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Abstract 
 

In a smart grid SCADA (supervisory control and 

data acquisition) system, sensor information (e.g. 

temperature, voltage, frequency, etc.) from 

heterogeneous sources can be used to reason about 

the true system state (e.g. faults, attacks, etc.). Before 

this is possible, it is necessary to combine 

information in a consistent way. However, 

information may be uncertain or incomplete while 

the sensors may be unreliable or conflicting. To 

address these issues, we apply Dempster-Shafer (DS) 

theory to model the information from each source as 

a mass function. Each mass function is then 

discounted to reflect the reliability of the source. 

Finally, relevant mass functions (after evidence 

propagation) are combined using a context-

dependent combination rule to produce a single 

combined mass function used for reasoning. We 

model a smart grid SCADA system in the belief-

desire-intention (BDI) multi-agent framework to 

demonstrate how our approach can be used to 

handle the combined uncertain sensor information. 

In particular, the combined mass function is 

transformed into a probability distribution for 

decision-making. Based on this result, the agent can 

determine which state is most plausible and insert a 

corresponding AgentSpeak belief atom into its belief 

base. These beliefs about the environment affect the 

selection of predefined plans, which in turn 

determine how the agent will behave. We also 

identify conditions when a combination should occur 

to ensure the reactiveness of the agent.  

 

1. Introduction 
 

Supervisory control and data acquisition 

(SCADA) systems [1] are deployed in a variety of 

environments including power [2] and water 

treatment [3]. Such systems monitor and control 

machinery and devices through gathering and 

analysing real time sensor information. In a power 

setting, sensors independently gather information 

about the environment such as temperature, voltage, 

frequency, wind speed/direction, etc. to help pinpoint 

faults, perform network modelling, simulate power 

operation and preempt outages. Complex SCADA  

 

 

systems can be modelled using the Belief-Desire-

Intention (BDI) multi-agent framework [8] for 

programming intelligent agents. Each agent in the 

BDI framework is modelled by its (B)eliefs (its 

current belief state), (D)esires (what it wants to 

achieve) and (I)ntentions (desires it has chosen to act 

upon). However, BDI implementations cannot deal 

with information which is uncertain or incomplete 

(e.g. due to noisy measurements) while the sensors 

themselves may be unreliable or conflicting (e.g. due 

to malfunctions). As such, it is important to 

accurately model and combine this information to 

ensure higher-level decision making in an uncertain 

dynamic environment. 

In this work, we design and implement a 

prototype using a smart grid scenario in AgentSpeak 

[9,10]. AgentSpeak is an agent-oriented 

programming language for specifying agents within 

the BDI framework where an agent is encoded with a 

set of predefined plans used to respond to new event-

goals. To address the issues surrounding uncertain 

sensor information in an environment such as the 

smart grid, we extend the BDI framework with a 

sensor preprocessor which models and combines 

uncertain sensor information before deriving a 

suitable AgentSpeak belief atom for revising the 

agent’s belief base. Specifically, we apply Dempster-

Shafer (DS) theory [4] to model uncertain sensor 

information as mass functions. In this step, if a 

sensor is unreliable, the information is discounted 

and then treated as fully reliable [5]. Relevant mass 

functions (after applying evidence propagation) are 

combined using a context-dependent combination 

rule which was based originally on a context-

dependent combination rule from possibility theory 

[6]. This combination rule determines the context for 

when to use Dempster's rule of combination and then 

resort to an alternative (e.g. Dubois and Prade's 

disjunctive consensus rule [7]). After transforming 

the combination result into a probability distribution, 

an agent’s belief base is revised with a suitable 

AgentSpeak belief atom. This ensures the agent is 

informed about the current state of the environment 

and selecting an applicable plan.   

The remainder of our work is organized as 

follows. In Section 2, we introduce the preliminaries 

on DS theory and AgentSpeak. In Section 3, we 

provide a smart grid scenario and discuss how 

uncertain information can be modelled. In Section 4, 

we provide an outline of a context-dependent 
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combination rule and in Section 5 we discuss how to 

handle uncertain beliefs in AgentSpeak. Section 6 

provides details of our implementation in 

AgentSpeak. In Section 7, we discuss related work. 

Finally, in Section 8 we draw our conclusions.  

 

2. Preliminaries 
 

In this section, we begin by introducing the 

preliminaries on Dempster-Shafter theory [4] 

followed by the preliminaries on the AgentSpeak 

framework [9] for BDI agents.  

 

2.1. Dempster-Shafer theory 
 

Dempster-Shafer (DS) theory is capable of 

dealing with incomplete and uncertain information. 

