
Belief Revision through Forgetting Conditionals in
Conditional Probabilistic Logic Programs

Anbu Yue 1 and Weiru Liu 1

Abstract. In this paper, we present a revision strategy of revis-
ing a conditional probabilistic logic program (PLP) when new infor-
mation is received (which is in the form of probabilistic formulae),
through the technique of variable forgetting.We first extend the tra-
ditional forgetting method to forget a conditional event in PLPs. We
then propose two revision operators to revise a PLP based on our for-
getting method. By revision through forgetting, the irrelevant knowl-
edge in the original PLP is retained according to the minimal change
principle. We prove that our revision operators satisfy most of the
postulates for probabilistic belief revision. A main advantage of our
revision operators is that a new PLP is explicitly obtained after re-
vision, since our revision operator performs forgetting a conditional
event at the syntax level.

1 Introduction

Belief revision is concerned with how to revise an agent’s current
belief when new evidence is received, where this new evidence is as-
sumed to have the highest priority. Any belief in the current belief set
that is inconsistent with the evidence has to be weakened or omitted
in order to get a revised consistent set of beliefs. In the literature
of probabilistic belief revising, most research focuses on revising
a single probabilistic distribution [5, 1, 8, 4, 3]. However, a single
probabilistic distribution is not suitable for representing imprecise
probabilistic beliefs, as the case for a conditional probabilistic logic
program (PLP), where a set of probability distributions are usually
associated with a PLP [13, 14]. Research on revising a set of prob-
abilistic distributions are reported in [16, 7], but these methods (as
well as methods on revising single probabilistic distributions) can
only revise probability distributions by a certain kind of evidence,
i.e., evidence that is consistent with the original distributions. There-
fore, any evidence that is not fully consistent with current knowledge
(beliefs) cannot be used.

The notion of forgetting (facts) (or referred to as variable forget-
ting) proposed in [12] has been applied (or adapted) in many logic
based reasoning techniques. For example, forgetting is used for be-
lief merging in [11], and the relationship between forgetting and
belief change is studied in [15]. Traditionally, the main focus has
been on forgetting a fact in classical logics. The issue of forgetting
conditional knowledge has not been investigated, whilst conditional
knowledge is very important, especially in research on (logic) rea-
soning with conditionals [13, 14].

In this paper, we extend the method of forgetting to forget con-
ditional events in conditional probabilistic logic programs (PLPs).

1 School of Electronics, Electrical Engineering and Computer Sci-
ence, Queen’s University of Belfast, Belfast BT7 1NN, UK {a.yue,
w.liu}@qub.ac.uk

Given a PLP P , forgetting a conditional event (ψ|φ) in P means
that fact ψ is forgotten only in the domain defined by φ. Assume
that (ψ′|φ′)[l′, u′] ∈ P , the challenge is how to retain part or all of
knowledge (ψ′|φ′)[l′, u′] when φ′ and φ are inequivalent. To achieve
this, we define a notion of irrelevnace for conditional events, so that
forgetting a conditional event will retain any irrelevant knowledge.
Since any classical theory T can be represent by a PLP [13], we
prove that forgetting a fact ψ in a classical theory T is equivalent to
forgetting a conditional event (ψ|>) in P that represents T .

Based on the technique of forgetting a conditional event, we pro-
pose two operators for revising PLPs by a probabilistic formula of the
form (ψ|φ)[l, u]. Our revision operators satisfy most of the postulates
for imprecise probabilistic belief revision. These postulates were pro-
posed in [18] and were proved to be an extension of Darwiche and
Pearl postulates [2], Bayesian conditioning and Jeffrey’s rule. Since
any conditional event can be forgotten in a PLP, our revision opera-
tors do not require new evidence (information) to be consistent with
the original PLPs. Another advantage of these revision operators is
that, a new PLP is explicitly obtained as the result of revision, since
forgetting a conditional event is defined at the syntax level. This is in
contract to traditional probabilistic revision mentioned above where a
revision result is a single or a set of probability distributions (which
can be seen as the models of a probabilistic knowledge base, e.g.,
PLP).

This paper is organized as follows. In the next section, we briefly
review probabilistic logic programming, postulates for probabilistic
belief revision, and forgetting. In Section 3, we propose an approach
to forgetting a conditional event in a PLP, and in Section 4, we pro-
pose two belief revision operators and give their properties. After
comparing with related work in Section 5, we conclude this paper.

2 Preliminaries

2.1 Probabilistic logic programs (PLPs)

We briefly review conditional probabilistic logic programs here, see
[13, 14] for details.

Let Φ be a finite set of predicate symbols and constant symbols,
and V be a set of object variables and B be a set of bound constants
which are in [0,1] describing the bound of probabilities. It is required
that Φ contains at least one constant symbol. We use lowercase let-
ters a, b, . . . for constants from Φ, uppercase letters X, Y for object
variables, and l, u for bound constants. In Φ, there are two predicate
symbols > and ⊥ which represent true and false respectively.

