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Abstract. In a team of multiple agents, the pursuance of a common goal is a
defining characteristic. Since agents may have different capabilities, and effects
of actions may be uncertain, a common goal can generally only be achieved
through a careful cooperation between the different agents. In this work, we
propose a novel two-stage planner that combines online planning at both team
level and individual level through a subgoal delegation scheme. The proposal
brings the advantages of online planning approaches to the multi-agent setting.
A number of modifications are made to a classical UCT approximate algorithm to
(i) adapt it to the application domains considered, (ii) reduce the branching factor
in the underlying search process, and (iii) effectively manage uncertain infor-
mation of action effects by using information fusion mechanisms. The proposed
online multi-agent planner reduces the cost of planning and decreases the tempo-
ral cost of reaching a goal, while significantly increasing the chance of success of
achieving the common goal.

1 Introduction

Planning is an essential component of autonomous agents. It involves the selection of
a series of actions to perform to achieve a goal desired by the agent [19]. Such a series
of actions is commonly referred to as a plan. Ideally, planning algorithms attempt to
take all information about the environment into account when coming up with a plan.
However, it is often infeasible to (optimally) plan in realistic environments due to their
size and the uncertainty of action outcomes [12]. Multi-agent planning is a particular
branch of planning where there is a collective approach from multiple agents to achieve
a goal [18]. In collaborative multi-agent planning, a team of agents try to accomplish
a task leading to a common goal by combining their capabilities and knowledge [15].
Two main approaches for collaborative multi-agent planning can be distinguished: (i)
centralised, which involves a planner agent with full knowledge of the environment and
the joint task to undertake, and (ii) distributed or decentralised [4], in which agents plan
individually and coordinate with each other to find a common solution for the planning
problem [10, 13]. Centralised multi-agent planning is typically the most efficient, but is
only feasible if agents do not have private or sensitive information [1].

Collaborative multi-agent planning has been an active subject of research in recent
years [2, 9, 14, 16]. However, most of these works focus on offline planning rather than
online planning. Online planning differentiates itself from offline planning by not fully
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elaborating a plan before execution, but instead to interleave planning and execution. To
this end, it employs approximate methods such as Monte-Carlo Tree Search (MCTS)
[3] to return the next ‘good enough’ action rather than a complete series of actions [5].
online planning approaches are their ability to narrow the scope of the search space, to
return “good enough” actions anytime and to efficiently re-plan when an unexpected
situation is encountered while acting. So far, online planning has been mainly applied
to individual agent planning problems, with only a few proposals for online multi-agent
planning presented in [11, 20, 21]. Wu et al. [20], use Decentralized POMDPs and stage
games for planning in ad-hoc teams, without pre-coordination, such that each agent in-
dependently plans its next actions under teamwork considerations. The authors also
developed in [21] an online planning approach aimed at minimizing inter-agent com-
munication. Paquet et al. [11] presented a method called Real-Time Belief Space Search
(RTBSS) for determining the best next action in large real-time environments.
In this paper we focus on problems and application domains characterised by:

– the existence of a fixed team of agents with common goals requiring coordination;

– planning at team level is required to ensure coordination between agents;

– each agent knows the outcome probabilities of its own actions only.

An example of domains under these settings are SCADA supervisory control systems,
e.g. for power grid management, or navigation in hazardous environments such as nu-
clear sites [6]. The scenario utilised to describe our proposal refers to navigation by
multiple robots for clearance in a country park. To the best of our knowledge, problems
defined under these settings have not been addressed yet in online planning.

To efficiently solve problems in these domains we introduce a novel two-stage on-
line collaborative planner where actions may have stochastic effects. The first stage is a
team level centralised planner which plans on an abstract level and delegates subgoals
to individual agents. The second stage is an individual level distributed planner where
each agent pursues its assigned subgoal. The proposed planner extends the MCTS-based
UCT algorithm [8] to (i) collectively plan for the next best subgoals for every agent in
the team, and (ii) to individually come up with suitable plans to achieve the assigned
subgoals (individual level planning). A fusion approach [22] is introduced in the team
planner to combine uncertain information about the effects of actions, which will help
to significantly reduce the search space.
To adequately scope our work we furthermore assume the following principles:

Principle 1 Agents act in parallel to achieve a common goal. A team planner agent
determines the next subgoal each agent should individually accomplish.