The frame of discernment Ω = {ω1,…,ωn} is defined 

as a mutually exclusive and exhaustive set of 

possible hypotheses where one is true at a particular 

time. A mass function is a mapping m : 2Ω → [0,1] 
that satisfies the conditions m(∅) = 0 and ΣA⊆Ω m(A) 
= 1. Intuitively, m(A) defines the proportion of 

evidence that supports A, but none of its strict 

subsets.  

To reflect the reliability of a source we apply a 

discounting factor α 𝜖 [0,1] using Shafer’s 

discounting technique [4] for a mass function m over 
Ω. A discounted mass function mα is defined for each 

A⊆Ω as: 

 

 

 

where α = 0 represents a totally reliable source 

and α = 1 represents a totally unreliable source. 

Once a mass function has been discounted it can then 

be treated as fully reliable. 

When considering a set of independent and 

reliable sources, several ways of combining mass 

functions have been proposed. One of the best 

known rules to combine mass functions is 

Dempster’s rule of combination [4], denoted mi ⨁ 
mj, which is defined as: 

 

 

 

 

with c a normalization constant, given by c = 
1/1-K(mi, mj) with K(mi, mj) = ΣB⋂C=∅ mi(B)mj(C). 
The effect of the normalization constant c, with 

K(mi, mj) the degree of conflict between mi and mj, 

is to redistribute the mass value assigned to the 

empty set. As such, Dempster’s rule is not well 

suited to combine mass functions with a high degree 

of conflict. In this paper, we use the K(mi, mj) value 

as a conflict measure to determine the context for 

using Dempster’s rule. Dubois and Prade’s 

disjunctive consensus rule [7], on the other hand, 

denoted mi ⨂ mj, is defined as: 

 

 

 

Notably, the disjunctive rule omits normalisation 

and incorporates all conflict. As such, this rule is 

suitable to combine mass functions with a high 

degree of conflict.  

The ultimate goal of representing and reasoning 

about uncertain information is to draw conclusions 

from it. Smet’s pignistic model [11] allows decisions 

to be made on individual hypotheses. A mass 

function m on Ω is transformed into a pignistic 

probability distribution such that: 

 

 

 

To ensure compatible sources will return strictly 

compatible mass functions (i.e. mass functions 

defined over the same frame), we use evidential 

mapping [12] on frames Ωe and Ωh where Γ : Ωe x 2Ωh 

→ [0,1]  is an evidential mapping from Ωe and Ωh that 

satisfies the conditions ω ϵ Ωe, Γ(ωe, ∅) = 0 and 

ΣH⊆Ωh Γ(ωe, H) = 1. Furthermore, if we have frames 

Ωe and Ωh, with me a mass function over Ωe and Γ an 

evidential mapping from Ωe to Ωh, then a mass 

function mh over Ωh is an evidence propagated mass 

function from me with respect to Γ and is defined for 

each H ⊆ Ωh in [12] as: 

 

   

 

where: 
   

Γ∗(E, H) =

{
 
 
 
 
 
 

 
 
 
 
 
 ∑

Γ(ωe, H)

|E|
,   

ωe∈E

𝑖𝑓 𝐻 ≠⋃HE and ∀ωe ∈ E, Γ(ωe, H) > 0,

1 − ∑ Γ∗(E, H′)
H′∈ HE

,

if H =⋃HE and ∃ωe ∈ E, Γ(ωe, H) = 0,

1 − ∑ Γ∗(E, H′) +∑
Γ(ωe, H)

|E|ωe∈EH′∈ HE

,

if H =  ⋃
HE and ∀ωe ∈ E, Γ(ωe, H) > 0,

 
0, otherwise

 

 

 

such that HE = {H’⊆ Ωh | ωe ∈ E, Γ(ωe, H’) > 0} 
and ⋃ HE = { ωh ∈ H’ | H’ ∈ HE}. 

 

2.2. AgentSpeak 
 

We use S to denote a finite set of symbols for 

predicates, actions, and constants, and V to denote a 

set of variables. Following convention, elements 

from S and V are written using lowercase letters and 

uppercase letters, respectively. We use the standard 

(mi⊗mj )(A) = ∑ mi(B)mj(C)

B∪C=A

 

m∝(A) =  {
(1−∝) ∙ m(A),   if A ⊂ Ω,

α + (1 − α) ∙ m(A),  if A = Ω
 

BetPm(ω) = ∑
m(A)

|A|
A⊆ Ω,ωϵA

 

mh(H) = ∑ me(E)Γ
∗(E,  H)

E⊆ Ωe

 

(mi⊕mj)(A)

=  {
 𝑐 ∑ mi(B)mj(C),  if A ≠ 0,       

B∩C=A

0,                                             otherwise,
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first-order logic definition of a term and t as a 

compact notation for t1,…,tn. From [9], the syntax of 

the AgentSpeak language is defined as follows:  

 

Definition 1 If b is a n-ary predicate symbol then 

b(t) is a belief atom.  