An object term is a constant from Φ or an object variable from V .
An atom is of the form p(t1, . . . , tk), where p is a predicate sym-
bol and ti is an object term. An event or formula is constructed from

a set of atoms by logic connectives ∧,∨,¬ as usual, and a condi-
tional event is of the form ψ|ϕ with events ψ and ϕ. We use Greek
letters φ, ψ, ϕ for events, α, β for conditional events. A probabilis-
tic formula is of the form (ψ|ϕ)[l, u] which means that the proba-
bility bounds for conditional event ψ|ϕ are l and u. We call ψ its
consequent and ϕ its antecedent. A conditional probabilistic logic
program (PLP) P is a set of probabilistic formulae. We use PL to
denote the set of all PLPs, and F to denote the set of all probabilis-
tic formulas. An object term, event, conditional event, probabilistic
formula, or PLP is called ground iff it does not contain any object
variables from V .

Herbrand universe (denoted as HUΦ) is the set of all constants
from Φ, and Herbrand base HBΦ is a finite nonempty set of all
events constructed from the predicate symbols in Φ and constants in
HUΦ. A possible world I is a subset of HBΦ s.t. > ∈ I and ⊥ /∈ I ,
and IΦ is the set of all possible worlds over Φ. An assignment σ maps
each object variable to an element of HUΦ. It is extended to object
terms by σ(c) = c for all constant symbols from Φ. An event ϕ is
satisfied by I under σ, denoted by I |=σ ϕ, is defined inductively as:

• I |=σ p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ I;
• I |=σ φ1 ∧ φ2 iff I |=σ φ1 and I |=σ φ2;
• I |=σ φ1 ∨ φ2 iff I |=σ φ1 or I |=σ φ2;
• I |=σ ¬φ iff I 6|=σ φ

An event ϕ is satisfied by a possible world I , or I is a model of ϕ,
denoted by I |=cl ϕ, iff I |=σ ϕ for all assignment σ. In this paper,
we call the set of the models of ϕ the domain of ϕ. An event ϕ is a
logical consequence of event φ, denoted as φ |=cl ϕ, iff all possible
worlds that satisfy φ also satisfy of ϕ.

A probabilistic interpretation Pr is a probability distribution on
IΦ (i.e., as IΦ is finite, Pr is a mapping from IΦ to the unit in-
terval [0,1] such that

∑
I∈IΦ Pr(I) = 1). The probability of an

event ϕ in Pr under an assignment σ, is defined as Prσ(ϕ) =∑
I∈IΦ,I|=σϕ Pr(I). If ϕ is ground, we simply write as Pr(ϕ).
A probabilistic formula (ψ|ϕ)[l, u] is satisfied by a probabilis-

tic interpretation Pr under an assignment σ, denoted by: Pr |=σ

(ψ|ϕ)[l, u] iff Prσ(ϕ) = 0 or Prσ(ψ|ϕ) ∈ [l, u].
A probabilistic formula µ is satisfied by a probabilistic interpreta-

tion Pr, or Pr is a probabilistic model of µ, denoted by Pr |= µ,
iff Pr |=σ µ for all assignments σ. A probabilistic interpretation is
a probabilistic model of a PLP P , denoted by Pr |= P , iff Pr is a
probabilistic model of all µ ∈ P . A PLP P is satisfiable or consistent
iff a model of P exists. A probabilistic formula (ψ|ϕ)[l, u] is a conse-
quence of the PLP P , denoted by P |= (ψ|ϕ)[l, u], iff all probabilis-
tic models of P are also probabilistic models of (ψ|ϕ)[l, u]. A prob-
abilistic formula (ψ|ϕ)[l, u] is a tight consequence of P , denoted
by P |=tight (ψ|ϕ)[l, u], iff P |= (ψ|ϕ)[l, u], P 6|= (ψ|ϕ)[l, u′],
P 6|= (ψ|ϕ)[l′, u] for all l′ > l and u′ < u (l′, u′ ∈ [0, 1]).
Notice that, if P |= (φ|>)[0, 0], then it is canonically defined as
P |=tight (ψ|φ)[1, 0], where [1, 0] stands for an empty set.

2.2 Probabilistic belief revision
We briefly review the postulates for revising PLPs here, see [18] for
details.

Given a PLP P , we define set Bel0(P) as Bel0(P) =
{(ψ|φ)[l, u] | P |= (ψ|φ)[l, u], P 6|= (φ|>)[0, 0]} and call it the be-
lief set of P . Condition P 6|= (φ|>)[0, 0] is required because when
P |= (φ|>)[0, 0], P |= (ψ|φ)[l, u] for all ψ and all [l, u] ⊆ [0, 1].
Without this condition, some counterintuitive conclusions can be in-
ferred, for instance, (ψ|φ)[0, 0.3] and (ψ|φ)[0.9, 1] can simultane-
ously be the beliefs of an agent if P |= (φ|>)[0, 0].

