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Abstract There has been much interest in the Belief-Desire-Intention (BDI) agent-
based model for developing scalable intelligent systems, e.g. using the AgentSpeak
framework. However, reasoning from sensor information in these large-scale sys-
tems remains a significant challenge. For example, agents may be faced with in-
formation from heterogeneous sources which is uncertain and incomplete, while
the sources themselves may be unreliable or conflicting. In order to derive mean-
ingful conclusions, it is important that such information be correctly modelled
and combined. In this paper, we choose to model uncertain sensor information in
Dempster-Shafer (DS) theory. Unfortunately, as in other uncertainty theories, sim-
ple combination strategies in DS theory are often too restrictive (losing valuable
information) or too permissive (resulting in ignorance). For this reason, we inves-
tigate how a context-dependent strategy originally defined for possibility theory
can be adapted to DS theory. In particular, we use the notion of largely partially
maximal consistent subsets (LPMCSes) to characterise the context for when to
use Dempster’s original rule of combination and for when to resort to an alterna-
tive. To guide this process, we identify existing measures of similarity and conflict
for finding LPMCSes along with quality of information heuristics to ensure that
LPMCSes are formed around high quality information. We then propose an intelli-
gent sensor model for integrating this information into the AgentSpeak framework
which is responsible for applying evidence propagation to construct compatible in-
formation, for performing context-dependent combination and for deriving beliefs
for revising an agent’s belief base. Finally, we present a power grid scenario inspired
by a real-world case study to demonstrate our work.
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1 Introduction and Related Work

Supervisory control and data acquisition (SCADA) systems [5,10] have been ap-
plied in a wide variety of industries including power [1,26,27], manufacturing [38]
and water treatment [34]. In these settings, SCADA systems deploy large numbers
of sensors to collect information for use by control mechanisms, security infrastruc-
ture, etc. In the electric power industry, for example, information from sensors may
be used to identify faults, preempt outages and manage participation in energy
trading markets [39]. However, given this abundance of information from hetero-
geneous and imperfect sensors, an important challenge is how to accurately model
and combine (merge) this information to ensure well-informed decision making.
While this already applies to traditional SCADA systems, it is of particular im-
portance to intelligent and scalable SCADA systems which are gaining increased
interest, e.g. those based on autonomous multi-agent frameworks [26,27]. There-
fore, it is also necessary to understand how this information can be used by these
more advanced SCADA models.

Within these large systems, sensors represent independent sources of informa-
tion. For example, in electric power systems, sensors might independently gather
information about features of the environment such as voltage, amperage, fre-
quency, etc. However, the information obtained by these sensors may be uncertain
or incomplete (e.g. due to noisy measurements) while the sensors themselves may
be unreliable (e.g. due to malfunctions, inherent design limitations, etc). Moreover,
information from different sensors may be conflicting and so we need some way
to combine this information to find a representative and consistent model of the
underlying sources. This combined information can then be used for higher-level
decision making. In this paper, we apply the Dempster-Shafer (DS) theory of ev-
idence [31] to model imperfect sensor information since it can be used to model
common types of sensor uncertainty (e.g. ignorance and imprecise information)
and, more importantly, has mature methods for combining information.

Using DS theory, information from a sensor can be modelled as a mass func-
tion. The original and most common method of combining mass functions is using
Dempster’s rule of combination [31], which assumes that the mass functions have
been obtained from reliable and independent sources. While sensors may be unre-
liable, there exist methods in DS theory which allow us to first discount unreliable
information [31] such that we can then treat this discounted information as fully
reliable [25]. Given that our mass functions are independent and can be treated
as fully reliable, it would seem that this is a sufficient solution. However, the main
problem arises when combining conflicting information. A classical example, intro-
duced by Zadeh [37], illustrates the effect of a high degree of conflict when applying
Dempster’s rule. Suppose patient P1 is independently examined by two doctors A
and B who have the same level of expertise and are equally reliable. A’s diagnosis
is that P1 has meningitis with probability 0.99 or a brain tumour with probability
0.01. B agrees with A that the probability of a brain tumour is 0.01 but B believes
that P1 has a concussion with probability 0.99. By applying Dempster’s rule, we
would conclude that P1 has a brain tumour with probability 1. Clearly, this result
is counter-intuitive since it implies complete support for a diagnosis that both A
and B considered highly improbable.

Since Zadeh first introduced this counter-example, there has been extensive
work on handling conflicts between mass functions. This has resulted in a broad
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range of approaches which fundamentally differ in how they deal with conflict. We
might mention, for example, Smet’s Transferable Belief Model [33] which extends
DS theory with an open-world assumption by allowing a non-zero mass to be as-
signed to the empty set (representing “none of the above”). On the other hand,
a popular alternative within standard DS theory—Dubois & Prade’s disjunctive
consensus rule [13] being a notable example—is to incorporate all conflict during
combination. For example, by applying Dubois & Prade’s rule in Zadeh’s example,
we would intuitively conclude that P1 has a brain tumour with probability 0.0001.
Unfortunately, both approaches tend to increase ignorance when faced with con-
flict, which is problematic since our goal is to improve support for decision-making.
For example, another patient P2 is examined by doctors A and B. A’s diagnosis is
that P2 has meningitis with probability 0.99 or either meningitis, a brain tumour
or concussion with probability 0.01. B’s diagnosis is that P2 has either meningitis,
a brain tumour or concussion with probability 1. By applying Dubois & Prade’s
rule, we would only conclude that P2 has meningitis, a brain tumour or concussion
with probability 1. Clearly, this result is counter-intuitive since it implies complete
ignorance about the three possibilities, even though A believes it is highly prob-
able that P2 has meningitis. Conversely, by applying Dempster’s rule, we would
intuitively conclude that P2 has meningitis with probability 0.99.

While there are those who maintain that Dempster’s rule is the only method
of combination that should ever be used [16], we argue that no rule is suitable
for every situation. In fact, comparable problems have been identified in other
uncertainty theories for which adaptive combination strategies have been pro-
posed [12,14,15,17]. In the literature, the majority of the adaptive combination
strategies have been proposed in the setting of possibility theory. In general, these
approaches focus on deciding when to use a conjunctive rule and when to use
a disjunctive rule, where the former is applied to information from reliable and
consistent sources aiming to reinforce commonly agreed opinions from multiple
sources while the latter is applied to information from conflicting sources aiming
to not dismiss any opinions from any sources. An early proposal was Dubois &
Prade’s adaptive combination rule [12] which combines two sources by applying
both a conjunctive and disjunctive rule while taking into account the agreement
between sources. However, this rule is not associative meaning that it does not re-
liably extend to combining information from a set of sources. For this reason, there
has been more interest in subset-based context-dependent combination strategies.
An early example of this approach was proposed in [15] where the combination
rule assumes there are n sources from which an unknown subset of j sources are
reliable. In this case, a conjunctive rule is applied to all subsets with cardinal-
ity j where the cardinality j represents the context for using a conjunctive rule.
The conjunctively combined information is then combined using a disjunctive rule.
This work was further developed in [14] by proposing a method for deciding on
the value of j. Specifically, j was chosen as the cardinality of the largest subset for
which the application of a conjunctive rule would result in a normalized possibility
distribution. This approach more accurately reflects the specified conditions (i.e.
the context) for applying a conjunctive rule in possibility theory than previous
adaptive strategies. However, since all the subsets with cardinality j are combined
using a conjunctive rule, most of these subsets may contain conflicting informa-
tion. Thus, the approach does not completely reflect the context for applying a
conjunctive rule. Moreover, as highlighted in [17], this approach is not appropriate



4 Sarah Calderwood et al.

for dealing with disjoint consistent subsets of different sizes. To address this issue,
Hunter & Liu proposed another context-dependent combination strategy in [17]
based on finding a partition of sources, rather than a set of fixed-size subsets.
They refer to this partition as the set of largely partially maximal consistent sub-
sets (LPMCSes) and, again, each LPMCS represents the context for applying a
conjunctive rule. However, rather than requiring that each combined LPMCS be
a normalized possibility distribution as in [14], they instead define a relaxation of
this rule in order to find subsets which are “mostly” in agreement.

