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Abstract

Probabilistic logic programming is a powerful technique to
represent and reason with imprecise probabilistic knowledge.
A probabilistic logic program (PLP) is a knowledge base
which contains a set of conditional events with probability
intervals. In this paper, we investigate the issue of revising
such a PLP in light of receiving new information. We propose
postulates for revising PLPs when a new piece of evidence is
also a probabilistic conditional event. Our postulates lead to
Jeffrey’s rule and Bayesian conditioning when the original
PLP defines a single probability distribution. Furthermore,
we prove that our postulates are extensions to Darwiche and
Pearl (DP) postulates when new evidence is a propositional
formula. We also give the representation theorem for the pos-
tulates and provide an instantiation of revision operators sat-
isfying the proposed postulates.

Introduction

Probabilistic logic programming has been used to repre-
sent and reason with probabilistic knowledge in many real-
world applications, e.g., (Fuhr 2000; De Raedt, Kimmig,
and Toivonen 2007; Baral and Hunsaker 2007). Probabilis-
tic knowledge often needs to be revised when new informa-
tion (evidence) is received. In the literature of probabilistic
belief revision and updating, most research so far focuses
on revising a single probability distribution (Chan and Dar-
wiche 2005; Griinwald and Halpern 2003; van Fraasen 1976;
Dubois and Prade 1997). However, a single probability dis-
tribution is not suitable for representing imprecise proba-
bilistic beliefs, as the case for a probabilistic logic program
(PLP), where a set of probability distributions is usually as-
sociated with a PLP. Research on revising a set of probability
distributions is reported in (Skulj 2006; Grove and Halpern
1998), but these methods (as well as methods on revising
single probability distributions) can only revise probability
distributions by certain kind of evidence, i.e., evidence that
is consistent with original distributions. Therefore, any ev-
idence that is not fully consistent with current knowledge
cannot be used.

Revision on conditional probabilistic logic is reported in
(Kern-Isberner and Rédder 2004). In conditional probabilis-
tic logic, beliefs are represented by a set of probabilistic
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propositions which can be treated as a set of constraints,
and the set of probability distributions that satisfy these con-
straints define the semantics of the theory. When revising
beliefs represented by a set of probabilistic propositions, the
revision procedure actually revises a single probability dis-
tribution which is obtained by using the maximum entropy
principle, therefore some information is lost in the revision
procedure (because other distributions are not used). Fur-
thermore, this method also requires that new evidence must
be consistent with the original distribution.

On the technical side, most revision methods are based
on Bayesian conditioning or its extensions, such as Jeffrey’s
rule (Skulj 2006) or the minimum cross-entropy principle
(van Fraasen 1976; Kern-Isberner and Rodder 2004). A dis-
advantage of these methods is that a consistent condition is
required, so it does not fully satisfy the intension of belief re-
vision in logics. According to the discussion in (Voorbraak
1999), the (extended) conditioning is parallel to belief ex-
pansion operators, and should be treated as a type of belief
changing operator other than belief revision or updating op-
erators in the logical view. Another disadvantage of condi-
tioning (Bayesian conditioning or Jeffrey’s Rule) is that a
belief cannot be revised by conditional events. Also, apply-
ing the minimum cross-entropy principle to revise beliefs by
conditional events, some counterintuitive conclusions can be
derived (Grove and Halpern 1997).

In this paper, we investigate the issue of revising a PLP
in light of receiving new information, which is represented
by a probabilistic formula. A revision strategy for revising a
PLP shall satisfy the following constraints:

e All knowledge contained by the given PLP should be con-
sidered when revised by new evidence. Semantically, the
set of probability distributions that satisfy the given PLP
and that are closest to new evidence should all be consid-
ered in the revision procedure.

e Only elements of knowledge relevant to new evidence
should be affected by the revision, that is, irrelevant
knowledge should be retained. This is also known as the
minimal change principle.

e Revision operators should not be too sensitive to the given
probability interval of a conditional event (new evidence),
that is, by slightly modifying the given probability inter-
val of new evidence, the result of revision should not be



affected significantly.

To achieve these, we first propose postulates to character-
ize revision operators (strategy) for PLPs, we then present
the representation theorem for these postulates and provide
an instantiation of revision operators that satisfies our postu-
lates. Our revision strategy has the following properties:

e We do not require that new evidence is consistent with the
original PLPs.

e Our revision strategy is an extension of Bayesian condi-
tioning and Jeffrey’s rule, in the sense that our postulates
lead to Jeffrey’s rule and Bayesian conditioning when the
original PLP defines a single probability distribution.

e Our revision strategy is also an extension of epistemic re-
vision, in the sense that when new evidence is a sure event
with probability 1, our postulates lead to Darwiche and
Pearl (DP) postulates for iterated belief revision.

