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Abstract
In many applications, there is a need to model and rea-
son with imprecise probabilistic knowledge. In this paper,
we discuss how to model imprecise probabilistic knowl-
edge obtained from experiments in biological sciences on
enzymes for rapid screening of potential substrate or in-
hibitor structures. Each imprecise probabilistic knowledge
base is modelled as a probabilistic logic program (PLP).
To predict a meaningful substrate structure, we have de-
veloped a framework (and a tool) in which a user (biosci-
entist) can query against a PLP (or a collection of PLPs),
can examine how relevant a PLP is for answering a query,
and can select a query result that is more satisfactory. This
framework is implemented by integrating an optimizer in
MatLab to solve the optimization problems subject to lin-
ear constraints. A preliminary version of the tool was
demonstrated in the ECAI08 Demo session. Experimental
results on evaluating the tool with probabilistic knowledge
on enzymes for rapid screening of potential substrates or
inhibitor structures demonstrate that this tool has a great
potential to be used in many similar areas for the initial
screening of compound structures in drug discovery.
Keywords. Imprecise probabilistic knowledge, predic-
tion, substrate structure, enzymes, rapid screening.

1 Introduction
Most of the knowledge that is used, for example, for ad-
vanced knowledge base systems or for cognitive modeling
is uncertain, incomplete, imprecise and subject to changes.
Very often, this uncertainty and incompleteness is charac-
terized by probabilities, especially, when the knowledge
concerned is elicited from experiments. Therefore, there
is a need to develop adequate theories and frameworks to
model and reason with such probabilistic knowledge.

Probabilistic logic programming is a framework to repre-
sent and reason with imprecise (conditional) probabilis-
tic knowledge. An agent’s knowledge is represented by a
probabilistic logic program (PLP) which is a set of (con-
ditional) logical formulae with probability intervals. The
impreciseness of the agent’s knowledge is explicitly repre-

sented by assigning a probability interval (or a single prob-
ability) to every logical formula indicating that the proba-
bility of the formula shall be in the given interval. Proba-
bilistic logic programming has been used to represent and
reason with probabilistic knowledge in many real world
applications, e.g., [2, 5, 9]. Among various types of proba-
bilistic logic programming, conditional probabilistic logic
programming (PLP for short) [7, 8] is particularly tailored
to represent conditional events with probabilities of the
form (C|A1 ∧ ... ∧ An)[l, u] where Ais are conditions, C
is a conclusion. (C|A1∧ ...∧An)[l, u] is interpreted as the
probability of conditional event C|A1 ∧ ...∧An falling in
interval [l, u].

To illustrate the use of conditional probabilistic logic pro-
gramming, let us consider medical treatments for certain
medical conditions (diseases), such as a patient is diag-
nosed with liver cancer. There are various types of treat-
ments for cancers, such as, (A) surgery only to remove
the organ; (B) surgery plus Radiotherapy; (C) Radiother-
apy only, depending on the stage of the cancer, the health
condition of the patient and possibly other factors. Then
statistical summaries from clinical trials studied on the re-
lationship between mortality and treatments can be repre-
sented as conditional events shown below.

Mortality(X, Y ear10)|LiverCancer(X, Y ear0) ∧
CancerStage(X, early) ∧ Surgery(X, Y ear0) ∧
RT (X; Y ear0)[0.223; 0.225]

This piece of imprecise probabilistic knowledge says that
from this trial (or the meta-analysis of many trials), the
probability of a patient’s 10-year mortality, given that the
patient is in his/her early liver cancer stage, undergoing a
surgery plus Radiotherapy, is in between 0.223 to 0.225.

Conditional events like above cannot always be simply in-
terpreted as cause-effect relationships. For the above ex-
ample, it is not that the surgery and RT caused a patient
to die in 10-years, rather, it says that if those actions are
taken place (given that the patient’s liver cancer stage is
early), then what the probability of this patient being dead
in 10-years could be. Of course, if no action was taken



place, the probability of the patient being dead in 10-years
would be much greater than 22.5%. Therefore, condi-
tional probabilistic logic programming offers a much more
suitable framework for capturing imprecise probabilistic
scientific knowledge of this kind than other approaches.
Given a PLP and a query against the PLP, traditionally, a
probability interval is returned as the answer. This inter-
val implies that the true probability of the query shall be
within the given interval. However, when this interval is
too wide, it provides no useful information. For instance,
if a PLP contains knowledge {(fly(X)|bird(X)[0.98, 1],
(bird(X)|magpie(X))[1, 1]}, then the answer to the
query Can a magpie fly? (i.e., ?(fly(t)|magpie(t))) is
a trivial bound [0, 1].

One way to enhance the reasoning power of a PLP is to ap-
ply the maximum entropy principle [6]. From this princi-
ple, a single probability distribution is selected and it is as-
sumed to be the most acceptable one for the query among
all possible probability distributions. As a consequence,
a precise probability is given for a query even when the
agent’s original knowledge is imprecise. In the above ex-
ample, by applying the maximum entropy principle, 0.98
is returned as the answer for the query. Intuitively, ac-
cepting such a precise probability from (a prior) impre-
cise knowledge can be risky. When an agent’s knowledge
is rich enough then a single probability could be reliable,
however, when an agent’s knowledge is (very) imprecise,
an interval is more appropriate than a single probability.

Therefore, how useful a probabilistic logic program (PLP)
is to answering a given query? This question is important
in two fold: first, it helps to analyze if a PLP is adequate
to answer a query and second, if a PLP is sufficiently rele-
vant to a query, then shall a single probability be obtained
or shall a probability interval be more suitable? To answer
these questions, in [18], we proposed two concepts, the
measure of ignorance and the measure of degree of satis-
faction, w.r.t. a PLP and a query. The former analyzes the
impreciseness of the PLP w.r.t. the query, and the latter
measures which (tighter) interval is sufficiently informa-
tive to answer the query.