 

Definition 2 If b(t) and c(s) are belief atoms, then 

b(t), ¬b(t) and b(t)∧c(s) are beliefs. If g(t) is a 

belief atom, then !g(t) and ?g(t) are goals with !g(t) 

an achievement goal and ?g(t) a test goal.  

 

Definition 3 If  b(t) is a belief atom and !g(t) and 

?g(t) are goals, then +b(t), -b(t), +!g(t), -!g(t), 
+?g(t) and -?g(t) are triggering events where + and 

– denote addition and deletion events, respectively.  

 

Definition 4 If a is an action symbol and t are terms, 

then a(t) is an action. 

 

Definition 5 If e is a triggering event, l1,…,lm are 

belief literals and h1,…,hn are goals or actions, then e: 
l1 ∧…∧ lm ← h1,…,hn is a plan where l1 ∧…∧ lm is the 

context and h1,…,hn is the body such that ; denotes 

sequencing.  

 

An AgentSpeak agent A can now be represented 

as a tuple (Bb, Pl, E, A, I)1 where respectively we can 

specify an agent by its belief base (a set of belief 

atoms), plan library (a set of plans to describe how 

the agent can react to events based on their current 

beliefs), event set, action set (the primitive actions to 

which the agent has access) and intention set.  

 

3. Smart grid Scenario 
 

In this section, we introduce a smart grid SCADA 

system (focusing on solar and wind renewable 

energy sources) to illustrate our approach. Our 

scenario consists of six agents: a solar park, a wind 

farm, a battery storage plant, a distribution 

substation, a distribution transformer and a house (as 

shown in Figure 1). The solar park will generate and 

distribute electric power through high voltage 

transmission lines to a distribution substation. Here, 

a transformer will reduce high voltage electric power 

to low voltage electric power to be distributed across 

low level distribution lines. A distribution                         

transformer will then convert electric power to lower 

levels to serve residential loads. However, if a fault 

or an attack occurs within the solar park or the solar 

park cannot supply enough electric power to meet 

demand, electric power will be generated and 

distributed from a nearby wind farm or provided 

from a battery storage plant. Each agent also contains 

a number of sources with various levels of 

granularity to monitor the overall health of the grid.  

 
1 For simplicity, we omit three selection functions SE, SO and SI. 

 

In the subsection that follows we discuss in further 

detail the information that may be collected from 

sources and how it will be modelled.  

 

 
Figure 1. A smart grid scenario using solar and wind 

energy sources 

 

3.1 Modelling uncertain sensor information 
 

In a smart grid SCADA system, sensor 

information such as temperature, voltage and 

frequency etc. is obtained from heterogeneous 

sources to represent the current state of the 

environment. Notably, given this type of scenario, 

sensor information will be used to determine if the 

state of the environment is normal i.e. fully 

operational or if a fault (with a sensor or component) 

or security attack is likely to occur. Considering the 

latter, cyber-attacks can have a negative impact on 

secure, reliable smart grid SCADA systems, causing 

blackout and brownouts, issues with instability and 

unreliability etc. As a result it becomes necessary to 

identify potential attacks on the system e.g. sensor 

information may be violated through tampering 

which leads to disruption in power generation or 

distribution. As such, we first need to properly model 

information. For the purpose of illustration, we 

provide numerical information collected from 

temperature sensors from the set Ωs = {0,…,40}. In 

addition, we obtain general estimations from experts 

such that we have Ωe = {normal, abnormal} to 

represent normal or abnormal temperature levels. 

Unfortunately, information from these types of 

sources may be uncertain due to noisy sensor 

measurements or experts may not be competent in 

giving estimations.  

Given the situation where multiple sources of 

information are available (e.g. collecting temperature 

related data from both sensors and experts), we 

define evidential mappings from Ωs and Ωe to a set of 

AgentSpeak belief atoms Ωh = {temp(c), temp(n), 
temp(h)} to represent the temperature classifications 

of cold, normal and hot. These mappings allow us 

to combine information from different sources to 

derive suitable belief atoms for revising an agent’s 

belief base. Table 1 provides the evidential mappings 

we consider for Ωs and Ωe to Ωh.  
 

Table 1: Evidential mappings from Ωs and Ωe to Ωh. 
(a) Sensor frame Ωs 

oC {c} {c,n} {n} {n,h} {h} 
0,1 
2 
3 

1 
0.25 
0 

0 
0.75 
1 

0 
0 
0 

0 
0 
0 

0 
0 
0 
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4 
5,…,26 
27 
28 
29 
30,…,40 

0 
0 
0 
0 
0 
0 

0.25 
0 
0 
0 
0 
0 

0.75 
1 
0.75 
0 
0 
0 

0 
0 
0.25 
1 
0.75 
0 

0 
0 
0 
0 
0.25 
1 

 
(b) Expert frame Ωe 

 {temp(c)} {temp(n)} {temp(h)} 
normal 
abnormal 

0 
0.5 

1 
0 

0 
0.5 

 

Once information has been obtained it will be 

modelled as mass functions. Since sources may be 

unreliable a discounting factor will be applied to 

derive discounted mass functions that can then be 

treated as fully reliable. 