There are other approaches to representing probabilistic
knowledge other than PLPs, for example, probabilistic logic
programming language P-log. P-log can be used to reason
with causal knowledge and new information can be mod-
eled as observations (Baral and Hunsaker 2007). Again, any
new information (an observation) must be consistent with
the original knowledge.

This paper is organized as follows. In Section 2, we
briefly review probabilistic logic programming, DP postu-
lates for iterated belief revision, and introduce the concept
of probabilistic epistemic states for PLPs. In Section 3, we
propose postulates for revising PLPs with probabilistic con-
ditional events and give the representation theorem to char-
acterize the postulates. Jeffrey’s rule and Bayesian condi-
tioning are proved to be subsumed by our revision strategy.
In Section 4, we define a specific revision operator that satis-
fies our postulates. In Section 5, we prove that our postulates
extend DP postulates. In Section 6, we discuss related work
and in Section 7 we conclude the paper.

Preliminaries
Conditional Probabilistic Logic Programs

We consider conditional probabilistic logic programming in
this paper (Lukasiewicz 1998; 2001; 2007).

Let ® be a finite set of predicate symbols and constant
symbols, and V be a set of object variables and I3 be a set of
bound constants which are in [0,1] describing the bound of
probabilities. It is required that ® contains at least one con-
stant symbol. We use lowercase letters a, b, . . . for constants
from @, uppercase letters X, Y for object variables, and [, u
for bound constants.

An object term is a constant from P or an object variable
from V. An atom is of the form p(¢y, ..., 1), where p is a
predicate symbol and ¢; is an object term. An event or for-
mula is constructed from a set of atoms by logic connectives
A, V, - as usual. We use letters ¢, 1, ¢ for events.

An object term, event, conditional event, probabilistic for-
mula, or PLP is called ground iff it does not contain any
object variables from V.

Herbrand universe (denoted as HUg) is the set of all
constants from ®, and Herbrand base H Bg is the finite

nonempty set of all events constructed from the predicate
symbols in ¢ and constants in HUg. A possible world I is
a subset of HBg, and Zg is the set of all possible worlds.
An assignment o maps each object variable to an element
of HUs. It is extended to object terms by o(c) = ¢ for all
constant symbols from ®. An event ¢ satisfied by I under
o, denoted by I =, ¢, is defined inductively as:

o/ ':U p(tla cee 7tn) 1ffp(0(tl)a R U(tn)) € I,

o] |:g (]51 A ¢2 iff I ):o' ¢1 and [ ):U ¢2;

o/ ':0 ¢1 \ ¢2 iff 1 ':0' ¢1 or [ ':O' ¢2;

o[ =, ~iffI £, ¢

An event ¢ is satisfied by a possible world I, denoted by
I = @, iff I =, ¢ for all assignments 0. An event ¢ is a
logical consequence of event ¢, denoted as ¢ =, o, iff all
possible worlds that satisfy ¢ also satisfy ¢.

In this paper, we use T to represent (ground) tautology,
and we have that I |=,; T for all T and all assignments c.

A conditional event is of the form 1)|¢ with events ¢ and
. A probabilistic formula is of the form (¢|p)[l, u] which
means that the probability bounds for conditional event 1|
are [ and u. We call ¥ its consequent and y its antecedent. A
probabilistic logic program (PLP) P is a set of probabilistic
formulae.

A probabilistic interpretation Pr is a probability distri-
bution on Zp (i.e., as Ly is finite, Pr is a mapping from Zg
to the unit interval [0,1] such that } ;. Pr(I) = 1). We
use Prg to denote the set of all probability distributions on
T, and use Pr to denote a subset of Prg. The probability
of an event ¢ in Pr under an assignment o, is defined as
Pro(¢) = > 1ezp.1=,, Pr(I). If ¢ is ground, we simply
write as Pr(y). If Pr, () > 0 then we define Pr, (¢|p) =
Prqo(¢ N)/Prq(¢), and Pr, ,(I) = Pr(I)/Prs(p) if
I =5 por Pry (1) = 0 otherwise. When ¢ is ground, we
simply write Pr, ,(I) as Pr,([).

A probabilistic formula (¢|¢)[l, u] is satisfied by a proba-
bilistic interpretation Pr under an assignment o, denoted by:
Pr b=, (0lp)[L,u] iff Pro(p) = 0 or Pre(y]p) € [L,ul.
A probabilistic formula (¢|p)[l,u] is satisfied by a prob-
abilistic interpretation Pr, or Pr is a probabilistic model
of (¢|¢)[l,u], denoted by Pr E (¢|o)[l,ul, iff Pr E,
(|©)[l, u] for all assignments o. A probabilistic interpreta-
tion is a probabilistic model of a PLP P, denoted by Pr =
P, iff Pr is a probabilistic model of all (¢|¢)[l,u] € P.
A PLP P is satisfiable or consistent iff a model of P ex-
ists. A probabilistic formula (1|p)[l, u] is a consequence of
the PLP P, denoted by P = (¢|p)[l, u], iff all probabilis-
tic models of P are also probabilistic models of (¢)|p)[l, u].
A probabilistic formula (v]p)[l, u] is a tight consequence of
P, denoted by P |=4ign: (¥]p)[l, ul, iff P = (Y]o)[l, ul,
P (Ylo)[l,u'], P E (Yle)[l/,u] foralll’ > land v’ < u
(',u € [0,1]). Note that, if P = (¢|T)[0,0], then it is
canonically defined as P |=ygn:e (¢0]0)[1,0], where [1,0]
stands for an empty set.