Each probabilistic epistemic state, Ψ, has a unique belief set, de-
noted as Bel0(Ψ), which is a set of probabilistic formulae. Bel0(Ψ)
is closed, i.e. Bel0(Bel0(Ψ)) = Bel0(Ψ). We call Ψ a probabilis-
tic epistemic state of a PLP P , iff Bel0(Ψ) = Bel0(P). In general,
there exist many ways to define probabilistic epistemic state. e.g., we
can define a probabilistic epistemic state as the set of probabilistic
distributions that satisfies the PLP, see [18] for details.

Furthermore, we have the following inference relations:
Ψ |= (ψ|φ)[l, u] iff (ψ|φ)[l, u] ∈ Bel0(Ψ), and
Ψ |=tight (ψ|φ)[l, u] iff Ψ |= (ψ|φ)[l, u] and for all [l′, u′] ⊂

[l, u], Ψ 6|= (ψ|φ)[l, u].
We write Ψ ∧ (ψ|φ)[l, u] to represent Bel0(Ψ) ∪ {(ψ|φ)[l, u]}.

Also, Ψ |= (ψ|φ)[l, u] iff P |= (ψ|φ)[l, u] when P 6|=tight

(φ|>)[0, 0].

Definition 1 A conditional event (ψ|φ) is more specific than another
conditional event (ψ′|φ′), denoted as (ψ|φ) E (ψ′|φ′), iff

• φ |=cl φ′ ∧ ψ′, or
• φ |=cl φ′ ∧ ¬ψ′.

Conditional event (ψ|φ) affects only the relationship (probability
distributions) between φ ∧ ψ and φ ∧ ¬ψ. When (ψ|φ) E (ψ′|φ′)
holds, (ψ|φ) provides detailed information about φ, which is a sub-
event of φ′ ∧ ψ′ or φ′ ∧ ¬ψ′. Therefore, (ψ|φ) is more specific than
(ψ′|φ′).

Definition 2 (perpendicular) A conditional event (ψ|φ) is perpen-
dicular with another conditional event (ψ′|φ′), denoted as (ψ|φ) ./
(ψ′|φ′) iff (ψ|φ) E (ψ′|φ′), or (ψ′|φ′) E (ψ|φ), or |=cl ¬(φ′ ∧ φ).

The perpendicularity relation formalizes a kind of irrelevance be-
tween two conditional events. The above definition is an extension
of the definition of perpendicular in [9], in which the first condition
is not required. If (ψ|φ) E (ψ′|φ′), then (ψ|φ) is more specific than
(ψ′|φ′) and thus (ψ|φ) will not affect (ψ′|φ′). We know that (ψ|φ)
can not affect the probability distributions within the domain (ψ∧φ)
or the domain (¬ψ∧φ), so if (ψ′|φ′)E (ψ|φ), then φ′ is a sub-event
of (ψ ∧ φ) or (¬ψ ∧ φ), and therefore (ψ|φ) can not affect (ψ′|φ′).
If |=cl ¬(φ′ ∧φ), then φ and φ′ have disjoint domains, so (ψ|φ) and
(ψ′|φ′) are irrelevant.

Definition 3 ([18]) Let P be a PLP with epistemic state Ψ and µ =
(ψ|φ)[l, u] be a probabilistic formula. The result of revising P by µ
is another probabilistic epistemic state, denoted as Ψ ? µ where ?
is a revision operator. Operator ? is required to satisfy the following
postulates:

R*1 Ψ ? µ |= µ
R*2 Ψ ∧ µ |= Ψ ? µ
R*3 if Ψ ∧ µ is satisfiable, then Ψ ? µ |= Ψ ∧ µ
R*4 Ψ ? µ is unsatisfiable only if µ is unsatisfiable
R*5 Ψ ? µ ≡ Ψ ? µ′ if µ ≡ µ′

R*6 Let µ = (ψ|φ)[l, u] and Ψ ? µ |=tight (ψ|φ)[l′, u′].
Let µ′ = (ψ|φ)[l1, u1] and Ψ ? µ′ |=tight (ψ|φ)[l′1, u

′
1]. For any

ε > 0, if |u1 − u| + |l1 − l| < ε, and both of (ψ|φ)[l, u] and
(ψ|φ)[l′, u′] are satisfiable, then |u′1 − u′|+ |l′1 − l′| < ε.