Principle 2 The agents act in a purely collaborative way, i.e. there is no form of compe-
tition in terms of distinct, conflict goals amongst agents. Furthermore, agents carry
out their actions independently, such that no effects of interfering the actions of the
other agents are considered.

Principle 3 No privacy preservation constraints amongst agents are considered.

The rest of the paper is organised as follows. We start off with some preliminar-
ies in Section 2. In Section 3 the scenario used to illustrate our proposal is introduced.
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Our novel, two-stage online multi-agent planner is proposed in Section 4 and evaluated
in Section 5, demonstrating its ability to reduce the cost of planning and acting in par-
allel, as well as increasing the chances of successfully reaching the goal established.
Finally, concluding remarks are drawn in Section 6.

2 Preliminaries

In offline planning, a complete plan or course of actions to achieve a goal is firstly gen-
erated and then executed by the agent. Therefore, when multiple agents are present and
there is no need for preserving private individual information, the planning process can
be easily centralised even though execution is performed in a distributed fashion [21].
By contrast, online planning interleaves planning with execution: instead of generating
the whole plan a priori, online planners return a next “good-enough” action to be ex-
ecuted at the current state. When an unexpected outcome is obtained, online planners
can immediately pick up on this new information and do not need to plan in advance
for all such eventualities. Our work focuses on integrating online planning at team and
individual levels by using online team planning as a delegation scheme.

UCT (Upper Confidence bounds applied to Trees) [8] is a state-of-the-art anytime
algorithm that combines MCTS [3] with multi-bandit selection methods [8], and has
been utilised for planning in domains pervaded by uncertainty. UCT [5] allows to
quickly return a non-trivial decision after performing a series of rollouts in which out-
comes of actions are sampled based on their probability. A rollout consists in traversing
the search tree from the root node to a node representing a terminal state. Every time a
node is visited in UCT, the selection of the action to take at its corresponding state is
based on all previous rollouts, favouring actions that either produced higher rewards or
were rarely visited in previous rollouts. This allows for a balance between exploitation
(selecting actions with better reward statistics so far) and exploration (selecting actions
that have still been rarely simulated). A decision node in UCT represents an environ-
ment state. A decision node corresponding to a non-terminal state can be expanded into
available actions at that state, leading to child decision nodes for the outcomes of such
actions. The root decision node represents the current environment state [5].

(a)

(b)

(c)

(d)

(a) select
(b) expand
(c) simulate
(d) backpropagate

Fig. 1: The four distinct steps in every MCTS iteration.

In every iteration, UCT applies the following four steps (see Figure 1): (a) Selection:
select a child node based on a selection function. (b) Expansion: randomly expand the
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selected node to a new unsampled one. (c) Rollout: randomly simulate a playout (e.g.
a sequence of selected actions and their outcomes) until reaching a terminal state. (d)
Backpropagation: compute a reward value associated to the terminal state reached, and
propagate it back up through the tree to the root node, updating the information for each
node in the path.

3 Scenario Overview

The country park scenario serves to illustrate the concepts and ideas presented in this
paper. A team of forest management robots (agents) are situated in different locations
of a country park, in a region frequently affected by natural disasters such as strong
winds and wildfires. After a storm, a number of fallen boulders are detected in loca-
tions around the park. The robots, which operate in parallel, must plan and coordinate
together to clear the affected locations efficiently. The problem is further complicated
by the following factors: (i) the park is organised into a number of locations or Points
of Interest (PoI) labelled a to n, and a network of hiking trails labelled t1 to t64 con-
necting the PoIs; (ii) some trails are safer than others due to their width (see Figure 2).
Falling off a trail (e.g. into a cliff, due to a landslide, etc.) permanently disables the
robot; and (iii) each robot has different competences and/or physical sizes, therefore
the probability of successfully crossing a trail can vary from robot to robot. The robots
are fully aware of their current position and the position of the boulders in the scenario.
Moreover, robots can communicate with the team planner agent to inform about e.g.
reaching a new PoI, clearing a boulder, or falling off a trail.