Iterated Belief Revision on Epistemic States

Belief revision is a process of changing a belief set to
accommodate new evidence that is possibly inconsistent
with existing beliefs, and the process is regulated by the



AGM (Alchourrén, Girdenfors, and Markinson) postulates
(Alchourrén, Girdenfors, and Makinson 1985; Girdenfors
1998), and rephrased by Katsuno and Mendelzon for propo-
sitional logic setting (Katsuno and Mendelzon 1992). Dar-
wiche and Pearl (Darwiche and Pearl 1997) modified these
postulates based on epistemic states and proposed additional
postulates for iterated belief revision. Each epistemic state,
U, has a unique belief set, denoted as Bely,(¥,;), which
can be taken as a propositional sentence. It is possible to
have two different epistemic states with the equivalent be-
lief set. When an epistemic state is embedded in a logical
formula, it is used to represent its belief set. For exam-
ple, ¥,; = a means Bel, (V) E «, Uy A ¢ stands for
Belyp(¥p) A ¢, and Wy = W7, stands for Bely (V) =
Belp (V7).

Let o be a revision operator, the modified AGM postulates
for epistemic revision are (note: W,,;0/3 is an epistemic state)
(Darwiche and Pearl 1997):

G1 ¥, o § implies 3.
G2 1If ¥, A B is satisfiable, then Uy 0 = W A .
G3 If 3 is satisfiable, then ¥,,; o 3 is also satisfiable.
G4 If \I’pl = q)pl and ﬂl = 62, then \Ilpl o 61 = (bpl o ﬂg.
G5 (Up; 0 B) A ¢ implies ¥p; o (B A ¢).
GO If (U, 0 B) A ¢ is satisfiable, then ¥ o (5 A ¢) implies
(\I’pl o 6) A .
and the postulates for iterated belief revision are (note:
Ui = (Bla) if Uy 0o = )

ClIf a = ¢, then U,y = (B|a) iff Uy 0 ¢ = (B|a).
C21If o |= ¢, then U, |= (Bla) iff Uy 0 ¢ |= (B]a).
C3If ¥, = (f|) then ¥y, 0 8 = (Bla).

C41f ‘llpl F& (ﬁﬁ\a) then \I/pl o3 l;é (ﬁﬁ\a)

In this paper, we refer the above G1 to G6 and Cl1 to C4
postulates as DP postulates.

Probabilistic Epistemic States and Belief Set

Given a PLP P, we define set Bel’(P) as Bel’(P) =
{@I6)L,u] | P (016)[Lul, P 1 (67T)[0,0]} and cal
it the belief set of P. Condition P [~ (¢|T)[0,0] is re-
quired because when P |= (¢|T)[0,0], P = (¢|¢)[l, u] for
all ¢ and all [I,u] C [0,1]. Without this condition, some
counterintuitive conclusions can be inferred, for instance,
(1|¢)[0,0.3] and (2)|¢)[0.9, 1] can simultaneously be the be-
liefs of an agent if P = (¢|T)]0, 0].

Each probabilistic epistemic state, ¥, has a unique belief
set, denoted as Bel" (W), which is a set of probabilistic for-
mulae. Bel® (W) is closed, i.e. Bel®(Bel®(V)) = Bel®(V).
We call ¥ a probabilistic epistemic state of a PLP P, iff
Bel®(V) = Bel®(P). It is possible to have more than
one probabilistic epistemic state for the same PLP. On the
other hand, each probabilistic epistemic state U also has a
unique set of probability distributions, denoted Mods(¥).
It is required that Mods(¥) is a convex set. Mods(V¥)
defines the semantics of Bel’(¥), that is, Bel®(¥) =
{W|P)l,u] | 3Pr € Mods(¥), Pr(¢) > 0, and VPr €
Mods(W), if Pr(¢) > 0, then Pr(¢|¢) € [I,u]}. We call
the set Bel. (V) = {(¢| T)[1, 1]|(#|T)[1,1] € Bel®(¥)} as
the classical belief set of V.