With regards to DS theory, sensor fusion is actively used in applications such
as robotics [28] and engine diagnostics [2]. Specifically, in [28], the authors pro-
pose an approach to derive mass functions from information obtained from sensor
observations and domain knowledge by propagating the evidence into an appro-
priate frame of features. Once mass functions are derived they are then combined
using a single combination rule, e.g. Dempster’s rule. A robot will then obtain a
belief where they can proceed or terminate a task. Alternatively, in [2], an engine
diagnostic problem requires a frame of discernment to represent fault types, mass
functions and Dempster’s rule for combination. The authors propose methods of
calculating mass functions as well as rational diagnosis decision making rules and
entropy of evidence to improve and evaluate the performance of the combination.
They demonstrate through a scenario that decision conflicts can be resolved and
the accuracy of fault diagnosis can be improved by combining information from
multiple sensors.

Within DS theory, the most relevant work is that proposed by Browne et al.
in [7]. In this paper, the authors do not actually propose an adaptive combination
strategy. Instead they use the variant of DS theory known as Dezert-Smarandache
(DSm) theory to address some of the limitations with standard DS theory in terms
of handling conflict and handling non-independent hypotheses. In particular, they
propose a notion of maximal consistent subsets which they use to characterise
how mass functions should be discounted prior to combination in DSm theory,
given a number of possible discounting techniques. Once mass functions have been
discounted, they then use the Proportional Conflict Redistribution Rule no. 5
(PCR5) from DSm theory to combine evidence. As far as we are aware, there have
been no other approaches to context-dependent combination in DS theory.

To date, the work in [17] is arguably the most accurate reflection of the context
for applying a conjunctive rule. For this reason, we propose an approach to combine
mass functions based on the context-dependent strategy for combining information
in possibility theory. In this way, we aim to characterise the context for when to
use Dempster’s rule and for when to resort to an alternative (in this paper we
focus on Dubois & Prade’s rule). In particular, when combining a set of mass
functions, we first identify a partition of this set using a measure of conflict in
DS theory. This accurately reflects the accepted context for Dempster’s rule since,
even if a set of mass functions is highly conflicting, it is often possible to find
subsets with a low degree of conflict. Likewise, in [17], the authors use the most
appropriate concepts in possibility theory to determine the context for using the
combination rule. Each element in this partition is called a LPMCS and identifies
a subset which should be combined using Dempster’s rule. Once each LPMCS
has been combined using Dempster’s rule, we then resort to Dubois & Prade’s
rule to combine the information which is highly conflicting. Moreover, we utilise
heuristics on the quality and similarity of mass functions to ensure that each
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LPMCS is formed around higher quality information. Similarly, in [17], the authors
use the most appropriate measures in possibility theory for measuring the quality
of information. When compared to traditional approaches, our context-dependent
strategy allows us to derive more useful information for decision making while still
being able to handle a high degree of conflict between sources.

Turning again to the issue of SCADA systems, we consider a particular multi-
agent formulation [35,36] of SCADA based on the Belief-Desire-Intention (BDI)
framework [6]. Recently, there has been interest in using the BDI framework for
this purpose due to, among other reasons, its scalability [18]. In this paper, we
focus on the AgentSpeak [29] language (for which there are a number of existing
implementations [4]) which encodes a BDI agent by a set of predefined plans used
to respond to new event-goals. The applicability of these plans is determined by
preconditions which are evaluated against the agent’s current beliefs. As such, our
new context-dependent combination rule ensures that the agent can reason about
a large number of sensors which, in turn, ensures that they are well-informed about
the current state of the world during plan selection. Importantly, we describe how
combined uncertain sensor information can be integrated into this agent model
to improve decision making. In addition, we devise a mechanism to identify when
information should be combined which ensures the agent’s beliefs are up-to-date
while minimising the computational cost associated with combining information.

In summary, the main contributions of this work are as follows:

(i) We adapt a context-dependent combination rule from possibility theory to
DS theory. In particular, we identify suitable measures from DS theory for
determining quality and contextual information used to select subsets for
which Dempster’s rule should be applied.

(ii) We propose to handle uncertain sensor information in the BDI framework
using an intelligent sensor. This is responsible for constructing compatible
mass functions using evidence propagation, performing context-dependent
combination and deriving beliefs for revising an agent’s belief base.

(iii) Finally, we present a power grid scenario which demonstrates our framework.
In particular, we describe the whole process from modelling uncertain sensor
information as mass functions to deriving suitable beliefs for an AgentSpeak
agent’s belief base along with the effect this has on decision making.

The remainder of the paper is organised as follows. In Section 2, we introduce
preliminaries on DS theory. In Section 3, we describe our new context-dependent
combination rule for mass functions using LPMCSes. In Section 4, we demonstrate
how to handle uncertain combined sensor information in a BDI agent. In Section 5,
we present a scenario based on a power grid SCADA system modelled in the
BDI framework to illustrate our approach. Finally, in Section 6, we draw our
conclusions.

2 Preliminaries

DS theory [31] is well-suited for dealing with epistemic uncertainty and sensor
data fusion.

Definition 1 Let Ω be a set of exhaustive and mutually exclusive hypotheses,
called a frame of discernment. Then a function m : 2Ω → [0, 1] is called a mass
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function1 over Ω if m(∅) = 0 and
∑
A⊆Ω m(A) = 1. Also, a belief function and a

plausibility function from m, denoted Bel and Pl, are defined for each A ⊆ Ω as:

Bel(A) =
∑
B⊆A

m(B),

Pl(A) =
∑

A∩B 6=∅

m(B).

Any A ⊆ Ω such that m(A) > 0 is called a focal element of m. Intuitively,
m(A) is the proportion of evidence that supports A, but none of its strict subsets.
Similarly, Bel(A) is the degree of evidence that the true hypothesis belongs to A
and Pl(A) is the maximum degree of evidence supporting A. The values Bel(A)
and Pl(A) represent the lower and upper bounds of belief, respectively. To reflect
the reliability of evidence we can apply a discounting factor to a mass function
using Shafer’s discounting technique [31] as follows:

Definition 2 Let m be a mass function over Ω and α ∈ [0, 1] be a discount factor.
Then a discounted mass function with respect to α, denoted mα, is defined for each
A ⊆ Ω as:

mα(A) =

{
(1− α) ·m(A), if A ⊂ Ω,
α+ (1− α) ·m(A), if A = Ω.

The effect of discounting is to remove mass assigned to focal elements and to
then assign this mass to the frame. When α = 0 the source is completely reliable
and when α = 1 the source is completely unreliable. Once a mass function has
been discounted, it is then treated as fully reliable.

Definition 3 Let M be a set of mass functions over Ω. Then a function K :
M ×M → [0, 1] is called a conflict measure and is defined for mi,mj ∈M as:

K(mi,mj) =
∑

B∩C=∅

mi(B)mj(C).

Understandably it has been argued that K is not a good measure of conflict
between mass functions [22]. For example, given a mass function m, then it is
not necessarily the case that K(m,m) = 0. Indeed, if m has any non-nested focal
elements then it will always be the case that K(m,m) > 0. Conversely, mass
functions derived from evidence that is more dissimilar (e.g. by some measure of
distance) does not guarantee a higher degree of conflict. However, the reason we
consider this measure of conflict rather than more intuitive measures from the
literature, is that this measure is fundamental to Dempster’s rule [31]:

Definition 4 Let mi and mj be mass functions over Ω from independent and
reliable sources. Then the combined mass function using Dempster’s rule of com-
bination, denoted mi ⊕mj , is defined for each A ⊆ Ω as:

(mi ⊕mj)(A) =

{
c
∑
B∩C=Ami(B)mj(C), if A 6= ∅,

0, otherwise,

where c = 1
1−K(mi,mj)

is a normalisation constant.

1 A mass function is also known as a basic belief assignment (BBA) and m(∅) = 0 is not
required.
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The effect of c is to redistribute the mass value that would otherwise be assigned
to the empty set. As mentioned in Section 1, Dempster’s rule is only well-suited to
combine evidence with a low degree of conflict [30]. Importantly, when referring to
the “degree of conflict”, we are specifically referring to the K(mi,mj) value. It is
this measure that we will use to determine the context for using Dempster’s rule.
In [13], an alternative to Dempster’s rule was proposed as follows:

Definition 5 Let mi and mj be mass functions over Ω from independent sources.
Then the combined mass function using Dubois & Prade’s (disjunctive consensus)
rule, denoted mi ⊗mj , is defined for each A ⊆ Ω as:

(mi ⊗mj)(A) =
∑

B∪C=A

mi(B)mj(C).