R*7 if Ψ |= (φ|>)[l, u], then (Ψ ? µ) |= (φ|>)[l, u]
R*8 Let µ = (ψ|φ)[l, u] and µ′ = (ψ′|φ′)[l′, u′]. Suppose that

(ψ|φ) ./ (ψ′|φ′). If (Ψ ? µ) ∧ µ′ is satisfiable then Ψ ∧ µ′ is
satisfiable, and (Ψ ? µ) ∧ µ′ = (Ψ ∧ µ′) ? µ.

R*1 - R*5 is an analog to postulates R1 - R4 in [2]. We do not have
corresponding postulates for R5 and R6 in [2] since revision with the
conjunction of conditional events are more complicated and is be-
yond the scope of this paper. R*6 is a sensitivity requirement, which
says that a slightly modification on the bounds of µ = (ψ|φ)[l, u]
(i.e., µ′ = (ψ|φ)[l1, u1]) shall not affect the result of revision sig-
nificantly. R*7 says that revising by µ = (ψ|φ)[l, u] should not af-
fect the statement about φ (but the impreciseness of φ may be de-
creased). Recall that perpendicular condition characterizes a kind of
irrelevance, R*8 says that any irrelevance knowledge with new evi-
dence should not be affected by the revision using this evidence.

It is proved that these postulates is an extension of modified AGM
postulates and Darwiche and Pearl postulates for iterative revision
[2]. It is also proved that these postulates lead to Jeffrey’s rule and
Bayesian conditioning when the original PLP (probabilistic epis-
temic) defines a single probability distribution.

2.3 Forgetting a fact
Given a set of ground formulas T and an atom p, forgetting p in T
means obtaining another set of formulas which is weaker than T ,
but retain the same conclusions that irrelevant to p. Let p(~t) be a
ground atom, and I1, I2 be two possible worlds. Define I1 ≈p(~t) I2

iff I1 and I2 agree on everything except possibly on the truth value
of p(~t):

1. I1 and I2 have the same domain, i.e. I1 and I2 are defined on the
same Herbrand base.

2. for every predicate symbol q that differs from p, and for every
ground term ~t′, q(~t′) ∈ I1 iff q(~t′) ∈ I2.

Definition 4 ([12]) Let T be a set of formulae and p(~t) be a
ground atom. The result of forgetting p(~t), denoted as T ′ =
forgetcl(T, p(~t)), is a set of formulae such that, for any possible
world I ′, I ′ is a model of T ′ iff there is a model I of T such that
I ≈p(~t) I ′.

Proposition 1 ([12]) For any theory T and ground atom p(~t), T |=
forgetcl(T, p(~t)).

Let ϕ be a ground formula and p(~t) be a ground atom. We use
ϕ+

p(~t)
(resp. ϕ−

p(~t)
) to denote the result of replacing every occurrence

of p(~t) in ϕ by > (resp. ⊥).

Proposition 2 ([12]) Let ϕ be a ground formula and p(~t)
be a ground atom. Suppose that theory T = {ϕ}, then
forgetcl(T, p(~t)) ≡ {ϕ+

p(~t)
∨ ϕ−

p(~t)
}.

Let p1(~t1), . . . , pn(~tn) be a sequence of ground atoms.
The result of forgetting p1(~t1), . . . , pn(~tn) in T , denoted
as forgetcl(T, p1(~t1), . . . , pn(~tn)), is inductively defined as
forgetcl(forgetcl(T, p1(~t1), . . . , pn−1(~tn−1)), pn(~tn)).

Proposition 3 ([12]) For any theory T and any ground atoms
p1(~t1), p2(~t2), forgetcl(forgetcl(T, p1(~t1)), p2(~t2)) and
forgetcl(forgetcl(T, p2(~t2)), p1(~t1)) are logically equivalent.

The above proposition indicates that the order of
the sequence p1(~t1), . . . , pn(~tn) is not important in
forgetcl(T, p1(~t1, . . . , pn(~tn))). In this paper, we write
forgetcl(T,A) to represent forgetcl(T, p1(~t1), . . . , pn(~tn)),
where A = {p1(~t1), . . . , pn(~tn)}. We also write forgetcl(T, φ)
to represent forgetcl(T,Aφ), where Aφ is the set of atoms that
appear in φ.

3 Forgetting a Conditional Event
Sometimes, forgetting a fact under certain conditions is useful, for
example, forgetting fact ϕ when φ is given. To achieve this, we
provide an approach to forgetting a conditional event (ψ|φ), which
means forgetting ψ only in the domain of φ, and keeping the original
knowledge that is out of the domain of φ unchanged.

Definition 5 Let [l, u] and [l′, u′] be two intervals. The closest sub-
interval of [l′, u′] to [l, u], denoted as clb([l′, u′], [l, u]), is defined by
clb([l′, u′], [l, u]) = [lb, ub], where

• if u′ < l then lb = ub = u′,
• if l′ > u then lb = ub = l′,
• otherwise, lb = max{l, l′}, ub = min{u, u′}.