Furthermore, we have the following inference relations:

W = (16) (L u] iff (]0)[1, u] € Bel (), and

U g (4]0)[lu] i U ([6)[l,u] and for all
[, u] C [lu], ¥ ¥~ (¢¥|¢)[l,u]. Itis worth noting that,
when ¥ = (¢|T)[0,0], ¥ Fpigne (¥]@)[l,u] forall I, u €
[0,1], however P |=¢ign: (¢]0)[1,0].

In this paper, we also write U A (3|@)[l, u] to represent

Bel® (W) U {(¢|¢)[l, u]}.

Imprecise Probabilistic Belief Revision
Postulates

Definition 1 (perpendicular) A conditional event (V|¢) is
perpendicular with another conditional event (1'|¢), de-
noted as (Y|¢) < (¢'|¢') iff at least one of the following
conditions holds

e ¢ NY,
L4 d) ':cl (725/ A _"l/]/;
L4 ‘:cl ﬁ(¢/ A (b)r
o ¢ }:cl d N,

L ¢/ ):cl ¢ A _"ll];

The perpendicularity relation formalizes a kind of irrele-
vance between two conditional events. The above definition
is an extension of the definition of perpendicular in (Kern-
Isberner 1999), in which the first three conditions are re-
quired. Conditional event (1'|¢’) only affects the relation-
ship (probability distributions) between ¢’ A1)’ and ¢/ A—))’,
and has no effect on sub-events of ¢’ A 1)’ and of ¢’ A —)’.
When the first condition holds, ('|¢’) shall have no effect
on (¢)|¢) since the latter is a sub-event of ¢ and hence a sub-
event of ¢’ A 1’. Therefore, events (¢|¢) and (v'|¢’) are
irrelevant. The 2nd, 4th and the 5th conditions can be ex-
plained similarly. When the third condition is true, events
(|¢) and (¢’ |¢") affect different domains of events, so they
are irrelevant.

Definition 2 Let P be a PLP with probabilistic epistemic
state U and 1 = (Y|d)[l, u] be a probabilistic formula. The
result of revising U by p is another probabilistic epistemic
state, denoted as V x |, where % is a revision operator. Op-
erator % is required to satisfy the following postulates:

R1 U xpu = p.

R2 UApukEU*pu.

R3 if U A p is satisfiable, then U x p = ¥ A p.

R4 U x p is unsatisfiable only if n is unsatisfiable.

RS Ukpu=Uxy ifu=y.

R6 Let i = (b|o)[1, u] and ¥ x 1 Eigne (VIO o)
Let 1 = (16)11, wr) and ' 1 Cosgne (VIO ).
For any ¢ > 0, if |lup —ul+ |1 =1 < ¢ and
both of (V|9)[l,u] and (¢¥|p)[l',u'] are satisfiable, then
luy —u/ |+l =] <e

RT Leti = (010, ul iU b= (6|T)[V' o), then (Bxp)
(@I, w].

RS Let ji = (1)1, u] and 1 = (&/|¢)V', ). Suppose
that (V@) > (W'@"). If (¥ * w) A ' is satisfiable then
U Ay is satisfiable, and (U * p) A p' = (U A ') * p.



R1 - R5 is an analog to postulates G1 - G4. We do
not have corresponding postulates for G5 and G6 since re-
vision with the conjunction of probabilistic formulae are
more complicated and is beyond the scope of this paper.
R6 is a sensitivity requirement, which says that a slightly
modification on the bounds of u = (¢¥|@)[l,u] (.e., ' =
(¥|@)[l1, u1]) shall not affect the result of revision signifi-
cantly. R7 says that revising ¥ by p = (¢|¢)[l, u] should
not affect the statement about ¢ (, but the impreciseness of
¢ may be decreased). Recall that perpendicular condition
characterizes a kind of irrelevance, R8 says that any irrele-
vance knowledge with new evidence should not be lost by
the revision with this evidence. It is worth noting that R7 is
a special case of R, since (¢| T) < (¢|¢) for all 1.

From R7, it is possible to have ¥ =y;gns (¢ T)[l, u), ¥ x
i Etight (0| T)[I',w'] and [I', '] C [I,u], which means that
the ignorance about ¢ is reduced after revision. To reflect
this, a stronger version of R7 to totally retain the ignorance
about ¢ can be defined as

R’ Let j1 = (4]0)[1,ul. W b= (6| T)[1', '] iff (¥ 5 1) =
(@I, w].

However, R7’ is too strong and it is inconsistent with R3.
Let us see the following example. Suppose that

P = {(fly(t)|bird(t))[0.98, 1], (bird(t) |penguin(t))[1, 1]}.

Let W be the probabilistic epistemic state of
P, then ¥  |gne  (penguin(t)|T)[0,1]. If
a revision operator x satisfies R7’, then V¥ «x
(f1y(8)|penguin(t))[0,0] Fugn  (penguin(t)| 70, 1].
However, U A (fly(t)|penguin(t))[0, 0] =
(penguin(t)|T)[0,0.02], so x does not satisfy R3.