In this paper, we present our investigation about how to use
PLPs to represent and reason with imprecise probabilistic
knowledge obtained from experiments, especially on sub-
strates prediction in biomedical sciences. We first discuss
the importance of evaluating the relevance of a knowledge
base w.r.t a query, focusing on how reliable a query result
returned from querying a PLP could be, knowing that the
knowledge contained in the PLP is imprecise. To quanti-
tatively measure the reliability of a query result, we in-
troduce our formal analysis of ignorance and degree of
satisfaction about a query result obtained from the PLP
[18]. We then present our implementation of a proba-
bilistic querying system which takes PLPs as input knowl-
edge bases and produces probabilistic results for queries

(against a chosen PLP). The results are either in the form
of pure probabilistic terms (an interval or a maximum en-
tropy), or the maximum entropy plus its ignorance, or an
interval plus its degree of satisfaction. The first form of
output is the traditional type of output from probabilistic
logic programming, whilst the latter two are our exten-
sions – adding extra information about a query result to
tell a user how reliable this result could be when using this
particular knowledge base.

We apply our theory and system to enzymes for rapid pre-
diction of potential substrate or inhibitor structures. We
conducted two sets of experiments, one is on the human
enzyme galactokinase, which uses galactose as a substrate,
and the other is on substrate prediction for NQO1. The ex-
perimental results demonstrate that using imprecise proba-
bilistic knowledge as a first step in screening for substrates
can be very useful and significant in many similar applica-
tions, since this initial prediction could allow bioscientists
to selectively experiment on more hopeful candidates, sav-
ing both time and money in the whole process.

This paper is organized as follows. In Section 2, we briefly
review probabilistic logic programming. In Section 3, we
describe how to analyze the quality of knowledge in a PLP
and in Section 4 we introduce a general theory and an in-
stantiation on measuring the ignorance and the degree of
satisfaction w.r.t. a PLP and a query. In Section 5, we
describe our system architecture and efficient implemen-
tation. In Section 6, we illustrate our framework with two
case studies in bioscience. Finally, we conclude the paper
in Section 7.

2 Preliminary

We briefly review conditional probabilistic logic program-
ming here [7, 8].

We use Φ to denote the finite set of predicate symbols, V
to denote the set of object variables, and B to denote the
set of bound constants which describe the bound of prob-
abilities, and bound constants are in [0,1]. We use a, b, . . .
to denote constants from Φ and X,Y . . . to denote object
variables from V . An object term t is a constant from
Φ or an object variable from V . An atom is of the form
p(t1, . . . , tk), where p is a predicate symbol and t1, . . . , tk
are object terms. We use Greek letters φ, ϕ, ψ, . . . to de-
note events (or formulae) which are obtained from atoms
by logic connectives ∧,∨,¬ as usual. A conditional event
is of the form (ψ|φ) where ψ and φ are events, and ϕ is
called the antecedent and ψ is called the consequent. A
probabilistic formula, denoted as (ψ|ϕ)[l, u], means that
the probability of conditional event ψ|ϕ is between l and
u, where l, u are bound constants. A set of probabilistic
formulae is called a conditional probabilistic logic pro-
gram (PLP), a PLP is denoted as P in the rest of the paper.

A ground term, (resp. event, conditional event, probabilis-



tic formula, or PLP) is a term, (resp. event, conditional
event, probabilistic formula, or PLP) that does not contain
any object variables in V .

All the constants in Φ form the Herbrand universe, denoted
as HUΦ, and the Herbrand base, denoted as HBΦ, is the
finite nonempty set of all events constructed from the pred-
icate symbols in Φ and constants in HUΦ. A subset I of
HBΦ is called a possible world and IΦ is used to denote
the set of all possible worlds over Φ. A function σ that
maps each object variable to a constant is called an as-
signment. It is extended to object terms by σ(c) = c for
all constant symbols from Φ. An event ϕ satisfied by I
under σ, denoted by I |=σ ϕ, is defined inductively as:
• I |=σ p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ I;
• I |=σ φ1 ∧ φ2 iff I |=σ φ1 and I |=σ φ2;
• I |=σ φ1 ∨ φ2 iff I |=σ φ1 or I |=σ φ2;
• I |=σ ¬φ iff I 6|=σ φ

An event ϕ is satisfied by a possible world I , denoted by
I |=cl ϕ, iff I |=σ ϕ for all assignments σ. An event ϕ is
a logical consequence of event φ, denoted as φ |=cl ϕ, iff
all possible worlds that satisfy φ also satisfy ϕ.

In this paper, we use > to represent (ground) tautology,
and we have that I |=cl > for all I and all assignments σ.
And we use ⊥ to denote ¬>.

If Pr is a function (or distribution) on IΦ (i.e., as IΦ

is finite, Pr is a mapping from IΦ to the unit interval
[0,1] such that

∑
I∈IΦ

Pr(I) = 1), then Pr is called
a probabilistic interpretation. For an assignment σ, the
probability assigned to an event ϕ by Pr, is denoted as
Prσ(ϕ) where Prσ(ϕ) =

∑
I∈IΦ,I|=σϕ Pr(I). When

ϕ is ground, we simply written it as Pr(ϕ). When
Prσ(φ) > 0, the conditional probability, Prσ(ψ|φ), is
defined as Prσ(ψ|φ) = Prσ(ψ ∧ φ)/Prσ(φ). When
Prσ(φ) = 0, Prσ(ψ|φ) is undefined. Also, when (ψ|φ) is
ground, we simply write Pr(ψ|φ).