Definition 6 Let P be a PLP and µ ∈ P where µ = (ψ1|φ1)[l, u].
Assume that ν = (ψ2|φ2) is a conditional event. We define
forgetP (µ, ν) as:

forgetP (µ, ν) =





(φ2|φ1)[la, ua], (φ1|φ2)[lb, ub],
(ψ1|φ1 ∧ ¬φ2)[l1, u1],
(forgetcl(ψ1, ψ2)|φ1 ∧ φ2)[l2, u2]





where

P |=tight (φ2|φ1)[la, ua], P |=tight (φ1|φ2)[lb, ub],
P |=tight (ψ1|φ1 ∧ ¬φ2)[l

′, u′], P |=tight (ψ1|φ1)[l”, u”],
clb([l′, u′], [l”, u”]) = [l1, u1],
P |=tight (forgetcl(ψ1, ψ2)|φ1 ∧ φ2)[l2, u2].

We define forget(P, ν) =
⋃

µ∈P forgetP (µ, ν).

When forgetting a conditional event (ψ2|φ2), the domain of the
original beliefs should be divided into two parts: within the domain
of φ2 and out of the domain of φ2. That is, if (ψ1|φ1)[l, u] ∈ P ,
then the knowledge about (ψ1|φ1) in P is implicitly contained by
(ψ1|φ2 ∧ φ1) and (ψ2|φ1 ∧ ¬φ2). Intuitively, the former may be
affected and the latter should be retained. Also, the knowledge about
(ψ1|φ1) should be changed as minimal as possible. To achieve this,
the knowledge about (ψ1|φ1) must be retained by the knowledge
about (ψ1|φ1 ∧¬φ2) in the result PLP. In addition, the relationships
(subsumption, overlap, disjoint, etc.) between the domains of φ1 and
φ2 should not be affected.

Proposition 4 Let P be a PLP, and ν = (ψ|φ) be a conditional
event. If P 6|= (φ|>)[0, 0] then forget(P, ν) |=tight ν[0, 1]. If
P |= (φ|>)[0, 0] then forget(P, ν) ≡ P , and we have that
ν /∈ forget(P, ν).

In the above proposition, P |= (φ|>)[0, 0] indicates that any condi-
tional event with φ as the antecedent has no effects on the semantics
of P , however, at the syntax level ν /∈ forget(P, ν).

Proposition 5 Let P = {(ψ1|φ1)[l1, u1], . . . , (ψn|φn)[ln, un]} be
a PLP, and ν = (ψ|φ) be a conditional event. Suppose that (ψ|φ) E
(ψi|φi) for all i ∈ {1, . . . , n}, then forget(P, ν) ≡ P .

However, if P = {(ψ1|φ1)[l1, u1], . . . , (ψn|φn)[ln, un]} and
(ψi|φi) E (ψ|φ) holds for i = 1, ...n, then forget(P, (ψ|φ)) ≡ P
does not hold in general. This is because that forgetting a conditional
event (ψ|φ) will forget not only the relationship between (φ∧ψ) and
(φ ∧ ¬ψ), but also all statements about ψ in the domain of φ.

Proposition 6 Let P = {(φ1 ∧ · · · ∧ φn|>)[1, 1]} and ν =
(ϕ|>). Then for any event ψ, forget(P, ν) |= (ψ|>)[1, 1] iff
forgetcl({φ1 ∧ · · · ∧ φn}, ϕ) |=cl ψ.

Let two theories be T1 = {φ1, . . . , φn} and T2 = {φ1∧· · ·∧φn},
then T1 ≡ T2 and T2 is logically equivalent to PLP P = {(φ1∧· · ·∧
φn|>)[1, 1]}, forget(P, ν) is equivalent to forgetcl(T, ϕ), where
ν = (ϕ|>). As a consequence, forgetting facts is a special case of
forgetting conditional events.

Definition 7 Let P be a PLP and its set of probability distributions
be Pr, and ν = (ψ|φ) be a conditional event. We let Prν

P be the set
of probabilistic distributions s.t. Pr′ ∈ Prν

P iff there exists a Pr ∈
Pr such that
(1) Pr′(I) = Pr(I), if I 6|= φ
(2)

∑
J|=φ,J≈ψI Pr′(J) =

∑
J|=φ,J≈ψI Pr(J), if I |= φ

(3) Pr′(φ ∧ φ′) = Pr(φ ∧ φ′), if there exists (ψ′|φ′)[l, u] ∈ P

In the above definition, condition (1) means that when φ is not
satisfied, then nothing should be forgotten; condition (2) says that
even when φ is satisfied, only the beliefs that are relevant to ψ are
forgotten; condition (3) says that within the domain of φ, the proba-
bilities of the antecedents of probabilistic formulae in P should not
be affected.