From R1, it is clear that ¥ x p may infer a tighter bound
than [I, u] for conditional event (1)|¢). This leads to the fol-
lowing proposition.

Proposition 1 Let U be a probabilistic epistemic state, x be
a revision operator, and 1 = (Y|®)[l,u] be a probabilistic
formula. Suppose that U |=y;gps (¥|@)[I', W], If x satisfies
R1, R2, R3, and R6 then

o« Uap e @IOLY il =,
« Up b l0)u ] ifu <l

o Uxu = (Y|d)[l1,ur], where ly = max{l,l'} and uy =
min{u, u'}, otherwise.

That is, after the revision, we can infer a tighter bound for
the conditional event (1)|¢) and this tighter bound is either
[1,1], or [u,u], or [I',4']. This bound, among all the sub-
bounds of [/, u] that is given in the new evidence, is also the
closest to the original beliefs.

Definition 3 Ler ¢ be an event, and Pry, Pro be two proba-
bility distributions. We can define an event 1 s.t. I = ¢ iff
Pry(I) > Pro(I). We define a function dg that maps a pair
of probability distributions to a non-negative real number,
s.t. dg(Pr1, Pra) = max{d,*Pra(1|¢), dn* Pro(—)|@)},

where
dy =dn, =00+1, if3I = —¢, Pri(I) # Prao(I)
otherwise

Pry(I)—Pra(I
dp = maxyp %a I'Ea v
dn = maxre o — g Fa Y
Here, we define % =0and § =00,0x00=0,a > 0.

From dg, we can define function disy : Pre x oPre |,
RT U{0} by disy(Pr,Pr) = minp, ecpy dg(Pr, Pr’)

In this paper, we define co + 1 > oo.

Obviously, dg(Pry, Prg) > 0, and dy is asymmetric. dy
gives a quasi-distance from one distribution to another, and
disg characterizes how close a probability distribution to a
set of probability distributions is.

Definition 4 Let U be a probabilistic epistemic state and ¢
be an event. Suppose that U |=y;gns (6] T)[I, u]. A function
that maps each epistemic state W to a total pre-order <4
on the set of all possible probabilistic distributions Prg is
said to be a faithful assignment if and only if

1. ifboth Pry and Pry are in Mods(¥) then Pry =4 ¢ Pro

2. if Pri(¢) € [l,ul, Pra(¢) ¢ [I,ul, then Pry <4 v Pro

3.0f Pri(¢) € |[L,u] and Pra(¢) € [l,ul, then
Pry <4w Pro whenever disy(Pri,Mods(¥)) <
disy(Pra, Mods(T))

For any probabilistic epistemic state W, and any event ¢,
if <4 is mapped with ¥ by a faithful assignment, then
Mods(¥) = min(Prg,<sw), where min(Prg, <gv)
contains all the probability distributions that are minimal in
Prs according to the total pre-order < .

Theorem 1 (Representation Theorem) A revision opera-
tor x satisfies postulates RI1-R8 precisely when there exists
a faithful assignment that maps each epistemic state V and
event ¢ to a total pre-order <4 v such that

Mods(¥ x (|¢)[l, u]) = min(Mods((¢|)[l, u]), <¢,w)
Here Mods((v|p)[l,u]) is defined as Mods((¢|d)[l,u]) =
{Pr|Pr = (¢|¢)[l,u], Pr € Prg}.

Ramsey Test
Traditionally, a conditional (B|A) (meaning if A then B) is
interpreted by the Ramsey test as follows:

Ramsey test ¥ = (B|A) iff ¥ x A = B where ¥ is a
belief set and « is a revision operator.

The Ramsey test says that a conditional is accepted iff
when revising the beliefs with the antecedent (e.g., A, so that
the antecedent is true), the revised beliefs must also make the
consequent (e.g. B) true. We adapt the Ramsey test to the
probabilistic logic setting.

Probabilistic Ramsey test: if ¥ = (i|¢)[l,u] then
U (6 T)1,1] = (T[], and if @ x (6| T)[1,1] =
(@[T, u], © = (¢ T)[0,0], then W = (¢[))[I', u'] with

U'<lu >

Proposition 2 Let ¥ be a probabilistic epistemic state and
* be a revision operator. If x satisfies RS, then x satisfies the
probabilistic Ramsey test.



A Specific Revision Operator

In this section, we define a specific probabilistic epistemic
state Up of a PLP P as a convex set of probability dis-
tributions, and we define Mods(¥p) = Up. There-
fore, Bel®(V) = {(¢|p)[l,u] | IPr € ¥p, Pr(¢) >
0, and VPr € Up, if Pr(¢) > 0, then Pr(¢|¢) € [I,u]}.
Obviously, if U p is a probabilistic epistemic state of PLP P
and Pr = {Pr | Pr = P}, then ¥p C Pr.