Example 1. Consider two independent sources S1 
and S2 that are located within the solar park and an 

expert estimation S3. These sources are 85%, 70% 

and 60% reliable, respectively. Information has been 

obtained such that S1:[30oC], S2:[26oC, 28oC] and 

S3:[normal (70% certain)]. By modelling the 

(uncertain) information as mass functions we have 

m1({30}) = 1, m2({26,…,28}) = 1 and 

m3({abnormal}) = 0.7, m3(Ω) = 0.3. By applying 

the discount factors (i.e. α = 0.15, 0.3 and 0.4 

respectively) for S1, S2 and S3 we have the following 

discounted mass functions: 

m1
0.15({30}) = 0.85, m1

0.15(Ω) = 0.15, 
m2
0.3({26,…,28}) = 0.7, m2

0.3(Ω) = 0.3,   
m3
0.4({abnormal}) = 0.42, m3

0.4 (Ω) = 0.58.  

We now obtain the following evidence 

propagated mass functions from the discounted mass 

functions considering the evidential mappings in 

Table 1.  

 

Table 2: Evidence propagated mass functions. 
 m1 m2 m3 
m({temp(c)}) 
m({temp(n),temp(h)}) 
m({temp(h)}) 
m(Ω) 

0 
0 
0.85 
0.15 

0 
0.7 
0 
0.3 

0.21 
0 
0.21 
0.58 

 

4. Context-dependent combination 
 

Within the literature we have found existing 

combination rules are either too restrictive (losing 

valuable information) or too permissive (resulting in 

ignorance). To exploit the benefits of different 

combination approaches, we use a context-dependent 

combination rule from [13] to combine a set of mass 

functions in DS theory. This combination rule 

determines the context for when we should use 

Dempster's rule and then resort to Dubois and Prade's 

rule for a set of relevant mass functions. In 

particular, we identify a partition of a set of mass 

functions using a conflict measure in DS theory. This 

ensures we find subsets with a low degree of 

conflict. Each element in this partition is called a 

largely partially maximal consistent subset (LPMCS) 

and identifies a subset to be combined using 

Dempster's rule. Once the set of LPMCSes are 

created and each LPMCS has been combined using 

Dempster's rule, we then combine the set of highly 

conflicting LPMCSes using Dubois and Prade's rule.  

Furthermore, we firstly use heuristics on the 

quality and similarity of mass functions to ensure 

LPMCSes are based on high quality information. 

Specifically, we identify the highest quality mass 

function (using these heuristics) as a reference mass 

function. Secondly, using the reference mass 

function we then find the mass function that is 

closest (i.e. in agreement) based on a similarity 

(distance) measure. Thirdly, the most similar mass 

function is combined with the reference mass 

function using Dempster’s rule. Fourthly, the second 

and third steps are repeated where the combined 

mass function (the new reference mass function) is 

combined with its most similar mass function until a 

threshold level of the conflict measure (i.e. K(mi, mj) 
where mi may be m1⨁m2, a reference mass function 

and mj is m3,  its closest mass function) in DS theory 

has been exceeded. An LPMCS will therefore 

contain those mass functions that can be combined 

before exceeding the threshold.  

 

Example 2. Given the evidence propagated mass 

functions from Table 2 and a conflict threshold of 

0.15, we combine them using the context-dependent 

combination rule. We obtain the set of LPMCSes 

{{m1}, {m2, m3}} where m1 ⨂ (m2 ⨁ m3) results in  
m({temp(c), temp(h)}) = 0.063, 
m({temp(n),temp(h)})=0.405, m(Ω) = 0.323, 
m({temp(h)})=0.209. 

 

5. Handling uncertain beliefs in BDI 
 

In AgentSpeak we manage the smart grid scenario 

as a number of BDI agents encoded in AgentSpeak. 

A sensor preprocessor is incorporated into an 

AgentSpeak agent (as shown in Figure 2) to perform 

the following steps: (i) discount a set of mass 

functions using their discounting factor, (ii) apply 

evidence propagation using evidential mappings to 

derive compatible mass functions for combination 

defined over AgentSpeak belief atoms (iii) combine 

relevant mass functions using the context-dependent 

combination rule (iv) derive a belief atom from the 

combination that will be added to the agent’s belief 

base.  
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Figure 2. A revised reasoning cycle of an 

AgentSpeak agent 

Classical AgentSpeak is not capable of modelling 

and reasoning with uncertain information. As such, it 

becomes necessary to reduce the uncertain 

information modelled by a mass function to a 

classical belief atom which can be modelled in the 

agent’s belief base.  

