
Ternary Tree Solver (tts-4-0)

Ivor Spence
School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast
i.spence@qub.ac.uk

31st May 2007

1 Introduction

The Ternary Tree Solver (tts) algorithm is a
complete, deterministic solver for CNF satisfia-
bility. This note describes the operation of ver-
sion 4.x. Version 4.0 was entered into the SAT
2007 competition. The solver is very loosely
based on the well-known Davis-Putnam model
and has five phases, namely: Minimization;
Variable ordering; Tree building; Tree walking,
Rebuilding.

The solver cannot compete with the state-of-
the-art solution of large industrial and random
benchmarks but appears to have good worst-
case performance on hand-crafted benchmarks
(such as hgen8, holen, xor-chain etc.) that oth-
ers find difficult.

Brief descriptions of the five phases follow.

2 Minimization

Here, if possible, the problem is first partitioned
into disjoint sub-problems in which any variable
can be reached from any other. The rest of
the algorithm processes each sub-problem sepa-
rately.

Any clauses that are tautologies, i.e. con-
tain both v and v, are removed. If all occur-
rences of a particular variable are of the same
sign it is safe to assign the corresponding value
to the variable and hence remove any clauses
containing it. This is combined with unit clause
propagation.

3 Variable ordering

Unlike most Davis-Putnam solvers the variables
are processed according to a static ordering.

The overall performance depends critically on
this ordering, in which variables that occur in
the same clause should be processed near to each
other. If the variables are regarded as nodes
and the clauses as hyperedges, this corresponds
to the minimum linear arrangement problem for
hypergraphs. A perfect solution to this problem
is known to be NP-hard, and so an approxima-
tion algorithm is used. Note that this approxi-
mation affects the overall performance, but not
the correctness of the solver.

The approximation algorithm used for small
inputs (of the order of fewer than 1000 literals)
combines:

1. Simulated Annealing - this is generally re-
garded as providing the best approxima-
tions for MLA, but the execution time is
significant;

2. A local search to see whether the simu-
lated annealing result can be improved.

For larger inputs this algorithm is too slow
and a more direct algorithm is used in which
variables are chosen in turn according to weights
which are derived from the number of clauses in
common with variables already chosen. This is
much faster so at least the solver has a chance
of processing larger, easier inputs but does not
give such a good ordering.

It should be noted that this phase of the
overall solver is the most recently developed and
is where most of the current research effort is
devoted. In particular, although reducing the
linear arrangement certainly improves the over-
all performance it is not known whether this is
exactly the correct metric.

1



SAT Competition 2007 - solver description

4 Tree building

At the heart of the algorithm is a 3-tree which
represents the proposition to be solved. Each
node of this tree corresponds to a proposition
and each level corresponds to a variable accord-
ing to the variable ordering which was deter-
mined in the previous phase. The tree is con-
structed as follows:

• The root of the tree corresponds to the
proposition to be solved.

• Each node of the tree has three children,
left, middle and right. The left child con-
sists of those clauses from the current
proposition that contain the literal v ex-
cept that the v is removed (where v is the
current level). The right child consists of
clauses that contain v except that the v
is removed. The middle child consists of
those clauses that don’t contain v or v.

• When the removal of a v or v leaves a
clause empty this generates the proposi-
tion false. When there are no clauses to
be included in a child this generates the
proposition true.

In summary, the middle child consists of those
clauses not containing the current variable, the
left child is what remains after setting v to false
and the right child is what remains after setting
v to true. If the current variable is not contained
anywhere in the proposition then no children are
created at this stage - children are only assigned
when the current variable is relevant. The con-
struction of this tree can be carried out quickly.

A hash table of derived propositions is main-
tained during the tree building process. This is
ensures that if different partial assignments lead
to the same proposition only one corresponding
node is created. The data structure thus con-
tains cycles and is no longer a tree, but can be
interpreted as a tree for the purposes of the next
stage.

5 Tree walking

This phase is where the bulk of the computation
occurs. Starting from the root, the walk has
in principle a false/true choice to make at each
level, representing an assignment to the corre-
sponding variable, which would by itself lead to
2n routes (where n is the number of variables).

Each node of the tree represents only a portion
of the proposition, and so a set of nodes is main-
tained to record progress. For the false branch
from a particular set of nodes, the new set of
nodes consists of the union of all left and middle
children of the current set. For the true branch,
the new set consists of all right and middle chil-
dren.

There are three outcomes which can result
in a path being pruned, i.e. abandoned before
the full depth of variables has been explored:

• When a set of nodes contains false, no
further computation is performed on that
branch because there can be no satisfying
assignment built from the choices up to
this point;

• If a set contains all true nodes a satisfy-
ing assignment has been found, regardless
of the choice of values for subsequent vari-
ables;

• When a set of nodes has been found to
correspond to an unsatisfiable proposition
a record of this is made. If a subsequent
request is made for the same set (or in-
deed a superset) it is known immediately
that this is unsatisfiable without having to
repeat the previous analysis. This corre-
sponds to clause memoization and in this
form is perhaps the main contribution of
this solver.

6 Rebuilding

If any of the sub-problems is found to be un-
satisfiable then the overall problem is unsatis-
fiable. Otherwise, if all the sub-problems have
been found to be satisfiable, some of the actions
of the initial minimization have to be undone to
construct the overall model. Variables removed
because they only occur with one sign are in-
serted with the appropriate value and the mod-
els for each of the sub-problems are renumbered
as required.

7 Conclusions

An upper-bound for the complexity of this algo-
rithm appears to be the sum of the number of
sets of nodes at each level, which is exponential
in the number of nodes at that level. This num-
ber of nodes is at most the corresponding cut of

2



SAT Competition 2007 - solver description

the hypergraph and can be less than that. Im-
proving the results from the variable ordering
phase is expected to be the best way to improve
the overall algorithm.

8 Change log

8.1 4.1 → 4.2

The generation of certificates of unsatisfiabil-
ity, which had been present in an earlier ver-
sion, was re-introduced. There is a version of
the solver (ttsp) which can generate Allen van
Gelder’s RPT proofs or tts-specific PRT proofs
(for which a checker, checkprt, is also included)

8.2 4.0 → 4.1

Some minor changes to the c code to permit
compilation in 64-bit mode. This mode means
that pointers consume more memory and it is
an open question whether the solver performs
better in 64 or 32 bit mode.

8.3 3.0 → 4.0

In version 3.0 the tree was built with a new node
for child and there was a separate phase during
which nodes which represented the same propo-
sition were merged. In version 4.0 a hash table
of propositions is used so that only one node is
ever created for a given proposition even if it
can be derived in different ways by partial as-
signment of different clauses.

In version 3.0 if a proposition did not contain
a given variable the corresponding tree node had
”true” for it’s ”left” and ”right” children and
a node representing the same proposition again
for it’s ”both” child. In version 4.0 the number
of nodes is significantly reduced by recording the
first variable which is relevant for each node and
only creating child nodes when the level in the
tree corresponds to this variable.

In version 3.0 the static variable ordering
was determined using simulating annealing to
find a minimum linear arrangement. This pro-
duced good results but the time taken increased
rapidly with the number of variables. In ver-
sion 4.0, if the size of the input exceeds a given
threshold a more direct algorithm is used which
does not produce such a good ordering for the
tree walk but is much faster.

3