Fig. 2: Country park scenario. PoIs are labeled a to n, and trails (edges) are numbered t1 to t64

When applying our framework to this scenario the high-level team planning will
direct robots to neighbouring1 PoI on their way to reach a boulder to clear. On the
low-level individual planning the agents themselves will plan for how to reach that
neighbouring PoI given their knowledge of the trails and the likelihood of reaching the
PoI in any of the available ways given their capabilities/physical sizes.

1 Neighbouring PoIs are those which can be reached from the current agent position without
getting through any other PoI.
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4 Online Collaborative Multi-Agent Planner under Uncertainty
In this section we present an online multi-agent planner for collaborative teams of
agents whose actions have stochastic outcomes. The main characteristics of the planner
are: (1) two planning stages (team planning and individual planning) are interleaved
through a subgoal delegation scheme, (2) online planning is utilised through two exten-
sions of the UCT algorithm adapted to both planning phases, and (3) a number of mech-
anisms are proposed to deal with uncertain stochastic information effectively, whilst
preventing an excessive search space.

4.1 Notation and Basic Concepts

The following notation is introduced to refer to the different elements utilised in the
proposed multi-agent planner:

– There exists a set AG = {1, 2, . . . , n} of agents.

– There are n action librariesA1,A2, . . . ,An, one for each agent i ∈ AG. An action
library Ai = {a1i , . . . , ami } encompasses a finite set of actions aki , k = 1, . . . ,m,
that can be performed by the agent, i.e. its capabilities. For simplicity, all agents
have access to the same actions (e.g. move forward) but the probabilities of out-
comes are distinct for each agent.

– A subgoal library C = {c1, . . . , cu} common to all agents describes the possible
subgoals that can be assigned to them. A subgoal is achieved by an agent i by
applying (a sequence of) actions from its action library Ai, as explained later.

Action, plan and (sub)goal representation is based on PPDDL (Probabilistic Planning
Domain Definition Language) [23], as illustrated in several examples throughout this
section. PPDDL is fully supported by implementations of MCTS-based techniques.

The set of all possible environment states is represented as E . An environment state
is denoted by ε ∈ E , where ε0 denotes the current state, and EG ⊂ E is the subset of all
possible goal states εG. Since the team planner agent is responsible for the team plan-
ning process, it must be able to formulate environment states at team level. A decision
node in the search tree constructed during team planning includes these two elements:

1. Collective information about the current state of all agents involved in the team
planning process, describing each agent’s individual status: in our example the po-
sitions of robots in the environment.

2. Other purely environmental information: in our example, the locations of remaining
boulders, if any.

Thus, a decision node N(ε) associated to an environment state ε, is formalised as a
2-tuple N(ε) = 〈s(AG); s(env)〉. The set s(AG) = {s1, . . . , sn} denotes the current
state of every agent, and s(env) represents environmental information. Conversely, we
refer to states modelled in the individual planning phase performed by agent i ∈ AG
as agent states, εi ∈ E i. Their associated decision nodes N(εi) contain more specific
information than the (team level) environment states ε introduced above, namely infor-
mation about i and the environment only. They are formally represented as N(εi) =
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〈si; s(env)〉. In either case (and as occurs with classic UCT), the root decision node
describes the current environment (resp. agent) state, ε0 (resp. εi0).