Dubois & Prade’s rule incorporates all conflict and does not require normali-
sation. As such, this rule is suitable for combining evidence with a high degree
of conflict [30]. Importantly, each combination rule � ∈ {⊕,⊗} satisfies the
following mathematical properties: mi � mj = mj � mi (commutativity); and
mi � (mj � mk) = (mi � mj) � mk (associativity). This means that combining
a set of mass functions using either rule, in any order, will produce the same re-
sult. For this reason, given a set of mass functions M = {m1, . . . ,mn} over Ω, we
will use: ⊙

m∈M
m

to denote the combined mass function m1 � . . .�mn. It is worth noting however,
that these rules do not satisfy m �m = m (idempotency).

The ultimate goal in representing and reasoning about uncertain information
is to draw meaningful conclusions for decision making. To translate mass functions
to probabilities a number of existing transformation models can be applied such
as those in [9,11,32]. One of the most widely used models is Smet’s pignistic
model [32] which allows decisions to be made from a mass function on individual
hypotheses as follows (note that we use |A| to denote the cardinality of a set A):

Definition 6 Let m be a mass function over Ω. Then a function BetPm : Ω →
[0, 1] is called the pignistic probability distribution over Ω with respect to m and
is defined for each ω ∈ Ω as:

BetPm(ω) =
∑

A⊆Ω,ω∈A

m(A)

|A| .

3 Context-dependent Combination

Various proposals have been suggested in the literature for adaptive combination
rules [13,14,24]. In this section, we explore ideas presented in [17] for the setting
of possibility theory and adapt these to DS theory. In particular, we find suitable
measures to replace those used in their work for determining contextual infor-
mation, including a conflict measure (i.e. the K measure from Dempster’s rule),
quality measures (i.e. measures of non-specificity and strife) and a similarity mea-
sure (i.e. a distance measure). However, before we explain how to adapt their
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algorithm to DS theory, we provide the following intuitive summary. First, we
identify the highest quality mass function using quality of information heuristics2.
This mass function is used as an initial reference point. Second, we find the most
similar mass function to this reference. Third, we use Dempster’s rule to combine
the reference mass function with the most similar mass function. Fourth, we repeat
the second and third steps—using the combined mass function as a new reference
point—until the conflict with the next most similar mass function exceeds some
specified threshold. The set of mass functions prior to exceeding this threshold
constitutes an LPMCS. Finally, we repeat from the first step (on the remaining
mass functions) until all mass functions have been added to an LPMCS. Each
LPMCS represents a subset of mass functions with similar opinions and a “low”
degree of conflict and thus the context for using Dempster’s rule. On the other
hand, the set of combined LPMCSes represents highly conflicting information and
thus the context for resorting to Dubois & Prade’s rule.

3.1 Preferring High Quality Information

The most common methods for characterising the quality of information in DS
theory is using measures of non-specificity (related to ambiguity) and strife (i.e.
internal conflict). One such measure of non-specificity was introduced in [21] as
follows:

Definition 7 Let M be a set of mass functions over Ω. Then a function N : M →
R is called a non-specificity measure and is defined for each m ∈M as:

N(m) =
∑

A⊆Ω s.t. A6=∅

m(A) log2 |A|.

A mass function m is completely specific when N(m) = 0 and is completely non-
specific when N(m) = log2 |Ω|. However, since a frame is a set of mutually exclusive
hypotheses, disjoint focal elements imply some disagreement in the information
modelled by a mass function. It is this type of disagreement which is characterized
by a measure of strife. One such measure was introduced in [21] as follows:

Definition 8 LetM be a set of mass functions overΩ. Then a function S : M → R
is called a strife measure and is defined for each m ∈M as:

S(m) = −

 ∑
A⊆Ω s.t. A6=∅

m(A) log2

∑
B⊆Ω s.t. B 6=∅

m(B)
|A ∩B|
|A|

 .

A mass function m has no internal conflict when S(m) = 0 and has complete
internal conflict when S(m) = log2 |Ω|. For example, given a mass function m over
Ω = {a, b} such that m({a}) = m({b}) = 0.5, then m has the maximum strife
value S(m) = 1 = log2 |Ω|. Using these measures for non-specificity and strife
allows us to assess the quality of information and, thus, to rank mass functions
based on their quality. By adapting Definition 5 from [17], we can define a quality
ordering over a set of mass functions as follows:

2 We assume a strict preference ordering over sources when the selection is not unique.
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Definition 9 Let M be a set of mass functions over Ω. Then a total order over
M , denoted �Q, is called a quality order and is defined for mi,mj ∈M as:

mi �Q mj ⇔ (N(mi) < N(mj)) ∨ (N(mi) = N(mj) ∧ S(mi) < S(mj)),

mi ∼Q mj ⇔ N(mi) = N(mj) ∧ S(mi) = S(mj).

Moreover, mi �Q mj if mi �Q mj or mi ∼Q mj . Finally, mi is said to be of higher
quality than mj if mi �Q mj .

Intuitively, a mass function is of higher quality when it is more specific or when
it is equally specific but less internally conflicting. Thus, by definition, a lower
non-specificity value is preferred over a lower strife value. Obviously this quality
ordering is not a strict order and so does not guarantee a unique highest quality
source. We denote the set of highest quality mass functions in M as max(M,�Q) =
{m ∈ M | @m′ ∈ M,m′ �Q m}. To handle the situation where there are multiple
highest quality mass functions, we make the assumption of a prior strict preference
ordering over sources, denoted �P . Given a set of mass functions M over Ω, then
for all mi,mj ∈ M we say that mi is more preferred than mj if mi �P mj . This
preference ordering may be based on the reliability of sources, the significance of
sources, the order in which sources have been queried, etc. We denote the (unique)
most preferred mass function in M as max(M,�P ) = m such that m ∈ M and
@m′ ∈M,m′ �P m.

Definition 10 Let M be a set of mass functions over Ω. Then the mass function
Ref(M) = max(max(M,�Q),�P ) is called the reference mass function in M .

mi mi({a}) mi({b, c}) N(mi) S(mi)

m1 0.85 0.15 0.15 0.61
m2 0.7 0.3 0.3 0.881
m3 0.55 0.45 0.45 0.993

Table 1: Non-specificity and strife values for a set of mass functions M =
{m1,m2,m3} over Ω = {a, b, c}.

Example 1 Given the set of mass functions M as well as the non-specificity and
strife values for M as shown in Table 1, then the quality ordering over M is m1 �Q
m2 �Q m3. Thus, regardless of the preference ordering over M , the reference mass
function in M is Ref(M) = m1.

A reference mass function is a mass function with the maximum quality of
information. When this is not unique, we select the most preferred mass function
from the set of mass functions with the maximum quality of information. As we
will see in Section 3.2, a reference mass function is a mass function around which
an LPMCS is formed. Thus, defining a reference mass function in this way allows
us to prefer higher quality information when finding LPMCSes.
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3.2 Defining the Context for Combination Rules

While our motivation in finding a reference mass function is to prefer higher qual-
ity information, it is possible that high quality mass functions are also highly
conflicting. As such, it is not advisable to rely on the quality ordering for choosing
the next mass function to consider since this may result in smaller LPMCSes than
is necessary. On the other hand, as mentioned in Section 2, the conflict measure K
may assign a low degree of conflict to very dissimilar information. Therefore, rely-
ing on the conflict measure for choosing the next mass function to consider does
not reflect our stated aim of forming LPMCSes around higher quality information.
For this reason, we resort to a distance measure since this is a more appropriate
measure of similarity. In DS theory, distance measures have been studied exten-
sively in the literature and have seen theoretical and empirical validation [20]. One
of the most popular distance measures was proposed by Jousselme et al. [19] as
follows:

Definition 11 Let M be a set of mass functions over Ω. Then a function d :
M ×M → R is called a distance measure and is defined for mi,mj ∈M as:

d(mi,mj) =

√
1

2

(−→mi −−→mj)T D (−→mi −−→mj),
where −→m is a vector representation of mass function m, −→mT is the transpose of
vector −→m and D is a 2Ω × 2Ω similarity matrix whose elements are D(A,B) =
|A∩B|
|A∪B| such that A,B ⊆ Ω.