A probabilistic interpretation Pr satisfies or is a proba-
bilistic model of a probabilistic formula (ψ|φ)[l, u] un-
der assignment σ, denoted as Pr |=σ (ψ|φ)[l, u], iff l ≤
Prσ(ψ|φ) ≤ u or Prσ(φ) = 0. A probabilistic interpreta-
tion Pr satisfies or is a probabilistic model of a probabilis-
tic formula (ψ|φ)[l, u] iff Pr satisfies (ψ|φ)[l, u] under all
assignments. A probabilistic interpretation Pr satisfies or
is a probabilistic model of a PLP P iff for all assignment
σ, ∀(ψ|φ)[l, u] ∈ P, Pr |=σ (ψ|φ)[l, u]. A probabilistic
formula (ψ|ϕ)[l, u] is a consequence of PLP P , denoted
by P |= (ψ|ϕ)[l, u], iff all probabilistic models of P sat-
isfy (ψ|ϕ)[l, u]. A probabilistic formula (ψ|ϕ)[l, u] is a
tight consequence of P , denoted by P |=tight (ψ|ϕ)[l, u],
iff P |= (ψ|ϕ)[l, u], P 6|= (ψ|ϕ)[l, u′], P 6|= (ψ|ϕ)[l′, u]
for all l′ > l and u′ < u (l′, u′ ∈ [0, 1]). It is worth noting
that if P |= (φ|>)[0, 0] then P |=tight (ψ|φ)[1, 0] where
[1, 0] stand for the empty set.

A query is of the form ?(ψ|φ) or ?(ψ|φ)[l, u], where ψ and

φ are ground events and l, u ∈ [0, 1]. For query ?(ψ|φ),
by the tight consequence relation, a bound [l, u] is given
as the answer, such that P |=tight (ψ|φ)[l, u]. For query
?(ψ|φ)[l, u], a bound [l, u] is given by the user. A PLP
returns True (or Yes) if P |= (ψ|φ)[l, u] and False (or No)
if P 6|= (ψ|φ)[l, u] [8].

The principle of maximum entropy is a well known
techniques to represent probabilistic knowledge. En-
tropy quantifies the indeterminateness inherent to a dis-
tribution Pr by H(Pr) = −ΣI∈IΦPr(I) log Pr(I).
Given a logic program P , the principle of maxi-
mum entropy model (or me-model), denoted by me[P ],
is defined as: H(me[P ]) = max H(Pr) =
maxPr|=P −ΣI∈IΦPr(I) log Pr(I)

me[P ] is the unique probabilistic interpretation Pr that is
a probabilistic model of P and that has the greatest entropy
among all the probabilistic models of P .

Let P be a ground PLP, we say that (ψ|ϕ)[l, u] is a me-
consequence of P , denoted by P |=me (ψ|ϕ)[l, u], iff P
is unsatisfiable, or me[P ] |= (ψ|ϕ)[l, u].

We say that (ψ|ϕ)[l, u] is a tight me-consequence of P ,
denoted by P |=me

tight (ψ|ϕ)[l, u], iff either P is unsatisfi-
able, l = 1, u = 0, or P |= ⊥ ← ϕ, l = 1, u = 0, or
me[P ](ϕ) > 0 and me[P ](ψ|ϕ) = l = u.

3 A Formal Analysis of PLPs
In information theory, the information entropy is a mea-
sure of the uncertainty associated with a random variable.
Entropy quantifies information in a piece of data. Infor-
mally, − log p(X = xi) means the degree of surprise1

when one observes that the random variable turns out to be
xi. In another word, − log p(X = xi) reflects the infor-
mation one receives from the observation. The entropy is
an expectation of the information one may receive from a
random domain by observing random events. Inspired by
this, we define a knowledge entropy, which reflects how
much an agent knows the truth value of ψ given φ prior
any observations. Informally, more surprised an agent is
by the observation, more knowledge it learns from the ob-
servation, and thus, less knowledge it has about ψ given φ
before observing ψ or ¬ψ given φ.

Definition 1 Let P be a PLP, and (ψ|φ) be a conditional
event. Suppose that Pr is a probabilistic model for P ,
then the knowledge entropy of inferring ψ from φ under
Pr, denoted as KPr(ψ|φ), is defined as KPr(ψ|φ)

= 1+
1

2
(Pr(ψ|φ) log Pr(ψ|φ)+Pr(¬ψ|φ) log Pr(¬ψ|φ))

It is obvious that KPr(ψ|φ) = KPr(¬ψ|φ) and
KPr(ψ|φ) ∈ [0, 1]. Trivially, KPr(φ|φ) = 1 and
KPr(¬φ|φ) = 1, since from Pr, the truth values of an
event and its negation are known, when the event is given.

1http://en.wikipedia.org/wiki/Self-information



By extending the above definition, we can define a knowl-
edge measurement for a PLP.

Definition 2 Let P be a PLP, and (ψ|φ) be a conditional
event. Suppose that Pr is a probabilistic model for P and
Pr(φ) > 0, then the knowledge measurement KP (ψ|φ) is
defined by:

minKP (ψ|φ) = minPr|=P KPr(ψ|φ)
maxKP (ψ|φ) = maxPr|=P KPr(ψ|φ)
KP (ψ|φ) = [minKP (ψ|φ),maxKP (ψ|φ)]

The measurement KP (ψ|φ) is used to characterize the
usefulness of knowledge contained in PLP P for infer-
ring ψ when knowing or observing φ. When ψ or ¬ψ
can be inferred from φ under P , P contains all the nec-
essary knowledge for inferring ψ given φ, and so we have
minKP (ψ|φ) = 1. When knowledge in P excludes the
possibility that the probability of ψ (or¬ψ) may be 1 given
φ, i.e., P ∪ {(ψ|φ)[1, 1]} (or P ∪ {(ψ|φ)[0, 0]}) is unsat-
isfiable, then the knowledge contained in P can not fully
support ψ given φ, so maxKP (ψ|φ) < 1. Specifically, if
it can not be inferred that ψ is more (or less) likely to be
true than ¬ψ (i.e. the probability of ψ given φ is bigger (or
smaller) than ¬ψ given φ), then minKP (ψ|φ) = 0.