Example 1. Consider the country park scenario (Section 3). Let si be the state of agent
i. For simplicity, we assume an agent state is solely formed by a predicate of the form,
at(i, L), indicating the location L of agent i (which can be either one of the 14 PoIs
labeled ’a’ to ’n’, a junction connecting some of the 64 trails in the park, or the symbol
“-” indicating that the agent failed in executing an action and is no longer operating).
On the other hand, let s(env)=

∧
at(boulder,L) L be the locations of boulders not cleared

out yet. A decision node describing this environment state is formalised as follows:

N(ε) = 〈{at(1, a), at(2, f), at(3, i)}; b ∧ e ∧ g ∧ j ∧m〉

with b∧e∧g∧j∧m being environmental information (locations of boulders not cleared
yet). Suppose that agent 1 plans individually to cross t5. When reaching the junction
connecting t5, t6 and t7 (denoted by t5,6,7), its resulting decision node N(εi) is:

N(ε1) = 〈at(t5,6,7); b ∧ e ∧ g ∧ j ∧m〉

with same environmental information, i.e. no PoIs with boulders have been reached yet.
ut

Fig. 3: Actions and subgoals: a team action is asso-
ciated one or more subgoals, each of which indicates
(in our scenario) a target location to be reached e.g.
at(k), whereas primitive actions indicate trails to be
crossed, e.g. t 44.

Fig. 4: Multi-agent planner scheme: the
team planner delegates subgoals to ac-
tive agents; each agent in turn plans for
achieving its subgoal and relegates exe-
cution results back to the team planner.

We now introduce the three central concepts in the proposed planner: primitive action,
subgoal and team action. These concepts are illustrated in Figure 3 to facilitate their
understanding.

Definition 1. A primitive action aki ∈ Ai can be individually undertaken by agent
i ∈ AG, e.g. t 1 for the action of moving across trail ’1’. Primitive actions are evaluated
and selected during individual planning.
Definition 2. A subgoal ci ∈ C assigned to agent i represents an individual state i
should aim for, e.g. at(a), which indicates that i must reach the PoI labeled ’a’. Sub-
goals are assigned by the team planner agent to every agent in the team.
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Definition 3. A team action τ = {σi, i ∈ pa(τ)} encompasses a number of subgoals
σi simultaneously assigned to a team of participating agents pa(τ) ⊆ AG (one subgoal
per agent) at a given time. Team actions are formulated during team planning, and they
involve those agents that need a new subgoal to be pursued at a given state.

Example 2. Suppose that the following team action is selected as a result of team plan-
ning in the country park scenario, τ = {at(1, n), at(2, e), at(3, g)}. This means that
the subgoal of reaching location ’n’, at(n), is delegated to robot 1, the subgoal at(e) is
delegated into 2 and the subgoal at(g) is delegated into 3. ut

Outcomes of team actions are environment states that result either from the suc-
cessful accomplishment by every agent of its assigned subgoal, or from one or more
agents in pa(τ) failing to accomplish it (being deemed unavailable hereinafter because
e.g. they fell off a trail). In the search tree constructed during team planning, decision
nodes (except for N(ε0)) represent outcomes of team actions.

A general scheme of the proposed two-stage multi-agent planner is depicted in Fig-
ure 4 and explained in the following two subsections.

4.2 Team Planning
The team planning process aims at determining the next best team action τ describing
the immediate subgoals each agent is assigned. This is not a straightforward task for two
reasons: (1) determining the probabilities of occurrence of each available team action
requires stochastic information about individual action libraries, and (2) having multiple
agents acting in parallel may involve a significant number of possible outcomes for τ .

To cope with these difficulties, we firstly distinguish two distinct types of outcomes
for any τ . A success outcome occurs when all agents in pa(τ) succeed in achieving their
respective subgoals. A special case of a success outcome is when the common goal has
been achieved. In such a case the success outcome is also a goal state. Whenever we
do not have a success outcome, we say that we have an undesired outcome. Both goal
states and undesired outcomes are regarded as terminal states2.

Based on this distinction, we can now focus on defining a reward-driven online
team planner. In particular, we will introduce a method based on uncertain information
fusion to estimate rewards of team actions. Next, we describe how the phases of the
UCT algorithm are adapted to deal with such team actions. The subsequent individual
planning phase (Section 4.3) describes how each agent accurately plans to pursue its
assigned subgoal, taking account of its probabilities of action outcomes.