Importantly, for any mass functions m, we have that d(m,m) = 0. We can
formalise the semantics of this distance measure over a set of mass functions as
follows:

Definition 12 Let M be a set of mass functions over Ω and m be a mass function
over Ω. Then a total order over M , denoted �m

d , is called a distance order with
respect to m and is defined for mi,mj ∈M as:

mi �m
d mj ⇔ d(m,mi) ≤ d(m,mj).

Moreover, mi ∼m
d mj if mi �m

d mj and mj �m
d mi. Also, mi ≺m

d mj if mi �m
d mj

and mj �m
d mi. We say that mi is closer to m than mj is to m if mi ≺m

d mj .

We denote the set of closest mass functions in M to m as min(M,�m
d ) = {m′ ∈

M | @m′′ ∈M,m′′ ≺m
d m′}. Using this distance ordering and the previously defined

reference mass function, we can then define a preferred sequence for combining a
set of mass functions with Dempster’s rule by adapting Definition 9 from [17] as
follows:

Definition 13 Let M = {m1, . . . ,mn} be a set of mass functions over Ω such
that n ≥ 1. Then the sequence (m1, . . . ,mn) is called the preferred sequence for
combining M if one of the following conditions is satisfied: (i) n = 1; or (ii) n > 1,
Ref(M) = m1 and for each i ∈ 2, . . . , n we have that:

mi = max
(

min
(
{mi, . . . ,mn},�m1⊕...⊕mi−1

d

)
,�P

)
.
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mi d(mi,m1) d(mi,m2) d(mi,m3) K(mi,m1) K(mi,m2) K(mi,m3)

m1 0 0.15 0.3 0.255 0.36 0.465
m2 0.15 0 0.15 0.36 0.42 0.48
m3 0.3 0.15 0 0.465 0.48 0.495
m1 ⊕m2 0.08 0.23 0.38 0.199 0.328 0.457
m1 ⊕m3 0.024 0.174 0.324 0.238 0.35 0.463
m2 ⊕m3 0.11 0.04 0.19 0.332 0.404 0.476

Table 2: Distance and conflict values for the set of mass functions M from Table 1.

Example 2 (Continuing Example 1) Given the distance values for M as shown in
Table 2, then the preferred sequence for combining M is (m1,m2,m3).

Again we resort to the prior preference ordering over mass functions if there
does not exist a unique mass function which is closest to the previously combined
mass functions. From this preferred sequence of combination, we can then identify
an LPMCS directly. Specifically, given a set of mass functions, then an LPMCS is
formed by applying Dempster’s rule to the first m elements in the sequence until
the conflict between the combined m mass functions and the next mass function
exceeds a specified threshold. This threshold reflects the degree of conflict which
we are willing to tolerate and is thus domain specific. By adapting Definition 10
from [17] we have the following:

Definition 14 Let M be a set of mass functions over Ω, (m1, . . . ,mn) be the
preferred sequence for combining M such that n = |M | and n ≥ 1 and εK be
a conflict threshold. Then a set of mass functions {m1, . . . ,mm} ⊆ M such that
1 ≤ m ≤ n is called the largely partially maximal consistent subset (LPMCS) with
respect to εK, denoted L(M, εK), if one of the following conditions is satisfied:

(i) n = 1;
(ii) m = 1, n > 1 and K(m1 ⊕ . . .⊕mm,mm+1) > εK;
(iii) m > 1, m = n and for each i ∈ 2, . . . ,m then K(m1 ⊕ . . .⊕mi−1,mi) ≤ εK;
(iv) m > 1, m < n and for each i ∈ 2, . . . ,m then K(m1 ⊕ . . . ⊕ mi−1,mi) ≤ εK

but K(m1 ⊕ . . .⊕mm,mm+1) > εK.

Example 3 (Continuing Example 2) Given the conflict values for M as shown in
Table 2 and a conflict threshold εK = 0.4, then the LPMCS in M is L(M, 0.4) =
{m1,m2} since K(m1,m2) = 0.36 ≤ 0.4 but K(m1 ⊕m2,m3) = 0.457 > 0.4.

In this way, an LPMCS is the set of mass functions corresponding to the
first maximal subsequence (from the preferred sequence of combination) where
the conflict is deemed (by the conflict threshold) to be sufficiently low enough
to apply Dempster’s rule. The complete set of LPMCSes can then be recursively
defined as follows:

Definition 15 Let M be a set of mass functions over Ω, εK be a conflict threshold
and L(M, εK) ⊆M be the LPMCS in M . Then the set of LPMCSes in M , denoted
L∗(M, εK), is a partition of M defined as:

L∗(M, εK) =


{L(M, εK)}

if M \ L(M, εK) 6= ∅;∪L∗(M \ L(M, εK), εK),
{L(M, εK)}, otherwise.
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Example 4 (Continuing Example 3) Given that L(M, εK) = {m1,m2}, then by the
first condition in Definition 15 we have that L∗(M, εK) = {{m1,m2}}∪L∗({m3}, εK),
since M\{m1,m2} = {m3} 6= ∅. Now, by condition (i) in Definition 14, we have
that L({m3}, εK) = {m3}. Thus L∗({m3}, εK) = {{m3}} by the second condition
in Definition 15 since {m3}\{m3} = ∅. Therefore, the set of LPMCSes in M is
L∗(M, εK) = {{m1,m2}} ∪ {{m3}} = {{m1,m2}, {m3}}.

Having defined the set of LPMCSes, we can now define our context-dependent
combination rule using both Dempster’s rule and Dubois & Prade’s rule as follows:

Definition 16 Let M be a set of mass functions from independent and reliable
sources and εK be a conflict threshold. Then the combined mass function from M
with respect to εK using the context-dependent combination rule is defined as:⊗

M ′∈L∗(M,εK)

⊕
m∈M ′

m.

In other words, the combined mass function is found by combining each LPMCS
using Dempster’s rule and then combining the set of combined LPMCSes using
Dubois & Prade’s rule.

Context-dependent Dempster’s Dubois &
(εK = 0.4) rule Prade’s rule

m({a}) 0.511 0.942 0.327
m({b, c}) 0.032 0.058 0.02
m({a, b, c}) 0.457 0 0.652

Table 3: Combined mass functions from the set of mass functions M from Table 1.

Example 5 (Continuing Example 4) Given a conflict threshold εK = 0.4, then the
context-dependent combined mass function from M with respect to εK is shown
in Table 3. For comparison, the combined mass functions using only Dempster’s
rule and only Dubois & Prade’s rule are also shown in Table 3.

It is evident from Example 5 that the context-dependent combination rule
finds a balance between the two other combination rules: neither throwing away
too much information (as is the case with Dempster’s rule); nor incorporating too
much conflict such that it is difficult to make decisions (as is the case with Dubois
& Prade’s rule).

3.3 Computational Aspects

Algorithm 1 provides a method for executing context-dependent combination of
a set of mass functions M , given a conflict threshold εK and strict preference
ordering �P . On line 1, the set of LPMCSes is initialised. On line 2, a list of
mass functions representing the combined quality and preference orderings can
be constructed with respect to the non-specificity and strife values of each mass
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Algorithm 1: Context-dependent combination of a set of mass functions.

Input: Set of mass functions M 6= ∅, conflict threshold εK and preference ordering �P
Output: Combined mass function mr

1 M ′ ← ∅;
2 mr ← max

(
max

(
M,�Q

)
,�P

)
;

3 M ←M \ {mr};
4 while M 6= ∅ do
5 mc ← max

(
min

(
M,�mr

d

)
,�P

)
;

6 if K(mr,mc) ≤ εK then
7 mr ← mr ⊕mc;
8 M ←M \ {mc};
9 else

10 M ′ ←M ′ ∪ {mr};
11 mr ← max

(
max

(
M,�Q

)
,�P

)
;

12 M ←M \ {mr};

13 for each m′r ∈M ′ do
14 mr ← mr ⊗m′r;

15 return mr;

function in M and the preference ordering �P . The first element in this list would
then be selected as the initial reference mass function mr as in Definition 10.
Moreover, this list can be referred to again on line 11. Lines 5–8 describe how
to compute an LPMCS with respect to the current reference mass function mr.
Specifically, on line 5, mc represents the closest and most preferred mass function
to mr as in Definition 13. It is not necessary to compute the full ordering �mr

d on
line 5, instead we only require one iteration through M (in order of �P ) to find mc.
This mass function is compared with mr on line 6 which represents the condition
for including a mass function in the current LPMCS as in Definition 14. On line 7,
we combine the reference mass function with the closest and most preferred mass
function and this combined mass function becomes our new reference. Lines 9–12
describe the behaviour when a complete LPMCS has been found. In particular, the
complete LPMCS (which has been combined using Dempster’s rule) is added to the
set of previously found LPMCSes on line 10. Then, on line 11, we find the reference
mass function for a new LPMCS by referring back to the combined quality and
preference list constructed on line 2. Finally, when there are no remaining mass
functions in M , the current reference mr represents the final combined LPMCS.
However, this LPMCS is not added to the set of LPMCSes M ′, rather we just
begin combining each combined LPMCS in M ′ with mr using Dubois & Prade’s
rule as described on lines 13 and 14. Once this is complete, the mass function mr
represents the final context-dependent combined mass function as in Definition 16
and this is returned on line 15.

