
{p1∨p2, p3,¬p3} and K2 = {p1, p2, p3}, and µ = {(p1 ∨
p3)∧p2}. SoMod(µ) = {ω1 = 110, ω2 = 111, ω3 = 011}.
Let X = (X1, X2), where X1 = leximin and X2 = bo are
ordering strategies of K1 and K2 respectively. The compu-
tations are given in Table 3 below.

ω K1 K2
~lE(ω)

110 1 2 (1,2)
111 1 1 (1,1)
011 1 2 (1,2)

Table 3: ∆PLMIN,X
µ operator

According to Table 3, ω2 = 111 is the only minimal
model in M(µ). So M(∆PLMIN,X

µ (E)) = {111}. That
is, ∆PLMIN,X

µ (E) = p1∧p2∧p3.

Computational Complexity
We now discuss the complexity issue. First we need to con-
sider the computational complexity of stratifying Ω from a
stratified knowledge base. In (Lang 2004), two important
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problems for logical preference representation languages
were considered. We express them as follows.

Definition 6 Given a stratified knowledge base K and two
interpretations ω and ω′, the COMPARISON problem con-
sists of determining whether ω�Xω

′, where X denotes an
ordering strategy. The NON-DOMINANCE problem con-
sists of determining whether ω is non-dominated for �X ,
that is, there is not ω′ such that ω′≺Xω.

It was shown in (Lang 2004) that the NON-
DOMINANCE problem is usually a hard problem, i.e
coNP-complete. We have the following proposition on
NON-DOMINANCE problem for ordering strategies in
Section 3.

Proposition 7 Let K be a stratified knowledge base. For
X = bo, maxsat, or lexmin:
(1) COMPARISON is in P, where P denotes the class of prob-
lems decidable in deterministic polynomial time.
(2) NON-DOMINANCE is coNP-complete.

To stratify Ω, we need to consider the problem determin-
ing all non-dominated interpretations, which is computa-
tional much harder than the NON-DOMINANCE problem
(we believe it is Σp

2-hard). To simplify the computation of
our merging operators, we assume that Ω is stratified from
each stratified knowledge base during an off-line prepro-
cessing stage.

Let ∆ be a merging operator. The following decision
problem is denoted as MERGE(∆):

• Input : a 4-tuple 〈E, µ, ψ,X〉 where E = {K1, ...,Kn}
is a SKP, µ is a formula, and ψ is a formula; X =
(X1, ..., Xn), where Xi is the ordering strategy attached
to Ki.

• Question : Does ∆µ(E) |= ψ hold?

Proposition 8 MERGE(∆PLMIN,X) in Θp
2. Let X =

(X1, ..., Xn), where Xi = bo, maxsat, or leximin (i =
1, ..., n), then MERGE(∆PLMIN,X) is Θp

2-complete.

Proposition 8 shows that the computational complexity of
inference for our merging operators is located at a low level
of the boolean hierarchy under an additional assumption.

Logical Properties
Many logical properties have been proposed to characterize
a belief merging operator. We introduce the set of postulates
proposed in (Konieczny and Pino Pérez 2002), which is used
to characterize Integrity Constraints (IC) merging operators.

Definition 7 Let E, E1, E2 be knowledge profiles, K1, K2

be consistent knowledge bases, and µ, µ1, µ2 be formulas
from LPS . ∆ is an IC merging operator iff it satisfies the
following postulates:
(IC0) ∆µ(E) |= µ
(IC1) If µ is consistent, then ∆µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then ∆µ(E)≡

∧
E∧µ,

where
∧

(E) = ∧Ki∈EKi

(IC3) If E1≡E2 and µ1≡µ2, then ∆µ1(E1)≡∆µ2(E2)
(IC4) If K1 |= µ and K2 |= µ, then ∆µ({K1,K2})∧K1 is
consistent iff ∆µ({K1,K2})∧K2 is consistent

(IC5) ∆µ(E1) ∧ ∆µ(E2) |= ∆µ(E1tE2)
(IC6) If ∆µ(E1) ∧ ∆µ(E2) is consistent, then
∆µ(E1tE2) |= ∆µ(E1) ∧ ∆µ(E2)
(IC7) ∆µ1(E) ∧ µ2 |= ∆µ1∧µ2(E)
(IC8) If ∆µ1(E) ∧ µ2 is consistent, then ∆µ1∧µ2(E) |=
∆µ1(E) ∧ µ2

The postulates are used to characterize an IC merging op-
erator in classical logic. Detailed explanation of the above
postulates can be found in (Konieczny and Pino Pérez 2002).