Obviously, Pr ⊆ Prν
P and therefore, Prν

P is not empty iff P is
satisfiable.

Proposition 7 Let P be a PLP and ν = (ψ|φ) be a conditional
event. Then Prν

P is the set of probabilistic models of forget(P, ν).
Forgetting a conditional event will not loss knowledge that is ir-

relevant to the forgotten conditional event.

Proposition 8 Let P be a PLP and ν = (ψ|φ) be a conditional
event. If P |= (ψ′|φ′)[l, u] then forget(P, ν) |= (ψ′|φ′)[l, u],
where (ψ|φ) E (ψ′|φ′) or |=cl ¬(φ ∧ φ′).

Example 1 Let P be given as:

P =





(fly(t)|bird(t))[0.98, 1]
(bird(t)|penguin(t))[1, 1]
(penguin(t)|bird(t))[0.1, 1]





From P , it can be inferred that P |= (fly(t)|penguin(t))[0.8, 1].
When it is informed that this conclusion may be wrong, we want to
revise P by forgetting ν = (fly(t)|penguin(t)). After forgetting ν
from P we can get the PLP forget(P, ν). It is worth noting that,
for any PLP P ′, for any events φ and ψ and any l, u ∈ [0, 1], the
statements P ′ |= (>|φ)[1, 1], P ′ |= (φ|⊥)[l, u] and P ′ |= (ψ|φ ∧
ψ)[1, 1] always hold. By omitting such kind of probabilistic formulae,
forget(P, ν) can be simplified as:

forget(P, ν) =





(penguin(t)|bird(t))[0.1, 1]
(bird(t)|penguin(t))[1, 1]
(fly(t)|bird(t) ∧ ¬penguin(t))[0.98, 1]





In the original P , P |=tight (fly(t)|bird(t) ∧
¬penguin(t))[0, 1]. The lower bound is from the assumption
that it is possibly that all birds are penguins and all penguins cannot
fly. In another word, this conclusion depends on the knowledge
about (fly(t)|penguin(t)) which should be forgotten, and thus, this
bound is not suitable. On the contrary, it is stated in forget(P, ν)
that (fly(t)|bird(t) ∧ ¬penguin(t))[0.98, 1], which retains the
knowledge that a bird (which is not a penguin) very likely can fly.
Let P ′ = forget(P, ν), we have P ′ |= (fly(t)|penguin(t))[0, 1],
which means that indeed in P ′, the knowledge about whether
penguins can fly is totally forgotten.

4 Belief Revision by Forgetting
In this section, we define two specific revision operators that revising
a PLP P with a probabilistic formula.

Definition 8 Let P be a PLP in PL, and µ = (ψ|φ)[l, u] be a
probabilistic formula in F . Let ν = (ψ|φ). We define operator
¦0 : PL × F → F such that P ¦0 µ = forget(P, ν) ∪ {µ}.

Example 2 Let P be given as in Example 1, and µ =
(fly(t)|penguin(t))[0, 0] be a probabilistic formula.

P ¦0 µ =





(fly(t)|bird(t) ∧ ¬penguin(t))[0.98, 1]
(bird(t)|penguin(t))[1, 1]
(penguin(t)|bird(t))[0.1, 1]
(fly(t)|penguin(t))[0, 0]





Now we can infer that P ¦0 µ |=tight (fly(t)|bird(t))[0, 0.9] which
is intuitively correct. The upper bound of the probability if whether
a bird can fly is changed to be 0.9 following the fact that some birds
(penguins) cannot fly.

In the above example, we have P ¦0 µ |=tight

(fly(t)|bird(t))[0, 0.9]. This lower bound (0) means that
it is possible that all birds cannot fly. The lower bound
comes from the possibility that all birds are penguins since
P |= (penguin(t)|bird(t))[0.1, 1]. Using operator ¦0 to revise P
with (fly(t)|penguin(t))[0, 0] does not eliminate such possibility.

On the another hand, since the new information that pen-
guins cannot fly contradicts with the original general knowl-
edge that most birds can fly, it implicitly suggests that pen-
guins are very different from typical birds. Formally, the proba-
bility of (penguin(t)|bird(t)) should be low. In fact, if we had
(penguin(t)|bird(t))[0.1, 0.1] in P ¦0 µ in the above example, we
should have got P ′ = (P ¦0 µ) ∪ {(penguin(t)|bird(t))[0.1, 0.1]}
and P ′ |=tight (fly(t)|bird(t))[0.882, 0.9] which gives a much
tighter and more intuitive bounds for (fly(t)|bird(t)).