Reward Estimation at Team Level. In UCT, a reward function assigns a value to the
terminal state encountered at the end of a rollout before it is backpropagated: the greater
this value, the more rewarding the outcome is deemed. Below we introduce a collective
reward function that allows to preserve a reduced branching factor in the search tree by
summarising all possible forms of undesired outcome into one. This general function
must be instantiated to suit the specific scenario tackled.

2 Undesired outcomes are considered as terminal states: if an unexpected situation is encoun-
tered, the remaining agents start another planning process upon the resulting environment state.
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Definition 4. Let EF (⊂ E) be a set of all undesired outcomes and EG a set of all goal
states, as defined in Section 4.1. The set of all terminal states is given by EG ∪ EF = ET ,
and Eτ ⊂ EF is the set of all the possible undesired outcomes εF of τ . We propose
summarising such outcomes as one in the search tree, therefore Eτ is deemed as a single
terminal state hereinafter for the reward computation of undesired outcomes. We define
a reward function f as a mapping f : ET → [−1, 1]\{0}, with the following properties:

(i) f(εG) > 0, ∀εG ∈ EG, i.e. arriving at a goal state always produces a positive
reward value.

(ii) f(Eτ ) < 0, ∀Eτ ⊂ EF , i.e. arriving at any undesired outcome always produces a
negative reward value.

(iii) Let d ∈ N be the depth level at which the terminal state is encountered. Assume
two identical terminal states ε1, ε2 can be reached at depth d1 and d2 respectively,
with d1 < d2. Then f(ε1) ≥ f(ε2).

The computation of f(Eτ ) < 0 (property (ii)) is based on the aggregation of in-
formation related to each form of undesired outcome εF ∈ Eτ , as explained below. It
follows from property (iii) that similar goal states lead to an equal or higher reward
when they are encountered after a lower number of consecutive team actions. Similarly,
undesired outcomes are equally or less detrimental when encountered earlier. A dis-
count factor δ ∈]0, 1[ can be applied in f to reflect this property.

The reward value for an undesired outcome of τ is defined as follows. Based on each
εF ∈ Eτ , two indicators ϕ(εF ), γ(εF ) ∈ [0, 1] are introduced for resp. (i) the number of
agents in the team who fail to accomplish their subgoal σi in τ , |fa(τ)|, with respect to
the total number of participating agents; and (ii) the resulting “distance” to the (closest)
goal state. The former is computed as ϕ(εF ) = |fa(τ)|/|pa(τ)|, whereas the latter is
domain-dependent. For our scenario, it is calculated based on the number of remaining
boulders when εF occurs, i.e. γ(εF ) = #remaining/#boulders.

In addition, |Eτ | is the total number of possible undesired outcomes εF of τ . This
parameter is calculated in our scenario as |Eτ | = 2|pa(τ)| − 1, because the number of
possible outcomes only depends on the (possible subsets of) agents in pa(τ) which fail
in achieving their assigned subgoal. Hence, f(Eτ ) is defined as follows:

f(Eτ ) = −δd−1
∑
εF∈Eτ U (ϕ(εF ), γ(εF ))

|Eτ |
(1)

with U : [0, 1]2 → [0, 1] a uninorm aggregation function [22], that combines the two
indicators ϕ, γ into a single value (as explained below). The fusion procedure applied
in Equation (1) for reward computation eliminates the need for splitting undesired out-
comes into multiple leaf nodes. This significantly simplifies the search tree constructed.

Uninorm aggregation functions are a generalisation of t-norm and t-conorm func-
tions [22] with a neutral element g ∈]0, 1[, fulfilling the full reinforcement property, i.e.
if the two values to aggregate x, y ∈ [0, 1] are both higher (resp. lower) than g, then the
aggregated result becomes even higher (resp. lower). Conversely, they present a com-
pensating (averaging) behaviour if one of the values is high and the other is low. The
reinforcement property is particularly interesting in the application domains considered
in this paper to emphasise situations when:
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(i) There are few remaining agents, far away from reaching their goal, in which case
both ϕ and γ are high and the aggregated value is reinforced upwards.