After executing our context-dependent 

combination rule to obtain a combined mass function 

and then transforming it into a pignistic probability 

distribution, the sensor preprocessor of an agent can 

determine which state is the most plausible by 

checking if a state exceeds a specified pignistic 

probability threshold.  

Example 3. Assume a pignistic probability 

threshold of 0.5. After applying pignistic 

transformation to the result in Example 2, we obtain 

the following: P(temp(n))=0.31, 
P(temp(c))=0.139, P(temp(h))=0.551.  The solar 

park agent believes it is more plausible that the 

temperature is classified as hot than cold or normal 
as P(temp(h)) > 0.5. This means the AgentSpeak 

agent’s belief base is revised with this new belief 

atom (i.e. temp(h))  and an applicable plan will be 

selected for this state.  
To minimize the computational cost associated 

with combination we have a condition where the 

combination rule will only be applied when 

information obtained from any source has changed 

significantly (using a distance measure) from a 

previous reading. However, if no change occurs we 

also find it necessary to combine and revise 

information after some specified interval of time. 

 

6. Implementation 

In this section we focus specifically on the solar 

park agent to illustrate how the result of the context-

dependent combination rule from Section 4 will aid 

plan selection. We use Jason [10], an open-source 

implementation of the AgentSpeak interpreter to 

implement the scenario as it implements 

AgentSpeak’s operational semantics and provides a 

suitable platform for the development of multi-agent 

systems.  

Example 4. Consider a solar park agent A within 

the smart grid. Assume the solar park contains four 

solar panels and a single combiner and inverter. Four 

solar panels will capture the sun’s energy using 

photovoltaic cells. The stronger the sunlight the more 

electric power is produced. The direct current travels 

along wires connecting the solar panels. The current 

from all panels is collected via a combiner box. An 

inverter will convert the direct current power of the 

four solar panels to alternating current to run the AC 

loads at household levels. Various sensors are 

distributed within the solar park to record 

temperature (e.g. ambient, internal combiner, solar 

panel temperature), frequency, current, and voltage 

for monitoring and decision-making purposes.  

Each agent’s belief base contains dynamic 

information such as the result of the combination 

rule and static information such as that agent’s 

location. The solar park agent’s belief base may 

contain the following belief atoms: 

(i) temp(n): the temperature is normal (as a 

result of combining relevant mass functions 

from temperature sensors); 

(ii) freq(n): the frequency is normal (as a result 

of combining relevant mass functions from 

frequency sensors); 

(iii) solar_park_loc(A,500): agent A’s own 

location within the smart grid. 

The solar park agent can perform the following 

primitive actions: 

(i) supply_power: the power is being 

supplied to the smart grid; 
(ii) convert_power: the power is converted 

from direct DC to AC by the inverter. 

Each agent has their own individual goals that 

they strive to achieve individually depending on their 

state as well as an overall system goal. In the solar 

park setting, the goal of this agent is to achieve a safe 

and efficient supply of electrical power to meet 

consumer demand. The solar park agent also requires 

communication with other agents to ensure they 

fulfil their overall goal. This might involve sub-goals 

such as running the combiner to distribute power 

when we obtain a normal temperature reading or 

stopping a combiner and generating an alert when 

the temperature is classified as e.g. cold or hot. The 

following AgentSpeak plans are a selection from the 

solar park agents plan library:  
 

P1: +!prepare_to_start_solar_park : true ← 
calibrate_inverter; calibrate_combiner; 
!start_solar_park;…  

P2: +!start_solar_park : not supplying_smart_grid 
& calibrated_combiner & calibrated_inverter ← 

environment 

Percepts 

External 

events 

Pre-

processor 

Belief 

Base 

Event  

Set 
Applicable 

Plans 

Plan 

Library 

Intentions 

Internal events 

actions 

unify 
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!run_combiner; !run_solar_panel_1; 
!run_solar_panel_2, !run_solar_panel_3; 
!run_solar_panel_4;… 

P3: +!run_solar_panel_1 : temp(n) ← 
collect_protons; !run_combiner;…  

P4: +temp(h) : true ← !generate_alert; 
!stop_combiner; !stop_inverter;  !run_windfarm;… 

The initial goal of the solar park agent is 

!prepare_to_start_solar_park. As such, the context 

within plan P1 is believed to be true and the agent 

takes the primitive actions to calibrate the 

components (i.e. inverter and combiner) and execute 

a new sub-goal !start_solar_park. The plan P2 

should be taken when the agent obtains the goal 

!start_solar_park and believes that each of the 

components have been calibrated and power is not 

being supplied to the smart grid. These steps include 

new sub-goals such as !run_inverter, 
!run_combiner and !run_solar_panel_1. The plan 

P3 should be taken if the agent obtains the goal 

!run_solar_panel_1 and believes that the current 

temperature level is normal. These steps involve a 

new sub-goal !run_combiner and a primitive action 

collect_protons. Plan P4 should be taken when the 

agent obtains the belief that the current temperature 

level is high. In this situation, the steps involve new 

sub-goals !generate_alert, !stop_combiner, 
!stop_inverter and !run_wind_farm with the aim of 

supplying power from the wind farm.  