This discussion suggests that sometimes the contradiction between
new information (ψ|φ)[l, u] and an original PLP P implies that the
antecedent φ is a special case of φ′ for any φ′ that (ψ′|φ′)[l′, u′] ∈ P
and φ′ is relevant to (ψ|φ). Here φ′ is relevant to (ψ|φ) means that
a tighter probability bound for (ψ|φ) can be inferred from P only
when more knowledge about the relationship between φ′ and φ (i.e.
a tighter bound for (φ′|φ) or (φ|φ′)) is provided. The above discus-
sion leads us to define another revision operator ¦. Revising with
this operator, the impreciseness of the antecedent of new information
may be decreased.

Definition 9 Let P be a PLP in PL, and µ = (ψ|φ)[l, u] be a
probabilistic formula in F . Let ν = (ψ|φ). We define operator
¦ : PL × F → PL which satisfies

(1) µ ∈ P ¦ µ
(2) forget(P, ν) ⊆ P ¦ µ
(3) ∀(ψ′|φ′)[l, u] ∈ P,

(φ′|φ)[la, ua] ∈ P ¦ µ and (φ|φ′)[lb, ub] ∈ P ¦ µ
where
P |=tight (ψ|φ)[l0, u0]
clb([l0, u0], [l, u]) = [l′, u′]
P ∪ {(ψ|φ)[l′, u′]} |=tight (φ′|φ)[la, ua]
P ∪ {(ψ|φ)[l′, u′]} |=tight (φ|φ′)[lb, ub]

and P ¦ µ is the smallest set (with respect to set inclusion) that
satisfying the above conditions.

Obviously, P ¦ µ |= P ¦0 µ.

Example 3 Let P be as given in Example 1, and µ =
(fly(t)|penguin(t))[0, 0] be a probabilistic formula.

P ¦ µ =





(fly(t)|bird(t) ∧ ¬penguin(t))[0.98, 1]
(bird(t)|penguin(t))[1, 1]
(penguin(t)|bird(t))[0.1, 0.1]
(fly(t)|penguin(t))[0, 0]





Now, we have that most birds can fly since P ¦ µ |=tight

(fly(t)|bird(t))[0.882, 0.9] and this knowledge is still imprecise.

Proposition 9 Both operators ¦0 and ¦ satisfy the postulates R*1,
R*2, R*4, R*6, and R*7.

Both operators do not satisfy R*3 in general. This comes from
the fact that our operators retain the impreciseness of the original
knowledge whilst Ψ ∧ µ decreases the impreciseness of the original
knowledge.

These two operators also do not satisfy R*8 in general. From R*8,
we can get three weaker postulates:

R*8′.1 for all ψ′ and φ′, if (ψ|φ) E (ψ′|φ′) and P ? (ψ|φ)[l, u] |=
(ψ′|φ′)[l′, u′] then P |= (ψ′|φ′)[l′, u′].

R*8′.2 for all ψ′ and φ′, if (ψ′|φ′) E (ψ|φ) and P ? (ψ|φ)[l, u] |=
(ψ′|φ′)[l′, u′] then P |= (ψ′|φ′)[l′, u′].

R*8′.3 for all ψ′ and φ′, if |=cl ¬(φ ∧ φ′) and P ? (ψ|φ)[l, u] |=
(ψ′|φ′)[l′, u′] then P |= (ψ′|φ′)[l′, u′].

Proposition 10 The operator ¦0 and ¦ satisfy R*8′.1 and R*8′.3.
R*8′.2 is not satisfied by ¦0 and ¦ because forgetting conditional

event (ψ|φ) may affect the knowledge about (ψ′|φ′) if (ψ′|φ′) E
(ψ|φ).

5 Related Work and Conclusion
Related work: Traditionally, forgetting is to delete some concepts
(atoms or facts) from a given theory in a classical logic-based lan-
guage. In this paper, we extended the concept of forgetting to forget
conditional events other than facts in the framework of conditional
probabilistic logic programming. Since facts can be represented as a
special kind of conditional events, i.e., conditional events that have
tautologies as its antecedent, it is not surprising that our forgetting
method subsumes the original approach to forgetting facts.

In [15], forgetting facts is deployed in belief change in proposi-
tional logic. When reducing forgetting conditional events operation
to forgetting facts in our operator ¦0 (since when the bounds for every
probabilistic formula is either [0,0] or [1,1], a PLP actually contains
a set of propositional formulae), we can obtain the update operator
defined in [15]. However, there is no counterpart of our ¦ in [15].

In the literature of probabilistic belief revision, most revision op-
erators are model-based, that is a revision operator revises a single or
a set of probability distributions, and the result is also a single or a set
of probability distributions. This kind of revision makes the proba-
bilistic knowledge implicit, especially when this knowledge is in the
form of PLP. On the contrary, our operators are defined at the syntax
level, and a revised PLP is obtained as the result.