Example 1 Let V be a set of probability distributions and
U = {Pr | Pr(pi(t)) + Pr(p2(t)) = 0.8}, where p; and
p2 are two predicates and t is a constant symbol. Let P be a
PLP such that

{ (p1()[T)[0,0.8],  (pa(t) V p2
(p2(£)[T)[0,0.8],  (p1(2)

It is easy to check that V is a convex set and Bel®(V) =
Bel®(P), therefore, V is a probabilistic epistemic state of
P. Suppose that Pr = {Pr | Pr = P}. Obviously, ¥ C
Pr, which means that V provides more information than Pr.
Trivially, Pr is also a probabilistic epistemic state of P.

()| T7)[0.4,0.8], }
A p2(t)[T)[0,0.4]

Definition 5 Let Pr be a probability distribution and |1 =
(Y|@)[l, u] be a probabilistic formula. We define function
dis as dis(Pr, i) = mingep . |a — x| that maps a Pr and
W to a non negative real number where Pr(¢|¢) = a. If
Pr(¢) = 0 then we define dis(Pr,u) = 0.

Let ¥p be the probabilistic epistemic state of PLP P
defined above and p = (¢|¢)[l,u] be a probabilistic
formula. Suppose that Pr € Up, and dis(Pr,u) =
minp, ey, dis(Pr',u). If dis(Pr,u) = 0, then Pr = p.
If dis(Pr, p) > 0, then Pr(¢) > 0and Pr(i|¢) is the clos-
est probability value to the bound [I, ] given in . There-
fore, Pr is one of the probability distributions that is the
closest to probabilistic formula p. The following specific
revision operator is defined based on this principle, that is,
only those probability distributions in ¥ p that are closest to
new evidence (1) should be selected and revised.

Definition 6 Let Vp be the probabilistic epistemic state of
a PLP P, and pn = (¢|¢)[l,u] be a probabilistic formula.
We define an operator e such that V', = Up e y is another
set of probability distributions such that Pr’ € W', iff there
exists Pr € Up s.t. dis(Pr,p) = minpy,cw, dis(Pro, p),
and
e Pr' = Pr,ifdis(Pr,u) =0, or
e dis(Pr,u) >0, Pr(v|¢) =b, and
- Pr/(I)=Pr(I), forall I =0 —¢
— ifb> 0, then Pr'(I) = ¢ Pr(I) forall I = ¢ N1,
ifo=0,theny ;_  sr, Pr'(I) =axPr(¢),
- ifb < 1, then Pr'(I) = :=4Pr(I) forall I =g ¢ A
-1,

Assume that Pr € Up, dis(Pr,u) =
minp,ewp dis(Pro, ), and Pr’ is obtained from Pr
based on the above definition. If dis(Pr,u) > 0,
then the values of b and a can be calculated, and
Pr'(1|¢p) = a. We can also prove that, for all Pr” € Prg,
dy(Pr', Pr) < dg(Pr”, Pr)if Pr"(y|¢) = a.

Proposition 3 The set V', = Up e 1 is a convex set.

Proposition 4 The revision operator e satisfies postulates
RI-RS.

When the agent’s belief is precise, i.e., Bel®(¥) Eiight
(¥|#)[a, a] for all 1 and ¢ such that Bel®(¥) F (4|T)[0,0],
there is one and only one probability distribution that satis-
fying Bel®(¥), in another word, Mods(¥) is a singleton
set. On the other hand, if Mods(¥) is a singleton set, then
Bel%(W) is precise. In this case, revising ¥ collapses to Jef-
frey’s rule and Bayesian conditioning.

Theorem 2 Let Vp be a probabilistic epistemic state such

that Mods(V p) is a singleton set and ¢ be an event. Sup-

pose that U, = Up e (p|T)[l,1], then ¥’y is a singleton set.

Assume that UV p = {Pr} and V', = {Pr'},

o If Pr(¢) > 0andl = 1, then Pr'(I) = Pry(I), that is,
Pr' is obtained from Pr by Bayesian conditioning on ¢.

e If0 < Pr(¢) < 1, then Pr'(I) = 1% Pry(I) + (1 —
)% Pr_(I), that is, Pr' is obtained from Pr by Jeffrey’s
rule.