Proposition 1 The complexity of applying the context-dependent combination
rule on a set of mass functions M is O(n2) such that n = |M |.

Proof In order to select a reference mass function, we only need to compute n pairs
of non-specificity and strife values. Thus, the complexity of selecting a reference
mass function is O(n). After selecting a reference mass function, there can be at
most n− 1 mass functions which have not been added to an LPMCS. In this case,
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selecting a closest and most preferred mass function requires the computation
of n − 1 distance values. Thus, the complexity of selecting a closest and most
preferred mass function is also O(n). In the worst case, where every LPMCS is a
singleton, we need to select n reference mass functions of which there are n − 1
requiring the selection of a closest and most preferred mass function. Thus, the
overall complexity is O(n2). ut

4 Handling Sensor Information in BDI

In this section we begin by introducing preliminaries on the AgentSpeak frame-
work [29] for BDI agents. We then describe the necessary steps for handling un-
certain sensor information in AgentSpeak. In Section 5, we will present a power
grid SCADA scenario which demonstrates how sensor information can be modelled
and combined using DS theory and then incorporated into a BDI agent defined in
AgentSpeak.

4.1 AgentSpeak

AgentSpeak is a logic-based programming language related to a restricted form
of first-order logic, combined with notions for events and actions. In practice, it
shares many similarities with popular logic programming languages such as Pro-
log. The language itself consists of variables, constants, predicate symbols, action
symbols, logical connectives and punctuation. Following logic programming con-
vention, variables begin with uppercase letters while constants, predicate symbols
and action symbols begin with lowercase letters. As in first-order logic, these con-
structs can be understood as terms, i.e. a variable is a term, a constant is a term
and, if p is an n-ary predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn)
is a term. A term is said to be ground or instantiated if there are no variables or
if each variable is bound to a constant by a unifier. We will use t to denote the
terms t1, . . . , tn. The supported logical connectives are ¬ and ∧ for negation and
conjunction, respectively. Also, the punctuation in AgentSpeak includes !, ?, ; and
← and the meaning of each will be explained later. From [29], the syntax of the
AgentSpeak language is defined as follows:

Definition 17 If b is a predicate symbol, then b(t) is a belief atom. If b(t) is a
belief atom, then b(t) and ¬b(t) are belief literals.

Definition 18 If g is a predicate symbol, then !g(t) and ?g(t) are goals where
!g(t) is an achievement goal and ?g(t) is a test goal.

Definition 19 If b(t) is a belief atom and !g(t) and ?g(t) are goals, then +b(t),
−b(t), +!g(t), −!g(t), +?g(t) and −?g(t) are triggering events where + and −
denote addition and deletion events, respectively.

Definition 20 If a is an action symbol, then a(t) is an action.

Definition 21 If e is a triggering event, l1, . . . , lm are belief literals and h1, . . . , hn
are goals or actions, then e : l1 ∧ . . .∧ lm ← h1; . . . ;hn is a plan where l1 ∧ . . .∧ lm
is the context and h1; . . . ;hn is the body such that ; denotes sequencing.
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An AgentSpeak agent A is a tuple 〈Bb, P l, A,E, I〉3 with a belief base Bb, a
plan library Pl, an action set A, an event set E and an intention set I. The belief
base Bb is a set of belief atoms4 which describe the agent’s current beliefs about
the world. The plan library Pl is a set of predefined plans used for reacting to new
events. The action set A contains the set of primitive actions available to the agent.
The event set E contains the set of events which the agent has yet to consider.
Finally, the intention set I contains those plans which the agent has chosen to
pursue where each intention is a stack of partially executed plans. Intuitively, when
an agent reacts to a new event e, it selects those plans from the plan library which
have e as their triggering event (called the relevant plans for e). A relevant plan is
said to be applicable when the context of the plan evaluates to true with respect to
the agent’s current belief base. For a given event e, there may be many applicable
plans from which one is selected and either added to an existing intention or used
to form a new intention. Intentions in the intention set are executed concurrently.
Each intention is executed by performing the steps described in the body of each
plan in the stack (e.g. executing primitive actions or generating new subgoals).
Thus, the execution of an intention may change the environment and/or the agent’s
beliefs. As such, if the execution of an intention results in the generation of new
events (e.g. the addition of subgoals), then more plans may be added to the stack
for execution. In Section 5 we will consider AgentSpeak programs in more detail
but for the rest of this section we are primarily interested in how to derive belief
atoms from sensors.

4.2 Deriving Beliefs from Uncertain Sensor Information

By their nature, heterogeneous sensors output different types of sensor informa-
tion. While this presents some important practical challenges in terms of how to
construct mass functions from original sensor information, any solutions will be
unavoidably domain-specific. In this paper, we do not attempt to address this is-
sue directly but we can suggest some possibilities. For example, if a sensor returns
numerical information in the form of an interval, then we can assign a mass of 1 to
the set of discrete readings included in the interval. Similarly, if a sensor returns
a reading with a certainty of 80%, then we can assign a mass of 0.8 to the rele-
vant focal set. So, without loss of generality, we assume that an appropriate mass
function can be derived from any source. Moreover, we assume that each source
has a reliability degree 1 − α and that each mass function has been discounted
with respect to the α value of the originating source. Thus, for the remainder
of this section, we assume that each mass function is actually a discounted mass
function mα which can be treated as fully reliable. However, it is unlikely that
all compatible sources (i.e. sources with information which is suitable for combi-
nation) will return strictly compatible mass functions (i.e. mass functions defined
over the same frame). To address this issue, the notion of an evidential mapping
was introduced in [23] as follows:

3 For simplicity, we omit the selection functions SE , SO and SI .
4 In the AgentSpeak language, ¬ denotes negation as failure rather than strong negation

since the belief base only contains belief atoms, i.e. positive belief literals.
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Definition 22 Let Ωe and Ωh be frames. Then a function Γ : Ωe × 2Ωh → [0, 1]
is called an evidential mapping from Ωe to Ωh if for each ωe ∈ Ωe, Γ (ωe, ∅) = 0
and

∑
H⊆Ωh

Γ (ωe, H) = 1.

In other words, for each ωe ∈ Ωe, an evidential mapping defines a mass function
over Ωh which describes how ωe relates to Ωh. In line with DS terminology, a set
H ⊆ Ωh is called a projected focal element of ωe ∈ Ωe if Γ (ωe, H) > 0. Importantly,
given a mass function over Ωe, then an evidential mapping allows us to derive a
new mass function over Ωh directly as follows [23]:

Definition 23 Let Ωe and Ωh be frames, me be a mass function over Ωe and
Γ be an evidential mapping from Ωe to Ωh. Then a mass function mh over Ωh
is called an evidence propagated mass function from me with respect to Γ and is
defined for each H ⊆ Ωh as:

mh(H) =
∑
E⊆Ωe

me(E)Γ ∗(E,H),

where:

Γ ∗(E,H) =



∑
ωe∈E

Γ (ωe,H)
|E| , if H 6=

⋃
HE and ∀ωe ∈ E, Γ (ωe, H) > 0,

1−
∑
H′∈HE

Γ ∗(E,H ′), if H =
⋃
HE and ∃ωe ∈ E, Γ (ωe, H) = 0,

1−
∑
H′∈HE

Γ ∗(E,H ′) if H =
⋃
HE and ∀ωe ∈ E, Γ (ωe, H) > 0,

+
∑
ωe∈E

Γ (ωe,H)
|E| ,

0, otherwise,

such that HE = {H ′ ⊆ Ωh | ωe ∈ E,Γ (ωe, H
′) > 0} and

⋃
HE = {ωh ∈ H ′ |

H ′ ∈ HE}.