We can define a partial order ¹ over the set {[x, y]|x, y ∈
[0, 1]} as [a, b] ¹ [c, d] iff a ≥ c, b ≤ d, and [a, b] ≺
[c, d] iff [a, b] ¹ [c, d] and a > c or b < d. We say a
PLP P is more precise than P ′ about ψ|φ, if KP (ψ|φ) ¹
KP ′(ψ|φ), denoted as P ¹k

(ψ|φ) P ′.

If minKP (ψ|φ) 6= maxKP (ψ|φ) given P , then the
knowledge contained in P is not sufficient to decide the
probability of ψ given φ, that is, the knowledge contained
in P about inferring ψ given φ is imprecise. In order to
infer the actual probability of ψ given φ under P , we need
more knowledge.

Proposition 1 Let P and P ′ be two PLPs. If P |= P ′ then
P ¹k

(ψ|φ) P ′ for any conditional event (ψ|φ).

This proposition suggests that the consequence relation
|= considers all statements in the PLP while the knowl-
edge measurement focuses only on the knowledge about
ψ given φ.

In the view of knowledge entropy, reasoning under the
maximum entropy principle implicitly introduces some
extra knowledge to enhance the reasoning power of PLP.
We should be aware that although this assumption seems
intuitive, it may be wrong, as shown below.

Example 1 Let P1 = {(headUp(X)|toss(X))
[0.5, 0.5]}, P2 = {(headUp(X)|toss(X)) [0, 1]} be
two PLPs. Here, P1 states that tossing a fair coin may
result in head up with probability 0.5, however, in P2, we
do not know whether the coin is fair.

In this example, the knowledge in P1 is richer than
that in P2 since from P1 we know the coin is fair.
With the maximum entropy principle, we get that
P1 |=me (headUp(coin)|toss(coin))[0.5, 0.5], P2 |=me

(headUp(coin)|toss(coin))[0.5, 0.5]. This result sug-
gests that the difference between P1 and P2 is ig-
nored under the maximum entropy reasoning. By cal-
culating the knowledge entropy of P1 and P2, we
have KP1(headUp(coin)|toss(coin)) = [0, 0] and
KP2(headUp(coin)|toss(coin)) = [0, 1]. Thus we know
that P1 is more precise than P2. Obviously, the conclusion
(headUp(coin)|toss(coin))[0.5, 0.5] is more acceptable
under P1 than under P2.

4 Ignorance and Degree of Satisfaction
The knowledge measurement defined above is not suf-
ficient either. Intuitively, the knowledge measurement
KP (ψ|φ) indicates the ignorance about the conditional
event (ψ|φ). Unfortunately, such an interval cannot suf-
ficiently reflex the ignorance about (ψ|φ). This is not sur-
prising, since KP (ψ|φ) is determined only by the tight
probability bound of the conditional event (ψ|φ), and
other knowledge is not considered in KP (ψ|φ).

Example 2 Let a PLP P be defined as

P =





(fly(X)|bird(X))[0.9, 1],
(bird(X)|magpie(X))[1, 1]
(sickMagpie(X)|magpie(X))[0, 0.1],
(magpie(X)|sickMagpie(X))[1, 1]





From P , we can infer that

P |=tight (fly(t)|magpie(t))[0, 1],
P |=tight (fly(t)|sickmagpie(t))[0, 1],
P |=me

tight (fly(t)|magpie(t))[0.9, 0.9],
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

Here, we have KP (fly(t)|sickmagpie(t)) =
KP (fly(t)|magpie(t)). However, since the propor-
tion of sick magpies in birds is smaller than the proportion
of magpies in birds, the knowledge about birds can
fly should be cautiously applied to sick magpies than
magpies. In another word, more than 90% birds can fly
is more about magpies than sick magpies. Therefore,
accepting that 90% magpies can fly is more rational
than accepting that 90% sick magpies can fly. However,
knowledge measurement cannot differentiate this. Below,
we introduce two measures to overcome this weakness.
These two measures are the instantiated measures from
the general framework for analyzing and reasoning with
imprecise PLPs proposed in [18].

In probabilistic theory and information theory, how to
measure the distance between probability distributions is a
major topic. One of the most common measures for com-
paring probability distributions is the KL-divergence.



Definition 3 Let Pr and Pr′ be two probability distribu-
tions over the same set IΦ. The KL-divergence between
Pr and Pr′ is defined as:

KL(Pr‖Pr′) = −ΣI∈IΦPr(I) log
Pr′(I)

Pr(I)

It is worth noting that KL-divergence is asymmetric. KL-
divergence is also called relative entropy.2 An important
conclusion is that H(Pr) = KL(Pr||Prunif ), where
Prunif is the uniform distribution.

From the KL-divergence, we can measure the amounts
of the information that should be received to believing
lower and upper bounds for (ψ|φ) other than the proba-
bility given by maximum entropy.