These plans can be further refined to account for 

the real complexity in a working smart grid e.g. 

considering other combined sensor information 

results, status of other components and further 

primitive actions to be taken. Further plans for the 

solar park agent and a selection of plans for the other 

agents can be found in the Appendix. 

Within Jason we extend the environment class 

and customize it to handle the actions of each of the 

agents of the smart grid SCADA system. The 

environment class revises an agent’s belief base as a 

result of an action that has been taken and/or 

communication with other agents. 

Within the system, we implement our approach 

from Section 3 and Section 4, where we initially 

handle uncertain sensor information through 

discounting mass functions in relation to their 

reliability factor then applying evidence propagation 

using evidential mappings to derive compatible mass 

functions. After applying the context-dependent 

combination rule to the set of compatible mass 

functions, a belief atom is derived and is added into 

that agent’s belief base. The most applicable 

AgentSpeak plan that meets the context of the 

agent’s actions is then selected. 

In the customized environment class, there is a 

GUI showing the entire smart grid scenario (as 

shown in Figure 3). All six agents have control over 

their own area and are connected through power 

lines that distribute electric power from one location 

to another until it reaches the consumer. The belief 

base of each agent is shown in the belief base panel 

(located on bottom panel). The user selects from a 

choice of buttons which agent’s belief base to 

display at any one time. The environment also 

receives input from the buttons on the power control 

panel (located on bottom panel). Here, the user can 

introduce a fault into a component within an agent so 

that it can react to this type of event e.g. introduce a 

fault within the combiner of the solar park agent. 

This helps to stimulate the real faults that may occur 

and ensures the appropriate actions are taken for e.g. 

recovery, stopping a component etc. The user 

selection (sensor information) panel (located on the 

bottom panel) contains a number of sensors for each 

agent in a user selection tab. The user can select the 

number of sensors it would like for an agent before 

generating the smart grid and a number of tabs, each 

relating to an agent. Each tab contains two tables. 

The first table shows all the sources evidence i.e. 

source id, source type, reliability and value. The 

second table shows the evidence propagated mass 

function that has been obtained based on the 

evidential mappings held within the system. In 

Figure 3, it shows the solar park agent handles three 

temperature sensors. As the value of temperature 

changes this will update the mass functions in the 

second table, thus updating the result of the context-

dependent combination rule if the conditions stated 

in Section 5 have been met. Below these tables, the 

result of both the context-dependent combination 

rule and its resulting pignistic probability distribution 

is stated, alongside the single result used for deriving 

the belief atom. For example, the frequency is 

normal therefore a belief atom temp(n) is inserted 

into the belief base (as shown in Figure 3).  

 

6.1. Testing Scenarios 
 

The following behaviours can be seen within the 

implementation to replicate the behaviour of a real-

life smart grid. 

Electric power will run continuously through the 

smart grid until a fault or attack occurs. When the 

solar park is working in a normal state (i.e. all 

components are fully operational, all sensor readings 

associated with the solar park are within their 

acceptable range etc.) then electric power is 

distributed along a high voltage transmission line to 

a distribution substation which in turn distributes 

electric power to distribution transformer and then to 

a house (where other sensors are controlled by their 

respective agents) as shown in Figure 3. 
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Assume the solar park is working in a normal 

state. A cyber-attack (tampering sensor information 

from frequency sources) has caused a number of 

sensors to record outside of their acceptable ranges 

for normal operation. As a result, the context-

dependent combination rule has been executed and a 

new belief atom has been derived and used to revise 

its belief base. The solar park will cease to generate 

and distribute electric power until the issue has been 

resolved. The wind farm can instead generate and 

distribute electric power to the grid (as shown in 

Figure 4). 

 

 
Figure 4. The smart grid scenario acquiring power 

from the wind farm 

 

The sensors will continually update temperature 

measurements and the context-dependent 

combination rule will execute when required on a set 

of compatible mass functions. The belief base will be 

revised accordingly when a newly derived belief 

atom differs from that currently held. 