The value Γ ∗(E,H) from Definition 23 actually represents a complete eviden-
tial mapping for E and H as defined in [23] such that Γ is a basic evidential
mapping function. In particular, the first condition defines the mass for E and H
directly from Γ if each ωe ∈ E implies H to some degree, i.e. if H is a projected
focal element of each ωe ∈ E. In this case, the actual mass for E is taken as the
average mass from the basic mapping for all supporting elements in E. The second
condition then recursively assigns the remaining mass that was not assigned by
the first condition to the set of possible hypotheses implied by E, i.e. the union
of all projected focal elements for all ωe ∈ E. The third condition says that when
H is a projected focal element of each ωe ∈ E and when H =

⋃
HE then we

need to sum the results from the first two conditions. Finally, the fourth condition
just assigns 0 to all other subsets. Note that it is not necessary to compute the
complete evidential mapping function in full since we are only interested in focal
elements of me.

Example 6 Given the evidential mapping from Table 4 and a mass function me
over Ωe such that me({e2}) = 0.7 and me(Ωe) = 0.3, then a mass function mh
over Ωh is the evidence propagated mass function from me with respect to Γ such
that mh({h1, h2}) = 0.49, mh(Ωh) = 0.3 and mh({h4}) = 0.21.
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{h1, h2} {h3} {h4}

e1 0.5 0.5 0
e2 0.7 0 0.3
e3 0 0 1

(a) Evidential mapping Γ .

{h1, h2} {h3} {h4} {h1, h2, h4} Ωh

{e1} 0.5 0.5 0.0 0.0 0.0
{e2} 0.7 0.0 0.3 0.0 0.0
{e3} 0.0 0.0 1.0 0.0 0.0
{e1, e2} 0.6 0.0 0.0 0.0 0.4
{e1, e3} 0.0 0.0 0.0 0.0 1.0
{e2, e3} 0.0 0.0 0.65 0.35 0.0
Ωe 0.0 0.0 0.0 0.0 1.0

(b) Complete evidential mapping Γ ∗.

Table 4: Evidential mapping Γ from Ωe = {e1, e2, e3} to Ωh = {h1, . . . , h4}.

In terms of integrating uncertain sensor information into AgentSpeak, evi-
dence propagation provides two benefits. Firstly, it allows us to correlate relevant
mass functions that may be defined over different frames such that we can derive
compatible mass functions which are suitable for combination. Secondly, it al-
lows us to map disparate sensor languages into a standard AgentSpeak language,
i.e. where each frame is a set of AgentSpeak belief atoms. For the remainder of
this section we will assume that evidence propagation has been applied and that
any mass functions which should be combined are already defined over the same
frame. However, in terms of decision making (i.e. the selection of applicable plans),
classical AgentSpeak is not capable of modelling and reasoning with uncertain in-
formation. As such, it is necessary to reduce the uncertain information modelled
by a mass function to a classical belief atom which can be modelled in the agent’s
belief base. For this purpose, we propose the following:

Definition 24 Let m be a mass function over Ω and 0.5 < εBetP ≤ 1 be a pignistic
probability threshold. Then m entails the hypothesis ω ∈ Ω, denoted m |=εBetP ω,
if BetPm(ω) ≥ εBetP .

When a mass function is defined over a set of belief atoms, the threshold εBetP
ensures that at most one belief atom is entailed by the mass function. However,
this definition also means that it is possible for no belief atom to be entailed. In
this situation, the interpretation is that we have insufficient reason to believe that
any belief atom in the frame is true. Thus, if no belief atom is entailed by a mass
function then we are ignorant about the frame of this mass function. In AgentSpeak
we can reason about this ignorance using negation as failure. While this approach
is a drastic (but necessary) step to modelling uncertain sensor information in
classical AgentSpeak, an extension to AgentSpeak was proposed in [3] which allows
us to model and reason about uncertain beliefs directly. Essentially, for each mass
function m, the pignistic probability distibution BetPm would be modelled as one of
many epistemic states in the extended AgentSpeak agent’s belief base, now called
a global uncertain belief set (GUB). Using an extended AgentSpeak language, we
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can then reason about uncertain information held in each epistemic state using
qualitative plausibility operators (e.g. describing that some belief atom is more
plausible than another). For simplicity, we will not present this work in detail but
instead refer the reader to [3] for the full definition of a GUB.

Obviously there is a computational cost associated with combination. For this
reason, we introduce the following conditions to describe when information has
changed sufficiently to warrant combination and revision:

Definition 25 Let S be a set of sources, Ω be a frame, ms,t be a mass over Ω
from source s ∈ S at time t and εd be a distance threshold. Then the context-
dependent combination rule is applied at time t+ 1 to the set {ms,t+1 | s ∈ S} if
there exists a source s′ ∈ S such that d(ms′,t,ms′,t+1) ≥ εd.

This definition says that the context-dependent combination rule should only
be applied when the information obtained from any one source has changed suffi-
ciently (formalised by the distance threshold εd). However, to ensure that smaller
incremental changes are not overlooked, it is still necessary to combine and re-
vise information at some specified intervals. Thus, this definition just provides a
method to minimize redundant computation.

In summary, integration with an AgentSpeak agent can be handled by a sensor
information preprocessor or intelligent sensor which can perform the following
steps:

(i) Discount each mass function with respect to the source reliability degree 1−α.
(ii) Apply evidence propagation using evidential mappings to derive compatible

mass functions for combination which are defined over AgentSpeak belief
atoms.

(iii) Combine relevant mass functions by applying the context-dependent combi-
nation rule if any source has returned sufficiently dissimilar information from
the information previously recorded for that source.

(iv) Derive a belief atom from the combined mass function and revise the AgentS-
peak agent’s belief base with this new belief atom.

Note that even if information for some source does not need to be combined with
information for another, then steps (i), (ii) and (iv) can still be performed to reflect
the reliability of the source and to derive suitable AgentSpeak belief atoms.

5 Scenario: Power Grid SCADA System

This scenario is inspired by a case study on an electric power grid SCADA system
used to manage power generation, transmission and distribution. In the power grid,
system frequency refers to the frequency of oscillations of alternating current (AC)
transmitted from the power grid to the end-user. In the UK, the frequency standard
is 50 Hz and suppliers are obligated to maintain the frequency within a deviation
of ±1%. If demand is greater than generation then frequency will decrease but if
generation is greater than demand then frequency will increase. Thus, maintaining
the correct frequency level is a load balancing problem between power demand
and power generation. In this scenario, the power grid is managed by a BDI agent
encoded in AgentSpeak with a set of belief atoms, a set of primitive actions and
a predefined plan library. With regards to frequency, the agent may believe the
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current level is low, normal or high (represented by belief atoms freq(l), freq(n)
and freq(h), respectively). Examples of AgentSpeak plans in the agent’s plan
library include the following:

P1 +!run combiner : freq(n) <- !run inverter; distribute power; ...

P2 +freq(l) : true <- !generate alert; !stop combiner; !run windfarm; ...

The plan P1 describes the steps that should be taken if the agent obtains the
goal !run combiner and also believes that the current frequency level is nor-
mal. These steps involve a new sub-goal !run inverter and a primitive action
distribute power. On the other hand, the plan P2 describes the steps that should
be taken when the agent obtains the belief that the current frequency level is low.
In this case, the steps involve new sub-goals !generate alert, !stop combiner

and !run windfarm with the aim of increasing power generation.