νpos
P,(ψ|φ)(v) = min

Pr|=P,Pr(ψ|φ)=v
KL(Pr||me[P ]),

where v ≥ me[P ]
νneg

P,(ψ|φ)(v) = min
Pr|=P,Pr(ψ|φ)=v

KL(Pr||me[P ]),

where v ≤ me[P ]

dispos
P,(ψ|φ)(u, v) = |νpos

P,(ψ|φ)(u)− νpos
P,(ψ|φ)(v)|

disneg
P,(ψ|φ)(u, v) = |νneg

P,(ψ|φ)(u)− νneg
P,(ψ|φ)(v)|

Definition 4 Let P be a PLP and (ψ|φ) be a conditional
event. Suppose that P |=tight (ψ|φ)[l, u] and P |=me

tight

(ψ|φ)[pme, pme], then we have that:

SATKL
P ((ψ|φ)[a, b]) =




0.5 ∗ (
dis

pos
P,(ψ|φ)(pme,min(u,b))

dis
pos
P,(ψ|φ)(pme,u)

+
dis

neg
P,(ψ|φ)(pme,max(a,l))

dis
neg
P,(ψ|φ)(pme,l)

),

if pme ∈ [a, b]
0, otherwise

It is proved in [18] that SATKL
P (ψ|φ)[a, b] can be inter-

preted as the second order probability that the actual prob-
ability of (ψ|φ) falls in the interval [a, b].

Example 3 Let P be a PLP:

P =





(fly(X)|bird(X))[0.9, 1]
(bird(X)|magpie(X))[1, 1]
(magpie(X)|sickmagpie(X))[1, 1]





Let two queries be ?(fly(t)|magpie(t)) and
?(fly(t)|sickmagpie(t)). The we have (c.f. [18])

P |=tight (fly(t)|magpie(t))[0, 1],
P |=me

tight (fly(t)|magpie(t))[0.9, 0.9] and
P |=tight (fly(t)|sickmagpie(t))[0, 1],
P |=me

tight (fly(t)|sickMagpie(t))[0.9, 0.9].

So, we cannot differentiate magpies from sick magpies in
their ability of flying, although sick magpies are more a
special kind of magpies, and therefore they are less likely

2It should be noted that KL(Pr‖Pr′) is undefined if Pr′(I) = 0
and Pr(I) 6= 0. This means that Pr has to be absolutely continuous
w.r.t. Pr′ for KL(Pr‖Pr′) to be defined.

to be able to fly than magpies. In contract, in our frame-
work, we have SATKL

P ((fly(t)|magpie(t))[0.8, 1]) =
0.58, and SATKL

P ((fly(t)|sickmagpie(t))[0.8, 1]) =
0.53 for two queries ?(fly(t)|magpie(t))[0.8, 1] and
?(fly(t)|sickmagpie(t))[0.8, 1]. By comparing their KL
degrees of satisfaction, it is clear that magpies are more
likely able to fly than sick magpies.

5 A System for Answering Queries
5.1 Efficient implementation

To efficiently return a query result given a PLP, we imple-
mented the efficient algorithms proposed in [6, 8]. Using
these algorithms, a PLP can be translated into a liner or
nonlinear optimization problem. We implemented these
algorithms in Java and solved the underlying optimization
problem using a component in Matlab. In addition, we
also implemented the calculation of ignorance and degree
of satisfaction with the algorithms given below. These al-
gorithms rely on the algorithms provided in [6, 8] as well
as the software Matlab to optimize a PLP.

Algorithm 1 (KLIgnorance)
Input: PLP P and a ground query Q =?(ψ|φ)
Output: Ignorance value for Q

1. IFP is unsatisfiable THEN return 1

2. IFP |=tight (φ|>)[0, 0] THEN return 1

3. Compute the tight bound [l, u] for (ψ|φ) by Algorithm
Tight 0 Consequence in Fig. 5. in [6].

4. Compute the simplified PLP D index sets R and associate
numbers ar and optimal solution y?

r (r ∈ R) by Algorithm
Tight me Consequence in Fig. 7. in [6].

5. Compute the optimal value igneg of the optimization prob-
lem:

igneg = max

(
−

∑
r∈R

yl
r(log yl

r − log ar)

)

subject to: yl
r satisfies LC(>, Dl, R), where Dl = D ∪

{(ψ|φ)[l, l]}
6. Compute the optimal value igpos of the optimization prob-

lem:

igpos = max

(
−

∑
r∈R

yu
r (log yu

r − log ar)

)

subject to: yu
r satisfies LC(>, Du, R), where Du = D ∪

{(ψ|φ)[u, u]}.
7. Compute optimal solution y′r (r ∈ R) for P ′ = ∅ by Al-

gorithm Tight me Consequence in Fig. 7. in [6]. pme :=
me[P ′](ψ|φ).

8. Compute the optimal value ig′neg of the optimization prob-
lem:

ig′neg = max

(
−

∑
r∈R

yl
r(log yl

r − log ar)

)

subject to: yl
r satisfies LC(>, Dl

0, R), where Dl
0 =

{(ψ|φ)[l, l]}



9. Compute the optimal value ig′pos of the optimization prob-
lem:

ig′pos = max

(
−

∑
r∈R

yu
r (log yu

r − log ar)

)

subject to: yu
r satisfies LC(>, Du

0 , R), where Du
0 =

{(ψ|φ)[u, u]}.
10. IF pme < u THEN s1 := 1 ELSE s1 := −1

11. IF pme > l THEN s2 := 1 ELSE s2 := −1

12. ig := (s1 ∗ igpos + s2 ∗ igneg)/(ig′pos + ig′neg)

13. RETURN ig

Algorithm 2 (KLDivergence)
Input: PLP P , me[P ], a conditional event (ψ|φ), and a proba-
bility value v.
Output: kl = minPr|=P,Pr(ψ|φ)=v KL(Pr||me[P ])

1. me[P ] is obtained from Algorithm 1 and is represented as
yme.