(ii) Most agents still remain and they are close to the goal, in which case ϕ, γ are low
and the aggregated value is reinforced downwards.

The use of uninorm functions affects therefore the assessment of single undesired out-
comes εF ∈ Eτ in the two cases outlined above. Because of the minus sign in Equa-
tion (1), in our context U behaves as a cost function: the higher its value for a given out-
come εF ∈ Eτ , the less rewarding this outcome is, hence the lower the resulting f(Eτ )
will be. An example of these functions is the cross-ratio uninorm with g=0.5 [7]:

U(x, y) =

{
0 (x, y) ∈ {(0, 1), (1, 0)},
xy

xy+(1−x)(1−y)
otherwise. (2)

Regarding reward computation for goal states, since we consider problems where
all agents share a common goal, the reward function for any εG ∈ EG can be simply
defined as f(εG) = δd−1, i.e. the sooner the goal is accomplished (lower d), the less
resources are consumed by agents to reach it, hence the more beneficial the outcome is.

Example 3. Assume the current state of the environment in the country park scenario is
given by N(ε0)=〈{at(1, n), at(2, k), at(3,−)};j∧m〉, which means that robots 1 and
2 are active and situated in ’n’ and ’k’ respectively, whereas 3 already fell off a trail, and
the only remaining boulders are located in ’j’ and ’m’. One of the available team actions
for pa(τ) = {1, 2} is τ = {at(1,m), at(2, j)}, whose completion intuitively implies
achieving the overall team goal, in which case d = 1 and f(εG) = δd−1 = 1,∀δ. The
reward of reaching the undesired outcome is computed based on Eqs. (1) and (2):

f(Eτ ) = −
U(0.5, 0.33) + U(0.5, 0.33) + U(1, 0.66)

3
= −0.55

ut

UCT-based Search Process at Team Level. Assuming that a team action can either
lead to a success outcome, or to a(n) (summarised) undesired outcome, the collective
search tree structure is adapted as follows: every edge representing a team action leads
to a node pair formed by the decision nodes associated to the success outcome and
the undesired outcome (see Figure 5). The latter is regarded as a leaf node (terminal
state), as explained earlier. If, however, the success outcome of the node pair does not
represent a goal state, it can be expanded into a number of next available team actions
at that state.

The backpropagation process is now adapted to the proposed node pair structure.
We firstly explain how rewards are updated through nodes generated during rollout, up
to the last expanded node. Rewards throughout the rollout path cannot be accurately cal-
culated, since a team action τj immediately taken at a non-terminal state can eventually
lead to different terminal states with varying rewards. Notwithstanding, it is possible to
estimate the “best and worst possible scenario” that might be encountered at any state
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in the rollout path. In other words, given a state ε in the rollout path, we can estimate the
highest (resp. lowest) reward that could be eventually achieved after applying a num-
ber of team actions posterior to ε. Based on this, we propose modeling the reward of a
non-terminal state εS ∈ E\ET as an interval, f(εS) = f(τj) = [f(τj)

−, f(τj)
+], with

f(τj)
− ∈ [−1, 0[ and f(τj)+ ∈]0, 1]. Here, τj is the (unique) team action generated

upon εS during rollout, therefore the interval-valued reward is easily calculated as:

f(τj) = [min
τkaτj

f(Eτk), f(εG)] (3)

where τk a τj represents all rollout actions τk posterior to τj . The shaded area in
Figure 6 illustrates backpropagation through rollout nodes up to N(ε1).