Example 2 Let PLP P be defined as follows:
{ (f1y(X)|bird(X))[0.98, 1] }
P =

(bird(X)|penguin(X))[1, 1]
(penguin(X)|bird(X))[0.1,1]

Table 1: Probability distributions in U p and U p e p

ifo=1 theny ;_  or ., Pr'(I) =

where a = arg minge ) |2 — b|

(1 —a)* Pr(¢),

Index | Possible world Prell Pre
Up ||[Upepu
L g T1 x)
I {penguin(t)} €1 ¢
Iy {bird(t), penguin(t)} T3 o
B ) S
Is {fly(t), penguin(t)} € e
I7 {fly(t),bird(t)} Ts al
Is {fly(t), bird(t), penguin(t)} Ze A
where
o1+t az st ot s tate=1,
r3+r6t€1tex 3+ x6+ € +e=0,
e €0, 1] orzs + 3+ 25 + 26 =0

thus €1 = €9 =



Then we have P |=tignt (fly(t)|penguin(t))[0.8,1].
When new evidence suggests that penguins cannot
fly, we vrevise our knowledge with evidence p =
(fly(X)|penguin(X))[0, 0].

Suppose that Vp = {Pr | Pr = P}. The probabil-
ity distributions in U p that are closest to p are those with
Pr(fly(t)|penguin(t)) = 0.8, Pr(penguin(t)|T) = 0.1,
and Pr(fly(t)|bird(t)) = 0.98. Therefore, we revise the
subset of W p such that each probability distribution in the
subset having xs + ¢ = 0.1 * (x2 + 3 + x5 + zg),
26 = 0.8%(x3+xg), and x5+xe = 0.98x(xo+w3+x5+T6).
By simplification, the above constraints can be re-expressed
asri1+x4 =1—a,zo = 0,23 = 0.02xa, x5 = 0.9%a, xg =
0.08 * a, €1 = €3 = 0, where a € [0, 1].

So, x5 = 0.02 % (x2 + x5 + 5 + x¢), x6 = 0.08 * (x2 +
3+ x5 + x6). According to 11, we do not need to revise the
models that do not satisfy penguin(t), i.e. ) = xq1,25 =
To, Ty = x4,25 = x5. From the definition of e, we also
have that €] = €,y = €3 = 0, and T = 35 * x6 = 0,
xh = % xx3 = 0.1 % (xo + x5 + x5 + 26). Therefore, a
probability distribution in U p e i must satisfy that x| +
l—a,zb =0,25 =0.1xa,25 = 0.9%a,x5 = 0,€] = €
0.

Let U, = Up ey be the revised probabilistic epistemic
state, then

Wi = (ly(0)bird(1))[0.9,0.9)
Up = (bird(t) [penguin(t))[1, 1]
U, = (penguin(t)|bird(t))[0.1,0.1]

We can also infer that (penguin(X)|bird(X))[0.1,0.1],
which means that the revised knowledge about the propor-
tions of penguins in birds is getting more precise. Because
only when the proportion of penguins (in birds) is small, we
can have the probability of a bird can fly as close to 1
as possible. We also have W'y |= (fly(t)|bird(t))[0.9,0.9]
which means that definitely not all birds can fly given the
new evidence.

Relationship with Darwiche-Pearl Revision
In this section, we prove that when a probabilistic epistemic
state (from a PLP) is revised by a sure formula (rather than
a probabilistic formula), we can induce C1-C4 in (Darwiche
and Pearl 1997) on iterated revision, and therefore our prob-
abilistic revision strategy is an extension of their work.

Proposition 5 Let P be a PLP, V be its epistemic state, and
* be a revision operator that satisfies postulates Rl - RS.
Suppose that ¢, o, 3 are events, then x also satisfies the fol-
lowing postulates:

PCLIf o Eu ¢ then U [ (Blo)llu] iff ¥ *
(6IT) i, ) = (Bla) [t )
Explanation: Accommodating evidence about ¢ should
not perturb any conditional beliefs that are conditioned
on a premise more specific than ¢.

PC2 If ¥ =yighe (B[, ul, then ¥ x (B|T)[l1,u1] Ftight
(Bla)[l', u'], where ! > | and v > w.
Explanation: The lower bound and upper bound of (§|c)
should not be decreased after accommodating evidence
that support (.

From postulate PC1, we can get the following instantia-
tions:

o If a =, ¢, then ¥ = (Bla)[l,u] iff U x (¢|T)[1,1] E
(Bla)t, ul

o Ifa = —¢, then U = (B|a)[l, u] iff Ux(—o|T)[1,1] E
(Bla)t, ul

It is easy to see that the above two instantiations are exten-

sions of the DP postulates C1 and C2 respectively.
Intuitively, ¥,,; %= (—0|a) means that it is impossible to

infer (—f]«). In probabilistic logic programs, this is mod-

eled by ¥ [~ (—f|a)[l, u] for all [ > 0 and it can be equiva-

lently rewritten as ¥ |=4;gn: (B|a)[l’, 1], for some !’ € [0, 1].
Similarly, we can get instantiations of PC2 as:

o If U Eyigne (Bla)[1,1], then ¥ x (B]T)[1,1] Erigne
(Ble)[1, 1]

o If U Eyigne (Bla)[l, 1], then ¥ x (BIT)[1L,1] |=rigne
(Bla)[l’, 1], where I” > 1.