For the solar park agent, we assume that sensor 

measurements relating to solar panel temperature, 

internal combiner temperature, frequency, voltage 

and current are being combined and their 

corresponding belief atoms are inserted into the 

belief base (i.e. solar_panel_temp(n), 
internal_combiner_temp(n), volt(n), freq(n) and 

curr(n) respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Related Work 
 

In the literature, several approaches consider 

uncertainty modelling and reasoning within a BDI 

multi-agent setting. In [14], an agent collects 

(uncertain) percepts which are fed into a probabilistic 

graphical model (PGM). An agent’s epistemic state 

is revised after uncertainty propagation. The classical 

belief base is revised with belief atoms derived from 

using a threshold. In [15], the authors use the BDI 

architecture CanPlan to consider an uncertain belief 

base where an agent reasons about uncertainty on its 

own. Specifically, the beliefs of an agent are 

modelled as a set of epistemic states with a Global 

Uncertain Belief Set (GUB) allowing the agent to 

reason about different forms of uncertainty. Contrary  

to those approaches, our work focuses on modelling 

and combining uncertain sensor information which is 

not considered in [14,15]. Furthermore, our work 

addresses the problem of handling multiple sources 

of (possibly heterogeneous) information which are 

often describing the same subject, i.e. different 

viewpoints. In [15], the authors solely model and 

reason about uncertain beliefs.   

 

8. Conclusion 
 

This paper presents a prototype of a smart grid 

SCADA system in AgentSpeak to handle uncertain 

sensor information obtained from heterogeneous 

sources. In particular, a sensor preprocessor models 

uncertain sensor information before combining their 

mass functions using a context-dependent 

combination rule (which considers the context for 

Figure 3. The prototype of the smart grid scenario (top panel: solar and wind smart grid simulation, bottom 

panel l-r: power control, events, belief base, user selection (sensor information for each agent) 
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when to use Dempster's rule of combination and 

when to resort to Dubois and Prade's disjunctive 

rule). An AgentSpeak belief atom is then derived to 

revise the belief base of the agent. In conclusion, we 

have found it is important to model and combine 

uncertain sensor information correctly to reflect the 

true state of the environment as this aids decision 

making as appropriate plans can be selected. Not 

only is this work advantageous to the smart grid 

SCADA system, it can be similarly applied to other 

SCADA applications dealing with uncertain sensor 

information and needing to reach a meaningful 

conclusion. 
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Appendix 
 

A. Selection of agent plans  
 

The following plans are continued from those 

given for the solar park agent in Section 6.  

 

P5: +!run_solar_panel_2 : temp(n) ← 
collect_protons_2; !run_combiner;…  

P6: +!run_combiner : temp(n) & 
internal_combiner_temp(n) & 
collecting_protons_1 & collecting_protons_2 ← 
!run_inverter; combine_input;… 

P7: +!run_inverter : temp(n) & freq(n) & 
combining_input ← convert_power; 
supply_power;… 

P8: +!stop_combiner : temp(h) & 
internal_combiner_temp(h) & not 
supplying_power ← !maintain_combiner;… 

P9: +!maintain_combiner : temp(h) & 
stopped_combiner ← replace_wires; 
calibrate_combiner;… 

P10: +!stop_inverter : temp(h) & 
internal_inverter_temp(h) & not supplying_grid ← 
!maintain_inverter;… 

P11: +maintain_inverter : temp(h) & 
internal_inverter_temp(h) & stopped_inverter ← 
replace_inverter; calibrate_inverter;…  

P12: +!freq(l) : collecting_protons_1 & 
collecting_protons_2 combining_input & 
converting_power & supplying_power ← 
!run_wind_farm;… 

P13: +!generate_alert : freq(l) | freq(h) ← 
send_message; sound_alarm;… 

P14: +!freq(h): supplying_power ← 
!run_battery_plant; supply_power;…  
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P15: +fault_solar_panel_1: not 
collecting_protons_1 & not solar_panel_temp(n) 
← maintain_solar_panel_1;… 

Agent: Distribution Substation 

Assume the distribution substation consists of two 

step-down transformers with one being used as a 

replacement when needed, two incoming power 

cables and sensors measuring incoming and outgoing 

voltage, internal substation and internal transformer 

temperature, incoming and outgoing frequency.  

 

P16: +!prepare_to_start_distribution_substation : 
true ← calibrate_step_down_transformer_1; 
!start_distribution_substation;… 

P17: +!start_distribution_substation : not 
distributing_low_volt_power & not 
obtaining_high_tran_power & 
calibrated_step_down_transformer_1 ←  
!run_step_down_transformer_1;… 

P18: +!run_step_down_transformer_1 : 
internal_substation_temp(n) & 
internal_transformer_temp(n) & 
incoming_volt(n) & outgoing_volt(n)  & 
obtaining_high_tran_power ← step_down_power; 
distribute_low_volt_power;… 

P19: +internal_substation_temp(h) : 
step_down_power & 
internal_transformer_temp(n)  ← 
switch_off_heater; switch_on_air_con;… 