Fig. 5: UCT-based search in team planning Fig. 6: Team planner backpropagation
Backpropagation between the last expanded node and the root node updates rewards

and also increases the visit count for nodes in the path. However, given a node N(ε′S)
resulting from applying τj at a previous state εS , the reward interval backpropagated to
N(εS) is not necessarily f(τj), but instead that of the most rewarding action available
at εS . It is therefore necessary to compare the interval-valued rewards of all available
actions at εS and backpropagate the highest one. To do this, the method in [17] to
calculate the preference degree between intervals of real numbers is utilised:

P (τj > τk) =
max(0, f+j −f

−
k )−max(0, f−j −f

+
k )

(f+j −f
−
j )+(f+k −f

−
k )

(4)

where interval bounds f(τj)− are denoted as f−j for simplicity. This allows to deter-
mine the most rewarding available action τ∗ at εS . Rewards f(εS)= [f(εS)

−, f(εS)
+]

are then updated based on the number of visits its corresponding node received so far:

f(εS)
−=

f(τ∗)−+#visits · f(εS)−old
#visits+ 1

f(εS)
+=

f(τ∗)++#visits · f(εS)+old
#visits+ 1

(5)

In Figure 6, τ3 is more rewarding than the team action in the backpropagation path, τ1.
Therefore, rewards in N(ε0) are updated based on f(τ3) = [−0.2, 0.5].
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Fig. 7: Individual search tree structure and rollout-backpropagation after expanding into a3
i

After a number of iterations, the best next team action τ = {σi, i ∈ pa(τ)} is
returned. The team planner then delegates the subgoal σi into each participating agent
i, which proceeds to the individual planning phase to pursue the assigned subgoal.

4.3 Individual Planning

The online approach utilised for the individual planning phase is a standard UCT-based
approach with multiple reward rollouts at each iteration. We distinguish two types of
nodes between which the algorithm alternates during construction of the tree: decision
nodes and chance nodes. The latter represent available primitive actions at the state
described by their parent decision node. Each chance node has in turn a number of
children decision nodes, one for each possible action outcome. The tree structure is
represented in Figure 7.

When a decision node N(εi) is expanded, a child chance node representing one of
the available actions at that state is generated. New decision nodes for the outcomes
of the newly generated chance node are also added to the tree. The subsequent rollout
phase of UCT is modified so that, at each iteration of the algorithm, a number r of roll-
outs are carried out for each non-terminal outcome3. This allows to quickly obtain ac-
curate reward estimates for the state from which rollouts are being currently performed,
as well as thoroughly exploring the different courses of action available from each out-
come. Each rollout takes place until a terminal state (either subgoal achievement or
failure) is encountered, and it is followed by the backpropagation and cumulation of the
reward obtained up to the root node. The reward value of every individual fail state εiF
is instantiated as f(εiF ) = −1, as failing any primitive action in our scenario implies
that the agent is no longer available. On the other hand, for an individual (sub)goal state
εG we again have f(εiG) = δd−1. The reward update process between the last expanded
node and the root node is applied differently for each type of node (see Figure 7):

1. Chance node: The reward f(aki ) ∈ [−1, 1] of a chance node associated to aki is
calculated as the probability-weighted mean of its outcomes’ rewards.

3 In the country park scenario, primitive actions have at most one non-terminal outcome, but this
could not be the case in other different scenarios with multiple stochastic action outcomes.
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2. Decision node: Rewards of decision nodes are updated similarly as explained in
the team planner, with the only difference that individual rewards of non-terminal
states are real values instead of intervals. Assuming that a∗i is the most rewarding
available action at εi, the reward in N(εi) is updated as follows:

f(εi) =
f(a∗i ) + #visits · f(εi)old

#visits+ 1
(6)

5 Experiments and Results

In this section we demonstrate the performance of the proposed multi-agent planner.
Throughout the evaluation, we refer to the country park scenario from Section 3, and the
problem formulation shown in Figure 2. To evaluate the performance of our proposed
two-stage multi-agent planner, we consider the following two baselines:

1. one-stage multi-agent planner: this baseline coincides with a fully centralised plan-
ner, which controls the actions of each individual agent. We implemented this base-
line as a simplification of our proposed planning framework, where the team plan-
ner directly plans over primitive actions of agents. Team actions are thus composed
of primitive actions instead of subgoals.