2. Compute the tight bound [l′, u′] for (ψ|φ) by Algorithm
Tight 0 Consequence in Fig. 5. in [6].

3. IF v /∈ [l′, u′] THEN return ERROR.
4. Compute the optimal value kl of the optimization problem:

kl = min

(∑
r∈R

yr log yr −
∑
r∈R

yr log yme

)

subject to: yr satisfies LC(>, DV , R), where DV = D ∪
{(ψ|φ)[v, v]}.

5. return kl

Algorithm 3 (KLSatisfaction)
Input: PLP P and a ground query Q =?(ψ|φ)[l, u]
Output: KL degree of satisfaction for Q

1. IF P |=tight (φ|>)[0, 0] THEN return 1.
2. IF l ≥ uTHEN return 0.
3. Compute the tight bound [l′, u′] for (ψ|φ) by Algorithm

Tight 0 Consequence in Fig. 5. in [6].
4. IF l < l′ THEN l := l′.
5. IF u > u′ THEN u := u′.
6. Compute sp = νpos

P,(ψ|φ)(u
′) by Algorithm 2.

7. Compute sn = νneg
P,(ψ|φ)(u

′) by Algorithm 2.

8. Compute s′p = νpos
P,(ψ|φ)(l) by Algorithm 2.

9. Compute s′n = νneg
P,(ψ|φ)(u) by Algorithm 2.

10. sat := 0.5 ∗ (s′p/sp + s′n/sn)

11. return sat

In our querying system, shown in Figure 1, we have obser-
vations, background knowledge, as well as the knowledge
obtained from sources (e.g. experts). Background knowl-
edge and the knowledge from different sources are merged
to obtain a PLP. Observations are used when constructing
queries. Each PLP can be analyzed with the measures de-
fined/introduced previously. The details on other compo-
nents (like merging and revision) are omitted here due to
space limitation.

5.2 Additional information used in querying PLPs
Observation vs. a priori facts: In PLPs, ground formu-
lae of the form (φ(t)|>)[1, 1] are used to state a priori facts
from statistics, i.e., something must be true (statistically)
is regarded as a fact. From (φ(t)|>)[1, 1], we know that
object t must possess property φ even before we observe
it. This is different from observing t having property φ.
Observing an event (such as a test result) about an indi-
vidual does not infer that the event would happen for sure
(for another individual). So, observations cannot be rep-
resented as formulae of the form (ψ(a)|>)[1, 1] in a PLP.
Doing so implies that we know ψ(a) being true even be-
fore it is observed. In another word, taking ψ(a) as a prob-
abilistic event, we cannot predict if ψ(a) is true or false
before we observe it. In our System, all observations are
stored in a separate database (named OBS). When query-
ing (ψ|φ)[l, u] on PLP P , this observation database OBS
is automatically called, so querying (ψ|φ)[l, u] is equiva-
lent to querying (ψ|φ ∧∧

OBS)[l, u] on P .

Background knowledge: In practice, source knowledge
bases (PLPs) can be obtained from experts, from some ex-
periments, or are elicited from data in published papers.
However, given an application, there is richer knowledge
that is normally not included in a paper or stated in an
experiment, but this knowledge may have been implicitly
used. When such knowledge is present, we include it in
a PLP when appropriate. For example, knowledge about
some general population statistics should be treated as
background knowledge, while the effectiveness of a new
drug should be treated as specialized knowledge.

6 Application to Substrates Prediction
Considerable investment has been made into the in sil-
ico prediction of substrates, and especially, inhibitors of
enzymes. This investment has been driven by a funda-
mental desire to understand more about how biomolecules
recognize their ligands and by the commercial imperative
to develop new drugs. Almost all pharmaceutical com-
panies include an element of target-based approaches in
their drug discovery programmes. The aim of our analyz-
ing/querying system is to provide a very rapid screening
for likely ligands (either substrates or inhibitors, depend-
ing on the context). It will be particularly useful in situ-
ations where a number of similar compounds have been
screened experimentally, but information is not available
for all possible members of that group of compounds. By
providing a simple means to encode existing experimental
knowledge and return results within minutes we see this
as a valuable addition to initial computational screening
approaches.

6.1 Case study I: Rapid sugar kinase enzymes
prediction

Our first example is from biochemistry on the human en-
zyme galactokinase, which uses galactose as a substrate.



Figure 1: System Architecture

Figure 2: The α-D-Galactose molecule

Galactose has the molecular formula C6H12O6, but other
compounds have the same or similar formula. Since not
all possible substrates for the enzyme have been tested, the
information regarding this enzyme and its substrates is in-
complete, can we then predict which will be the substrates
for the human enzyme galactokinase based on incomplete
and imperfect information? Many factors lead to the infor-
mation being imperfect including different research labo-
ratories using different criteria for scoring a compound as a
substrate and some information is based on galactokinases
from other species, so we cannot be certain that substrate
specificity is conserved for humans.

Each galactose molecule is arranged as a hexagonal ring
(e.g., the α-D-Galactose molecule in Figure 2). There are
six carbon atoms in a galactose molecule and one oxygen
atom. These six carbon atoms are numbered from 1 to 6
with the right-most carbon atom numbered 1, and then the
remaining carbons are numbered clockwise round the ring.
The oxygen atom is not numbered. The other atoms can be
regarded as coming off these carbon atoms. The first four
of the carbon atoms each has an OH molecule attached to
it, and the fifth one has the sixth carbon atom attached to
it from outside the ring, forming a CH2OH group. The
OH group can either be up or down (i.e. they are chiral).
The combination of ups and downs gives a specific form

of the molecule (in effect, each form of the molecule is a
different compound), and the actual combination can sig-
nificantly affect the biochemical behavior of the molecule.
Therefore, for the OH groups attached to these atoms, we
need to know if they are up, down or absent. The sixth
carbon is not chiral, and so the OH is neither up nor down.
Hence, the OH for the sixth carbon is marked as either
present or absent. Current experimental results published
in the literature provide a set of conditional events with
probabilities suggesting how likely a particular structure
is a substrate for the enzyme. Table 1 contains this knowl-
edge collected from papers [14, 15, 16, 17], which is then
translated into a PLP. For instance, the 5th row of the table
(Talose) defines a probabilistic formula as