{freq(l)} {freq(l), freq(n)} {freq(n)} {freq(n), freq(h)} {freq(h)}

48.7 1 0 0 0 0
48.8 1 0 0 0 0
48.9 1 0 0 0 0
49 0.75 0.25 0 0 0
49.1 0.5 0.5 0 0 0
49.2 0.25 0.75 0 0 0
49.3 0 1 0 0 0
49.4 0 1 0 0 0
49.5 0 1 0 0 0
49.6 0 0.75 0.25 0 0
49.7 0 0.5 0.5 0 0
49.8 0 0.25 0.75 0 0
49.9 0 0 1 0 0
50 0 0 1 0 0
50.1 0 0 1 0 0
50.2 0 0 0.75 0.25 0
50.3 0 0 0.5 0.5 0
50.4 0 0 0.25 0.75 0
50.5 0 0 0 1 0
50.6 0 0 0 1 0
50.7 0 0 0 1 0
50.8 0 0 0 0.75 0.25
50.9 0 0 0 0.5 0.5
51 0 0 0 0.25 0.75
51.1 0 0 0 0 1
51.2 0 0 0 0 1
51.3 0 0 0 0 1

(a) Sensor frame Ωse .

{freq(l)} {freq(n)} {freq(h)}

normal 0 1 0
abnormal 0.5 0 0.5

(b) Expert frame Ωee .

Table 5: Evidential mappings from Ωse and Ωee to Ωh.
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Source Type Reliability (1-α) Value

s1 sensor 0.98 51.2 Hz
s2 sensor 0.7 51.2 Hz (±0.1 Hz)
s3 sensor 0.92 51.3 Hz
s4 sensor 0.75 51.1 Hz (±0.2 Hz)
s5 expert 0.85 abnormal (90% certain)
s6 sensor 0.8 51 Hz (±0.2 Hz)
s7 sensor 0.96 50.9 Hz (±0.1 Hz)
s8 sensor 0.9 51.1 Hz
s9 sensor 0.95 51.1 Hz (±0.1 Hz)
s10 expert 0.65 abnormal (75% certain)

(a) Source evidence where s1 �P s2 �P · · · �P s10.

si mi α mαi

s1 {{51.2} 7→ 1} 0.02 {{51.2} 7→ 0.98, Ω 7→ 0.02}
s2 {{51.1, 51.2, 51.3} 7→ 1} 0.3 {{51.1, 51.2, 51.3} 7→ 0.7, Ω 7→ 0.3}
s3 {{51.3} 7→ 1} 0.08 {{51.3} 7→ 0.92, Ω 7→ 0.08}
s4 {{50.9, 51.0, . . . , 51.3} 7→ 1} 0.25 {{50.9, 51.0, . . . , 51.3} 7→ 0.75, Ω 7→ 0.25}
s5 {{abnormal} 7→ 0.9, Ω 7→ 0.1} 0.15 {{abnormal} 7→ 0.765, Ω 7→ 0.235}
s6 {{50.8, 50.9, . . . , 51.2} 7→ 1} 0.2 {{50.8, 50.9, . . . , 51.2} 7→ 0.8, Ω 7→ 0.2}
s7 {{50.8, 50.9, 51.0} 7→ 1} 0.04 {{50.8, 50.9, 51.0} 7→ 0.96, Ω 7→ 0.04}
s8 {{51.1} 7→ 1} 0.1 {{51.1} 7→ 0.9, Ω 7→ 0.1}
s9 {{51.0, 51.1, 51.2} 7→ 1} 0.05 {{51.0, 51.1, 51.2} 7→ 0.95, Ω 7→ 0.05}
s10 {{abnormal} 7→ 0.75, Ω 7→ 0.25} 0.35 {{abnormal} 7→ 0.488, Ω 7→ 0.512}

(b) Evidence from si modelled as mass function mi and discounted mass function mαi .

mh1 mh2 mh3 mh4 mh5 mh6 mh7 mh8 mh9 mh10

mhi ({freq(l)}) 0 0 0 0 0.383 0 0 0 0 0.244
mhi ({freq(n), freq(h)}) 0 0 0 0.113 0 0.24 0.48 0 0.079 0
mhi ({freq(h)}) 0.98 0.7 0.92 0.637 0.383 0.56 0.48 0.9 0.871 0.244
mhi (Ωh) 0.02 0.3 0.08 0.25 0.235 0.2 0.04 0.1 0.05 0.512

(c) Evidence propagated mass function mhi from mαi with respect to Table 5.

Table 6: Information obtained from sources.

Obviously, determining an accurate view of the current frequency level is vi-
tal for ensuring that the correct level is maintained. In this scenario, there are
many sources of information which the agent may consult to determine the cur-
rent level. For simplicity, we will focus on two main types of sources relevant to
frequency. The first is sensors which provide numerical measurements of frequency
levels from the set Ωse = {48.7, 48.8, . . . , 51.3}. The second is experts which pro-
vide general estimations of frequency levels from the set Ωee = {normal, abnormal}.
Information from both types of sources may be effected by uncertainty. For ex-
ample, the accuracy of sensors may vary due to design limitations or environ-
mental factors, experts may lack confidence in their estimations, sources may be
treated as unreliable due to previously incorrect information, etc. In Table 5 we
define evidential mappings from Ωse and Ωee to the set of AgentSpeak belief atoms
Ωh = {freq(l), freq(n), freq(h)}. These mappings allow us to combine different
types of information and to derive suitable belief atoms for revising the agent’s
belief base. Essentially the sensor mapping defines a fuzzy distribution over the
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range of possible sensor values while the expert mapping defines a probabilistic re-
lation between the abnormal estimation and the belief atoms freq(l) and freq(h)

(assigning equal probability to each).

Table 6a represents an illustrative scenario in which a number of sensors and
experts have provided information about the current frequency level. Some sensor
values have a deviation (e.g. ±0.1 Hz) while experts have expressed a degree of
confidence in their assessment (e.g. 90% certain). For example, source s2 is a sensor
which has determined that the frequency is 51.2 Hz with a deviation ±0.1 Hz
whereas s5 is an expert which has estimated that the frequency level is abnormal
with 90% certainty. Moreover, each source has a prior reliability rating 1−α based
on historical data, age, design limitations and faults etc. From Table 6a, we can
see that s1 is the most reliable source whilst s10 is the least reliable. In Table 6b,
we can see how the information provided in Table 6a is modelled as mass functions
and how these correspond to discounted mass functions, given their respective α
values. For example, source s1 has determined that the frequency is 51.2 Hz. By
modelling this sensor information as a mass function m1, we have that a mass of
1 is assigned to the singleton set {51.2}. Alternatively, source s10 has estimated
that the frequency level is abnormal with 75% certainty. By modelling this expert
information as a mass function m10, we have that a mass of 0.75 is assigned to the
singleton set {abnormal}, while the remaining mass is assigned to the frame Ω.
Each mass function is then discounted with respect to the reliability of the original
source. For example, the source s1 has a reliability of 0.98 and so the mass function
m1 is discounted using a discount factor α = 1 - 0.98 = 0.02. Finally, Table 6c
provides the evidence propagated mass functions over Ωh with respect to Table 5
representing the compatible mass functions from each source.

In this scenario we are not interested in the information provided by individ-
ual sources, rather we are only interested in reasoning about the information as a
whole. To achieve this, we must first combine the set of evidence propagated mass
functions from Table 6c. In Table 7 we demonstrate how to apply the context-
dependent combination rule on this set of mass functions by computing LPMCSes
using an arbitrarily chosen conflict threshold εK = 0.3. Firstly, Table 7a provides
the quality of information heuristics used to find a reference mass function. In this
case, we select mh1 as the reference since it has the minimum non-specificity and
strife values. This mass function is then used to form a new (partial) LPMCS.
Secondly, Table 7b provides the distance values between mh1 and all other mass
functions. From these, we select mh3 as the next mass function in the preferred
sequence of combination since it has the minimum distance to mh1 . Thirdly, re-
ferring to Table 7c we can see that the conflict between mh1 and mh3 is under the
threshold meaning that mh3 is added to the LPMCS and mh1 ⊕ mh3 becomes the
new reference mass function. This process continues until we reach mh5 where the
conflict between mh1 ⊕ . . . ⊕ mh7 and mh5 is above the threshold. Thus, the set
{mh1 , . . . ,mh4 ,mh6 , . . . ,mh9} is the first LPMCS with respect to εK and a new refer-
ence must be selected from the set {mh5 ,mh10}. Referring again to Table 7a we find
that mh5 is the highest quality mass function and select this as our new reference.
Since mh10 is the only remaining mass function, we just need to measure the con-
flict between mh5 and mh10 where we find that the conflict is below the threshold.
Thus, the set {mh5 ,mh10} is the second LPMCS and the complete set of LPMCSes
is L∗({mh1 , . . . ,mh10}, 0.3) = {{mh1 , . . . ,mh4 ,mh6 , . . . ,mh9}, {mh5 ,mh10}}.
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mh1 mh2 mh3 mh4 mh5 mh6 mh7 mh8 mh9 mh10