It is easy to see that the above two instantiations are exten-
sions of the DP postulates C3 and C4 respectively.

Related Work

In (Grove and Halpern 1998), the authors axiomatized the
process of updating a set of probability measures, and stated
that it is unwise to simply assume that a result in the stan-
dard model (single-measure model) can be trivially lifted
to apply in general model (set-measure model). Some pos-
tulates were provided to justify the process of updating a
set of probability distributions, and some updating operators
were examined according to these postulates. By analyzing
these postulates in our revision framework, we find that their
postulate P3 and PS5 are too strong.

P3 (Prxg &) o ¢' = Prxo (¢ A ¢')

P5 Pr *P QS = UPrEPr{Pr} *P QZS

If an operator satisfies P3 and R4 defined in our paper,
then the consistency of new evidence with the original be-
liefs is required. In fact, P3 is meaningful only when ¢ A ¢’
is consistent.

PS5 requires that all probability distributions equally con-
tribute to the revision process. This requirement is too
strong. Let Pr = {Pr | Pr |= P}, and Pr’ = Prxg¢. If P
is consistent with (¢|T)[1, 1], then Pr’ C Pr by postulate
R3. Suppose that Pr € Pr and Pr(¢) # 1. Then Pr ¢ Pr’
but {Pr} x¢ ¢ € Pr'. Since P is arbitrarily selected, it can
be inferred that { Pr}xe¢ = @ or Pr’ = {Pr | Pr(¢) = 1}.
If {Pr} x¢ ¢ = 0, then g does not satisfy postulates R2
and R4. On the other hand, Pr’ = {Pr | Pr(¢) = 1}
means that the revision process is irrelevant to the original
Pr, this is counter-intuitive. Therefore, a revision operator
should not satisfy R2, R3, R4 and PS5 simultaneously.

Since R2, R3, and R4 are widely accepted postulates
(from modified AGM postulates) for revision, P3 and P5
(Grove and Halpern 1998) are not appropriate postulates for
revising imprecise probabilistic beliefs in the logical view.
Our revision strategy satisfies the rest of the postulates, e.g,
P1, P2, P4, P6*, and P7.

In (Kern-Isberner 1999), postulates (CR0O-CR7) were pro-
vided for revising epistemic states by conditional beliefs.



In contract, we proposed postulates for revising imprecise
probabilistic beliefs. In (Kern-Isberner 2002), it was proved
that using an operator (defined from the minimal cross en-
tropy principle) to revise a single probability distribution by
a single conditional event satisfies postulates CRS - CR7 in
(Kern-Isberner 1999). However, revising by applying mini-
mal cross-entropy principle does not satisfy our R7 or R8.

In (Voorbraak 1999), the authors studied conditioning and
constraining in the logical view. Constraining is the process
of selecting the probability distributions that give probability
1 to the new evidence. The author argued that constraining
was comparable to expansion but conditioning was different
from revision in logical view. To some extend, the specific
operator defined in this paper is a kind of combination of
conditioning and constraining, however, we proved that our
operator satisfies DP postulates.

Revision on propositional probabilistic logic was reported
in (Kern-Isberner and Rédder 2004). One disadvantage is
that new evidence is required to be Pr-consistent with re-
spect to the original probability distribution Pr. The revi-
sion operator in (Kern-Isberner and Rédder 2004) considers
only one distribution obtained by maximum entropy, so the
knowledge contained by other distributions are ignored in
the revision process. In contract, our (specific) revision op-
erator works on a set of probabilistic distributions. Also,
their operator does not satisfy postulates our R7 or RS.

In (Grove and Halpern 1997), the authors stated that any
revision or updating should work on a second-order prob-
ability distribution, which is a distribution in the space of
combination of possible distributions and events of knowing
the conditional probability of a conditional event. However,
our method does not require this second-order distribution
and therefore is arguably simpler.

Conclusion

In this paper, we proposed postulates for imprecise prob-
abilistic belief revision, which extend modified AGM pos-
tulates and DP postulates. Therefore, logically PLPs can
be taken as a formal language to represent belief sets of
probabilistic epistemic states. In traditional (iterated) be-
lief revision, new evidence is generally a propositional for-
mula, however, in our revision framework new evidence can
be a probabilistic formula. Furthermore, our postulates are
proved to be extensions of Jeffrey’s rule and Bayesian condi-
tioning, when a PLP defines a single probability distribution.

In traditional probabilistic logic, belief revising and up-
dating are restricted to requiring new evidence to be consis-
tent with the original beliefs. In practice, such requirement
is too strong to be satisfied in general. On the contrary, our
revision framework does not require this condition on new
evidence.
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