Many probabilistic belief revision operators require that new
knowledge is consistent with the original knowledge [1, 8, 3, 4, 10,
17]. In contrast, since any conditional event can be forgotten from a
PLP, we do not require that new knowledge is consistent with a given
PLP. Furthermore, our revision results can still be imprecise (See Ex-
ample 3) while some other revision operators [1, 8, 3, 4, 5, 6, 10],
produce single probability distributions as the result of revision.

Conclusions: In this paper, we extended the concept of forgetting to
forgetting conditional events in PLPs and proposed two revision op-
erators based on our forgetting (of conditional events) approach. Our
revision operators forget inconsistent knowledge and retain irrelevant
knowledge with respect to new information.

Among the two operators we have defined, the second operator (¦)
is particularly designed for situations where the antecedent of a con-
ditional event (new information) in the original PLP is imprecise. The
first revision operator does not change anything (bounds of probabil-
ities) about the antecedent after revision whilst the second operator
decreases the imprecision of the antecedent (in terms of probability
bounds). The rational of operator ¦ comes from the assumption that
if new information contradicts with the original PLP, then it suggests
that the antecedent may be a special case of a general concept de-
fined in this PLP (such as penguin is a special type of bird, but not a
common type of bird).

Our operators satisfy most of the postulates for probabilistic belief
revision and operate at the syntax level of a PLP, so that a new PLP
is explicitly returned as the result of revision.

REFERENCES
[1] Hei Chan and Adnan Darwiche, ‘On the revision of probabilistic beliefs

using uncertain evidence’, Artif. Intell., 163(1), 67–90, (2005).
[2] Adnan Darwiche and Judea Pearl, ‘On the logic of iterated belief revi-

sion’, Artif. Intell., 89(1-2), 1–29, (1997).
[3] Didier Dubois and Henri Prade, ‘Focusing vs. belief revision: A funda-

mental distinction when dealing with generic knowledge’, in Proc. of
ECSQARU-FAPR’97, pp. 96–107, (1997).

[4] B. Van Fraasen, ‘Probabilities of conditionals’, in Proc. of Foundations
of Probability Theory, Statistical Inference, and Statistical Theories of
Science, pp. 261–300, (1976).

[5] I. R. Goodman and Hung T. Nguyen, ‘Probability updating using sec-
ond order probabilities and conditional event algebra’, Inf. Sci., 121(3-
4), 295–347, (1999).

[6] Adam J. Grove and Joseph Y. Halpern, ‘Probability update: Condition-
ing vs. cross-entropy’, in Proc. of UAI’97, pp. 208–214, (1997).

[7] Adam J. Grove and Joseph Y. Halpern, ‘Updating sets of probabilities’,
in Proc. of UAI’98, pp. 173–182, (1998).

[8] Peter Grünwald and Joseph Y. Halpern, ‘Updating probabilities’, J. Ar-
tif. Intell. Res. (JAIR), 19, 243–278, (2003).

[9] Gabriele Kern-Isberner, ‘Postulates for conditional belief revision’, in
Proc. of IJCAI’99, pp. 186–191, (1999).

[10] Gabriele Kern-Isberner and Wilhelm Rödder, ‘Belief revision and infor-
mation fusion on optimum entropy’, Int. J. Intell. Syst., 19(9), 837–857,
(2004).

[11] Jérôme Lang, Paolo Liberatore, and Pierre Marquis, ‘Propositional in-
dependence: Formula-variable independence and forgetting’, J. Artif.
Intell. Res. (JAIR), 18, 391–443, (2003).

[12] Fangzhen Lin and Raymond Reiter, ‘Forget it!’, in Working Notes,
AAAI Fall Symposium on Relevance, eds., Russell Greiner and Devika
Subramanian, pp. 154–159, Menlo Park, California, (1994). American
Association for Artificial Intelligence.

[13] Thomas Lukasiewicz, ‘Probabilistic logic programming.’, in Proc. of
ECAI’98, pp. 388–392, (1998).

[14] Thomas Lukasiewicz, ‘Probabilistic logic programming with condi-
tional constraints.’, ACM Trans. Comput. Log., 2(3), 289–339, (2001).

[15] Abhaya C. Nayak, Yin Chen, and Fangzhen Lin, ‘Forgetting and knowl-
edge update’, in Proc. of Australian Conference on Artificial Intelli-
gence, pp. 131–140, (2006).

[16] Damjan Skulj, ‘Jeffrey’s conditioning rule in neighbourhood models’,
Int. J. Approx. Reasoning, 42(3), 192–211, (2006).

[17] Frans Voorbraak, ‘Probabilistic belief change: Expansion, conditioning
and constraining’, in Proc. of UAI’99, pp. 655–662, (1999).

[18] Anbu Yue and Weiru Liu, ‘Revising imprecise probabilistic beliefs
in the framework of probabilistic logic programming’, in Proc. of
AAAI’08, (2008).