2. multiple agents planning individually: each agent plans independently and individ-
ually for the primitive actions to achieve the overall goal of clearing all boulders
from PoIs. In this baseline there is no coordination schema amongst agents. To
make the baseline more goal-aware, agents do communicate with each other to up-
date their environmental information when necessary, e.g. if a PoI has been cleared.

In the experiment we pit our novel two-stage multi-agent planner against both baselines
as discussed above. Each approach is used to solve 100 instances of the park scenario
(see Figure 2). The following metrics are subsequently considered:

(i) %success: percentage of executions in which the goal is achieved (higher is better);

(ii) #actions: total number of primitive actions undertaken by all agents per execu-
tion, before achieving the goal or failing to complete it (lower is better).

The first metric gives an indication of how good each approach is in tackling this partic-
ular scenario, whereas the second metric gives an indication of the temporal complexity
of the solutions found by each method.

Table 1: Comparison of success rate and average number of primitive actions

two-stage one-stage individually
% success 85 62 52

avg. # actions 15.96 21.68 34.63

Table 1 summarises the resulting values of each metric for the three planning ap-
proaches being compared. Figure 8 depicts the value of #actions obtained by the
proposed planner for each execution, compared to those obtained by the two baseline
planning approaches. Our results show that a team of agents coordinated by the pro-
posed two-stage framework and acting in parallel outperform both baseline approaches,
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Run

#actions

Fig. 8: Comparison of the number of primitive actions (ordered from most to least) undertaken
by agents per execution

in terms of the temporal cost (number of required primitive actions) to reach the goal
(particularly compared to the individual planning baseline); along with a significant in-
crease in the planning robustness, i.e. the chances of successfully reaching the common
goal. Based on these results, we conclude that our two-stage online multi-agent planning
approach endowed with a subgoal delegation mechanism allows for higher robustness
and lower cost in the planning domains under uncertainty considered. Furthermore, in
the scenario considered, the inclusion of a subgoal delegation scheme intuitively allows
for a significant reduction in search space, compared to planning at team level over
primitive actions directly.

6 Conclusions

In this paper, we have presented a two-stage online collaborative multi-agent planner
for application domains where agent actions have uncertain stochastic effects. The pro-
posed planner interleaves team and individual online planning through a subgoal del-
egation scheme, and extends state-of-the-art approximate algorithms to suit the char-
acteristics of the planning problems considered. The proposed framework estimates
rewards of action outcomes at team level, by using uncertain information fusion proce-
dures, to determine the next best subgoals to be individually pursed by each agent in the
team. Future lines of investigation aim at developing data-driven online team planning
approaches that enable precise estimations of outcome probabilities of team actions
alongside rewards, and the integration of prunning policies in both planning stages.

Acknowledgments
This work has been funded by EPSRC PACES project (Ref: EP/J012149/1).



14 I. Palomares et al.

References
1. Brafman, R., Domshlak, C.: From one to many: Planning for loosely coupled multi-agent

systems. Proc. of ICAPS’08 (2008)
2. Brafman, R.I.: A privacy preserving algorithm for multi-agent planning and search. In: Proc.

of IJCAI’15. pp. 1530–1536. IJCAI’15 (2015)
3. Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P., Tavener,

S., Perez, D., Samothrakis, S., Colton, S.: A Survey of Monte Carlo Tree Search Methods.
IEEE Transactions on Computational Intelligence and AI in Games 4(1), 1–43 (March 2012)

4. Durfee, E.: Distributed problem solving and planning. In G. Weiss (Ed.): A Modern Ap-
proach to Distributed Artificial Intelligence (1999)

5. Keller, T., Eyerich, P.: PROST: Probabilistic planning based on UCT. In: Proc. of ICAPS’12
(2012)

6. Killough, R., Bauters, K., McAreavey, K., Liu, W., Hong, J.: Risk-aware planning in BDI
agents. In: Proceedings of the 8th International Conference on Agents and Artificial Intelli-
gence (ICAART’16) (2016)

7. Klement, E., Mesiar, R., Pap, E.: On the relationship of associative compensatory opera-
tors to triangular norms and conorms. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 04(02), 129–144 (1996)
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