Some postulates in Definition 7 need to be modified if we
consider merging postulates for stratified knowledge bases,
i.e., (IC2), (IC3) should be modified as:
(IC2

′
) Let

∧
E = ∧Ki∈E ∧φij∈Ki φij . If

∧
E is consistent

with µ, then ∆µ(E)≡
∧
E∧µ

(IC3
′
) If E1≡sE2 and µ1≡µ2, then ∆µ1(E1)≡∆µ2(E2)

(IC3
′
) is stronger than (IC3) because the condition of

equivalence between two knowledge profiles is generalized
to the condition of equivalence between two SKPs. We do
not generalize (IC4), the fairness postulate, which says that
the result of merging of two belief bases should not give
preference to one of them. This postulate is controversial
(Konieczny 2004). And it is hard to be adapted in the pri-
oritized case because a stratified knowledge base may be in-
consistent and there is no unique consequence relation for a
stratified knowledge base (Benferhat et al. 1993).

Proposition 9 ∆PLMIN,X
µ satisfies (IC0), (IC1), (IC2′),

(IC5), (IC6) (IC7), (IC8). The other postulates are not sat-
isfied in the general case.

(IC3′) is not satisfied because some ordering strategies
are syntax-sensitive. However, when the ordering strate-
gies are either best-out ordering or maxsat ordering, then
our merging operators satisfy all the generalized postulates.

Proposition 10 Suppose Xi = bo or maxsat, then
∆PLMIN,X

µ satisfies (IC0), (IC1), (IC2′), (IC3′), (IC5),
(IC6), (IC7), (IC8). The other postulates are not satisfied
in the general case.

Related Work
Merging of stratified knowledge bases is often handled in the
framework of possibilistic logic (Dubois, Lang, and Prade
1994) or ordinal conditional function (Spohn 1988). In pos-
sibilistic logic, the merging problems are often solved by ag-
gregating possibility distributions, which are mappings from
Ω to a common scale such as [0,1], using some combination
modes. Then the syntactic counterpart of these combination
modes can be defined accordingly (Benferhat et al. 2002). In
(Meyer, Ghose, and Chopra 2002), the merging is conducted
by merging epistemic states which are (total) functions from
the set of interpretations to N, the set of natural numbers.
There are many other merging methods in possibilistic logic
(Benferhat et al. 1999) and in ordinal conditional function
framework (Benferhat et al. 2004). Our merging operators
differs from previous ones in two aspects:

First, our operators are semantically defined in a model-
theoretic way and others are semantically defined by distri-
bution functions such as possibility distributions. In the flat
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case, our merging operators belong to model-based merg-
ing operators, and they capture some notion of minimal
change. Whilst other merging operators are usually syntax-
based ones in the flat case.

Second, most of previous merging operators are based
on the commensurability assumption. In (Benferhat et al.
1999), a merging approach for stratified knowledge base
is proposed which drops the commensurability assumption.
However, their approach is based on the assumption that
there is an ordering relation between two stratified knowl-
edge bases K1 and K2, i.e. K1 has priority over K2. In
contrast, our merging operators do not require any of above
assumptions and are flexible enough to merge knowledge
bases which are stratified by a total pre-ordering on their
elements. So our merging operators are more general and
practical than other methods.

This work is also related to the logical preference descrip-
tion language (LPD) in (Brewka 2004). The language LPD
uses binary operators ∨, ∧ and > to connect two (or more)
basic orderings and get more complex orderings. In con-
trast, when defining our merging operators, we use an adap-
tive method which is based on a lexicographical preference
to combine orderings assigned to original knowledge bases.

Conclusions and Further Work
In this paper, we have proposed a family of model-theoretic
operators to merge stratified knowledge bases under in-
tegrity constraints. In the flat case, some of our operators are
reduced to existing merging operators. The computational
complexity of our merging operators has been analyzed. Un-
der an additional assumption, the computation of ∆PLMIN

is equivalent to that of ∆GMIN in (Everaere, Konieczny,
and Marquis 2005). Finally, we have generalized the set of
postulates defined in (Konieczny and Pino Pérez 2002) and
shown that our operators satisfy most of the generalized pos-
tulates.

There are several issues remaining and these require fur-
ther work. First, we have applied our merging operators to
classical bases and have obtained some interesting results.
However, to have a thorough evaluation of our operators in
the flat case, we need to consider other important criteria
to compare operators, such as strategy-proofness and dis-
criminating power. Second, we revised the set of postulates
defined in (Konieczny and Pino Pérez 2002). However, the
revision is a simple extension of existing postulates. More
postulates will be explored in the future.
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