(sub(X)|c1(X, d) ∧ c2(X, u) ∧ c3(X, u)
∧c4(X, u) ∧ c5(X, u) ∧ c6(X, p))[0.4, 0.6]

Initially probabilities were estimated using experimental
data and an element of intuition. Where a particular sub-
strate had been demonstrated experimentally to be a sub-
strate of human galactokinase it was assigned a probability
of 1.0. Where there was experimental data indicating that a
substrate was not phosphorylated by human galactokinase,
a value of 0 was assigned. Compounds which had been
shown to be substrates of galactokinase from other species
were assigned probabilities between 0 and 1. However, not
all substrates are equally good. Therefore a second mea-
sure, the product was calculated. To calculate this value,
the specificity constant kcat/Km was used [4], scaled such
that the product value with galactose (which is expected to
be the best substrate) was equal to 1.0.

Therefore, in Table 1, we have a column representing their
probabilities (or intervals) and another column represent-
ing their products of the corresponding compounds to be



Sugar C1 C2 C3 C4 C5 C6 P(substrate) Product Source
-OH -OH -OH -OH -CH2OH -OH

Galactose D D U U U P 1.0 1 [15]
Glucose D D U D U P 0.0 0 [15]
2-Deoxygalactose D A U U U P 1.0 0.47 [15]
Fucose D D U U U A 0.0 0 [15]
Talose D U U U U P [0.4, 0.6] [0.056,0.084] [17, 14]
4-deoxygluocse D D U A U P [0, 0.5] [0,0.021] [16]
3-deoxygalactose D D A D U P [0.6, 0.9] [0.036,0.054] [16]

Table 1: The compounds and their probabilities and products to be substrates, obtained from published papers.

(good) substrates. Column Source indicates from which
published paper this knowledge is obtained. Based on the
probabilistic knowledge in the probabilistic logic program,
we can predict the probability for any combination of these
six carbons. Twenty-six queries detailed in Table 2 were
executed against this PLP and the query results are pre-
sented in Table 2. Below we analysis these query results.

By querying the tight bounds for the twenty-six queries
detailed in Table 6.1, we can only obtain a trivial inter-
val [0, 1] for all of these queries. This trivial interval indi-
cates that we know nothing about the probability of a com-
pound being a substrate. Reasoning under the maximum
entropy principle, we can get probabilities as listed in Ta-
ble 6.1. One question is that how reliable these values are
to guide us finding most possible substrate from these pos-
sible compounds. With the analysis of knowledge entropy
in Section 3, we have KP (sub(s)|φs) = [0, 1] for any
compound s where the compound structure is stated by
φs. So this measurement does not provide us with useful
information either. Now we look into the ignorance mea-
sures of these query results. The ignorance values of the
query results of the twenty-six compounds w.r.t. this PLP
are around 0.005, a very low value. These ignorance val-
ues suggest that the probabilities obtained by applying the
maximum entropy principle are acceptable and can serve
as good indicators about how likely a compound can be
a substrate. Since in substrate prediction, the comparisons
of probabilities are much more important than actual prob-
ability values, we do not need to calculate the degrees of
satisfaction for these queries with intervals.

Overall, the predictions appear to over-estimate the proba-
bilities for each possible substrate. For example, given that
the Fucose (which has the OH group attached to the sixth
carbon atom absent) has been shown experimentally not to
be a substrate, it is surprising to see compounds which also
lack this OH group predicted as having high probabilities
as substrates. Of course in compiling the data in Table
1, all the information was weighted equally - for exam-
ple the presence or absence of the OH group at position 6
was considered of equal worth to the information about the
OH at position 2. In fact it is likely that some positions are
more important than others in determining substrate speci-

(a) (b)

Figure 3: Examples of NAD(H)-quinone oxidoreductase 1
(NQO1) substrates.

ficity. However, in implementing screens such as these,
the amount of knowledge to be included will always be a
balance between including enough to enable valid predic-
tions, but not so much that the initial knowledge collection
and tabulation becomes unreasonably time consuming.

Despite these limitations, the predictions do appear to have
some value in that the ranking of the compounds in terms
of their probability of being a substrate seems mostly rea-
sonable and in line with chemical intuition. Ultimately
for such a system to be useful to bioscientists, it is this
ranking which must be reliable. The most likely use of
such a system is to act as a preliminary screen for poten-
tial substrates or inhibitors followed by experimental test-
ing of those compounds. Time and expense can be saved
if those compounds most likely to be good substrates (or
inhibitors) appear at the top of the list and are, therefore,
prioritized in the experimental work. Thus the absolute
values of the predicted probabilities are less important than
the rank order of the compounds.

6.2 Case Study II: Substrate prediction for NQO1
NAD(H)-quinone oxidoreductase 1 (NQO1) is a broad
specificity enzyme which catalyses the reduction of a
range of aromatic compounds. It was chosen for the sec-
ond case study as a large variety of different compounds
(including quinones, nitroaromatics and benzimidazoles)
have been tested as substrates. In contrast to Case study
I, the chemical diversity of the known substrates is wider
leading to a greater number of variables to consider.