N(mhi ) 0.032 0.475 0.127 0.509 0.372 0.557 0.543 0.158 0.158 0.812
S(mhi ) 0.031 0.272 0.11 0.286 0.774 0.288 0.228 0.132 0.133 0.487

(a) Non-specificity and strife values.

mhi mh2 mh3 mh4 mh5 mh6 mh7 mh8 mh9 mh10

mh1 0.229 0.049 0.251 0.509 0.294 0.351 0.065 0.076 0.584
mh1 ⊕mh3 0.244 – 0.266 0.521 0.308 0.363 0.08 0.089 0.598

mh1 ⊕mh3 ⊕mh8 0.245 – 0.267 0.522 0.309 0.364 – 0.09 0.599
mh1 ⊕ . . .⊕mh9 0.245 – 0.267 0.522 0.309 0.364 – – 0.6
mh1 ⊕ . . .⊕mh2 – – 0.267 0.523 0.309 0.364 – – 0.6
mh1 ⊕ . . .⊕mh4 – – – 0.523 0.309 0.364 – – 0.6
mh1 ⊕ . . .⊕mh6 – – – 0.523 – 0.364 – – 0.6
mh1 ⊕ . . .⊕mh7 – – – 0.523 – – – – 0.6

(b) Distance values.

mi mj K(mi,mj)

mh1 mh3 0
mh1 ⊕mh3 mh8 0

mh1 ⊕mh3 ⊕mh8 mh9 0
mh1 ⊕ . . .⊕mh9 mh2 0
mh1 ⊕ . . .⊕mh2 mh4 0
mh1 ⊕ . . .⊕mh4 mh6 0
mh1 ⊕ . . .⊕mh6 mh7 0
mh1 ⊕ . . .⊕mh7 mh5 0.382

mh5 mh10 0.186

(c) Conflict values.

Table 7: Finding LPMCSes in {mh1 , . . . ,mh10} when εK = 0.3.

Context-dependent Dempster’s Dubois &
(εK = 0.3) rule Prade’s rule

m({freq(h)}) 0.426 1 0.008
m({freq(l), freq(h)}) 0.426 0 0.024
m({freq(n), freq(h)}) 0 0 0.021
m(Ωh) 0.148 0 0.947

(a) Combined mass functions.

Context-dependent Dempster’s Dubois &
(εK = 0.3) rule Prade’s rule

BetPm (freq(l)) 0.262 0 0.328
BetPm (freq(n)) 0.049 0 0.326
BetPm (freq(h)) 0.688 1 0.346

(b) Pignistic probability distributions.

Table 8: Combined results.
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The combined mass function after applying the context-dependent combination
rule on the set of mass functions, using an arbitrary conflict threshold εK = 0.3, is
provided in Table 8a. In addition, the results for the full range of conflict thresholds
εK = 0, 0.01, ..., 1 are shown graphically in Figure 1. For comparison, the combined
mass functions after applying Dempster’s rule and Dubois & Prade’s rule in full
are also provided. Table 8b then includes the results for applying the pignistic
transformation on these combined mass functions. Regarding these results, it is
apparent that Dempster’s rule arrives at a very strong conclusion with complete
belief in the belief atom freq(h). On the other hand, Dubois & Prade’s rule arrives
at almost complete ignorance over the set of possible belief atoms Ωh. The result of
the context-dependent rule is arguably more intuitive since it doesn’t throw away
differing opinions (as is the case with the former) or incorporate too much conflict
(as is the case with the latter). For example, after applying the context-dependent
rule we can conclude that freq(l) is more probable than freq(n). Conversely,
this conclusion is not supported using Dempster’s rule while the support is rel-
atively insignificant using Dubois & Prade’s rule. Nonetheless, the final stage of
this scenario is to attempt to derive a belief atom for revising the agent’s belief
base. In this case, if we assume a pignistic probability threshold εBetP = 0.6 then
we can derive the belief atom freq(h). If freq(h) is added to the agent’s belief
base, then any plans with this belief addition event as their triggering event will
be selected as applicable plans. Thus, the agent can respond by reducing power
generation in order to return to a normal frequency level.
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Figure 1: The effect of varying the conflict threshold on m(A) and BetPm(ω).

In Figure 1, we illustrate the effect of varying the conflict threshold and
pignistic probability threshold. Figure 1a shows the mass values of focal ele-
ments after combining all relevant mass functions and for each conflict threshold
εK = 0, 0.01, ..., 1. For example, when εK = 0.1, m({freq(h), freq(l)}) = 0.28,
m({freq(h)}) = 0.093, m(Ω) = 0.627. When εK ≤ 0.18, the context-dependent
combination rule results in three LPMCSes {{mh1 , . . . ,mh4 ,mh6 , . . . ,mh9}, {mh5},
{mh10}}, where Ωh is assigned the highest combined mass value. In contrast, when a
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conflict threshold is in the interval [0.19, 0.38], the context-dependent combination
rule results in two LPMCSes {{mh1 , . . . ,mh4 ,mh6 , . . . ,mh9}, {mh5 ,mh10}}. In this case,
Ωh has the lowest combined mass value whilst the other focal sets are assigned
equal combined mass values. Furthermore, when εK ≥ 0.39, the context-dependent
combination rule results in one LPMCS, i.e. {{mh1 , . . . ,mh10}}, where {freq(h)} is
assigned a combined mass value of 1. In this case, the context-dependent combi-
nation rule reduces to Dempster’s rule. Conversely, in this scenario, the context-
dependent combination rule never reduces to Dubois and Prade’s rule since, even
when εK = 0, we never have a set of singleton LPMCSes. Notably, as the conflict
threshold increases, the mass value of {freq(h)} increases whilst the mass value
of Ωh decreases. However, the mass value of {freq(l), freq(h)} fluctuates (i.e.
increasing first before decreasing). In particular, the mass value increases in the
interval [0, 0.38], due to the mass value of Ωh being shifted to strict subsets. By
comparing the results from Figure 1a, we can conclude in this scenario that a
conflict threshold in the interval [0, 0.38] will offer a balance between both rules
such that our rule does not reduce to one rule or the other. In Figure 1b we
show the corresponding pignistic probability distribution after applying the pig-
nistic transformation on the combined mass function to demonstrate the effect of
varying the conflict threshold on decision making. For example, when εK = 0.1,
BetPm(freq(h)) = 0.442, BetPm(freq(l)) = 0.349, BetPm(freq(n)) = 0.209. As
can be seen, when the conflict threshold increases, the probability assigned to
freq(h) increases whilst the probability of freq(l) and freq(n) decrease. By
comparing the probability distributions in Figure 1b, it indicates freq(h) is the
obvious conclusion for deriving a belief atom for decision-making. However, the
choice of thresholds will affect whether a belief atom is actually derived. Specifi-
cally, if εBetP ≤ 0.7 and εBetP ≥ 0.2 then freq(h) will be derived, otherwise nothing
will be derived. This demonstrates the benefit of our rule since relying on Dubois
and Prade’s rule alone would not allow us to derive a belief atom while Dempster’s
rule loses potentially useful uncertain information.

6 Conclusion

In this paper we presented an approach to handle uncertain sensor information
obtained from heterogeneous sources for aiding decision making in BDI. Specif-
ically, we adapted an existing context-dependent combination strategy from the
setting of possibility theory to DS theory. As such, we proposed a new combination
strategy which balances the benefits of Dempster’s rule for reaching meaningful
conclusions for decision making and of alternatives, such as Dubois & Prade’s
rule, for handling conflict. We also proposed an approach to handle this sensor
information in the AgentSpeak model of the BDI framework. In particular, we
described the formulation of an intelligent sensor for AgentSpeak which applies
evidence propagation, performs context-dependent combination and derives be-
liefs for revising the agent’s belief base. Finally, in Section 5 we demonstrated the
applicability of our work in terms of a scenario related to a power grid SCADA
system. An implementation of the work presented in the paper is available online.5

5 http://www.eeecs.qub.ac.uk/~kmcareavey01/context_dependent.html
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