Two of the many compounds which have been tested ex-
perimentally as substrates for NQO1 are a quinone com-



Sugar C1 C2 C3 C4 C5 C6 P(substrate) Product
-OH -OH -OH -OH -CH2OH -OH

2dAll D A D D U P 0.6529 0.4611
2dGlc D A U D U P 0.6154 0.3939
2dGul D A D U U P 0.6694 0.5000
I D A A D U P 0.5869 0.4083
II D A A U U P 0.6676 0.5376
2,3,4d D A A A U P 0.5509 0.4721
3dAll D D A D U P 0.6003 0.1138
3dMan D U A D U P 0.5539 0.5000
3dTal D U A U U P 0.5636 0.4282
III D D A A U P 0.5321 0.3503
IV D U A A U P 0.5134 0.4785
4dAll D D D A U P 0.5314 0.4611
4dMan D U U A U P 0.4706 0.4282
V D A D D U A 0.5463 0.4811
VI D A U D U A 0.5481 0.4514
VII D A D U U A 0.5481 0.5000
VIII D A A D U A 0.5703 0.4572
IX D A A U U A 0.5682 0.5020
X D A A A U A 0.5233 0.4814
XI D D A D U A 0.5451 0.3518
XII D U A D U A 0.5234 0.5000
XIII D U A U U A 0.5278 0.4670
XIV D D A A U A 0.5146 0.4179
XV D U A A U A 0.5064 0.4895
XVI D D D A U A 0.5144 0.4811
XVIII D U U A U A 0.4879 0.4670

Table 2: The probabilities and products of some compounds being a substrate by querying on the PLP.

pound, benzo-1,4-quinone (Figure 3(a)) and a nitroaro-
matic compound 1,4-dinitrobenzene (Figure 3(b)). Rep-
resenting these compounds in tabular form required as-
signing each position in the six-membered ring a letter de-
scriptor from A to F. For each molecule, the most oxidised
substituent was placed at the top of the structural represen-
tation and designated A. Positions B through F were then
defined by moving round the ring sequentially in an anti-
clockwise fashion. In these initial studies we concentrated
on six membered rings substituted with ketone, methyl and
nitro groups.

A B C D E F Probability
NO2 H H H H H [0,0]
NO2 H NO2 H H H [0,0]
NO2 H H CHO H H [0,0]
NO2 NO2 H H H H [0,0]
NO2 H H NO2 H H [0,0]
O H H O H H [0.20,0.28]
O CH3 H O H H [0.17,0.31]
O CH3 H O CH3 H [0.19,0.33]
O CH3 CH3 O CH3 H [0.20,0.28]

Table 3: The compounds and their probability intervals,
obtained from published papers [1, 3].

In this initial case study, knowledge was collected from

a limited number of papers [1, 3] which described the
activity of the enzyme towards a number of structurally
related compounds (Table 3). Probabilities were derived
from published data in these papers on specificity con-
stants in which the error in the experimental determination
was used to define the range of values. When used to make
predictions about unknown compounds (Table 4), the re-
sults were broadly similar to those seen in Case Study I.
Table 4 gives the summary of sixteen queries based on the
probabilistic knowledge given in Table 3. There appeared
to be a tendency to over-estimate probabilities (especially
for compounds closely related in structure to those with
low, or zero, experimentally determined activity). Never-
theless, if these compounds are excluded the rank order of
the remaining ones appears sensible.

7 Related Work and Conclusion
Some systems are provided for modeling and querying on
probabilistic knowledge, for example, SPIRIT [12] and
PIT [13]. These two systems work on propositional prob-
abilistic logics while our system works on PLPs. The
main advantage of our framework is its ability to ana-
lyze the knowledge contained in PLPs, especially w.r.t.
queries. For analyzing probabilistic knowledge bases, in
[11, 10], the authors provided a second order uncertainty
to measure the reliability of accepting the precise prob-



A B C D E F Probability
NO2 H H H NO2 H 0.0000
NO2 H H NO2 CH3 H 0.3194
NO2 H H CHO CH3 H 0.3194
NO2 H H O CH3 H 0.3294
NO2 H NO2 H CH3 H 0.3217
NO2 H NO2 NO2 H H 0.1949
NO2 H NO2 O H H 0.2235
NO2 NO2 H O H H 0.2172
O H H H NO2 H 0.2949
O H H NO2 CH3 H 0.3917
O H H CHO CH3 H 0.3197
O H H O CH3 H 0.3629
O H NO2 H CH3 H 0.4000
O H NO2 NO2 H H 0.3612
O H NO2 O H H 0.3477
O NO2 H O H H 0.3338

Table 4: The Predictions for some compounds.

ability obtained by applying maximum entropy principle
as the answer to a query in propositional probabilistic
logic. Their second order uncertainty is directly computed
from the probability interval of the query inferred from P ,
and therefore is independent of the knowledge base. In
contrast, our ignorance provides more information about
the underlying knowledge base and is more accurate in
terms of reflecting the knowledge in a PLP. In Example 3,
the second order probabilities of (fly(t)|magpie(t)) and
(fly(t)|sickMagpie(t)) are the same. However the igno-
rance values for the two queries are different.

In this paper, we provided a framework and a tool for rea-
soning with imprecise probabilistic logic programs. In
our framework, background knowledge and application-
specific knowledge are combined to create a PLP (or
maybe multiple PLPs), and observations are represented
in a separate set. In this tool, a user has an option to ana-
lyze the quality of a PLP by retrieving the ignorance val-
ues with respect to application-specific queries. Also, the
reasoning power is enhanced because reliable informative
bounds can be extracted for any query. Two case studies
are deployed to demonstrate how this framework and the
tool can be used in real world applications. Our system
can also perform merging when multiple PLPs concerning
the same application are available, and perform revision
(of a PLP) when some sure new evidence is collected.
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