P20:  +internal_substation_temp(c) : 
step_down_power & 
internal_transformer_temp(n) ← 
switch_on_heater; switch_off_air_con;… 

P21: +fault_cable_1 : true ← disconnect_cable_1; 
connect_cable_2; !maintain_cable_1;… 

P22: +!maintain_cable_1 : disconnected_cable_1 
← replace_cable_1;… 

P23: +internal_transformer_temp(h) : not 
stepping_down_power & incoming_volt(n) ← 
!stop_step_down_transformer_1; 
calibrate_step_down_transformer_2; 
!run_step_down_transformer_2;… 

P24: +!run_step_down_transformer_2 : 
calibrated_step_down_transformer_2 & 
obtaining_high_tran_power ← step_down_power; 
distribute_low_volt_power;… 

P25: +!stop_step_down_transformer_1 : 
internal_transformer_temp(h) & not 
stepping_down_power; ← 
!maintain_step_down_transformer_1;… 

P26: +!maintain_step_down_transformer_1 : 
stopped_step_down_transformer_1 ← 

replace_internal_component; 
calibrate_step_down_transformer_1;… 

P27: +fault_cable_1 : wind(h) ← 
disconnect_cable_1; connect_cable_2; 
!maintain_cable_1;… 

Agent: Distribution Transformer 

Assume the distribution transformer consists of 

sensors measuring incoming and outgoing voltage, 

internal transformer temperature, incoming and 

outgoing frequency, oil absorbance. 

 

P28: +!prepare_to_start_distribution_transformer 
: true ← calibrate_transformer; 
!start_distribution_transformer;… 

P29: +!start_distribution_substation: not 
distributing_lower_volt_power & not 
obtaining_high_dist_power & 
calibrated_transformer ←  !run_transformer;… 

P30: +!run_step_down_transformer : 
internal_transformer_temp(n) _oil-absorbance(n) 
& incoming_volt(n) & outgoing_volt(n)  & 
obtaining_high_dist_power ← reduce_power; 
distribute_lower_volt_power;… 
 
P31: +oil_absorbance(h) : reducing_power ← 
replace_transformer;… 

 

Agent: Wind Farm 

Assume the wind farm contains three wind mills 

where the wind will turn the rotor blades. The blade 

will then turn a shaft inside the nacelle which is 

attached to a gearbox to increase rotation speed. The 

generator converts rotational energy to electrical 

energy for transmission to the grid. Sensors will 

measure wind speed and direction.  

 

P32: +!prepare_to_start_wind_farm : true ← 
calibrate_generator_1; calibrate_generator_2; 
calibrate_generator_3; !start_wind_farm.   

P33: +!start_wind_farm : not supplying_grid & 
calibrated_generator_1 & calibrated_generator_2 
& calibrated_generator_3 ← !run_wind_mill_1; 
!run_wind_mill_2, !run_wind_mill_3;… 

P34: +!run_wind_mill_1 : wind_speed(n) 
wind_direction(n) ← move_blades_1; 
!run_nacelle_1; rotate_tower_head_1(90);… 

P35: +!run_wind_mill_2 : wind_speed(n) 
wind_direction(n) ← move_blades_2; 
!run_nacelle_2; rotate_tower_head_2(45);… 

P36: +!run_wind_mill_3 : wind_speed(n) 
wind_direction(n) ← move_blades_3; 
!run_nacelle_3; rotate_tower_head_3(180);… 

P37: +!run_nacelle_1 : moving_blades_1 ← 
!run_gearbox_1; turns_shaft_1;… 
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P38: +!run_nacelle2 : moving_blades_2 ← 
!run_gearbox_2; turns_shaft_2;… 

P39: +!run_nacelle_3 : moving_blades_3 ← 
!run_gearbox_3; turns_shaft_3;… 

P40: +!run_gearbox_1 : turning_shaft_1 ← 
!run_generator_1; increase_rotation_speed_1;… 

P41: +!run_gearbox_2 : turning_shaft_2 ← 
!run_generator_1; increase_rotation_speed_2;… 

P42: +!run_gearbox_3 : turning_shaft_3 ← 
!run_generator_3; increase_rotation_speed_3;… 

P43: +!run_generator_1 : 
increased_rotation_speed_1 ←  
convert_rotational_power_1; supply_grid;… 

P44: +!run_generator_2 : 
increased_rotation_speed_2 ←  
convert_rotational_power_2; supply_grid;… 

P45: +!run_generator_2 : 
increased_rotation_speed_2 ←  
convert_rotational_power_2; supply_grid;… 

P46: +wind_speed(l) : not supplying_grid ← 

!stop_wind_mill_1; !stop_wind_mill_2, 
!stop_wind_mill_3; !run_solar_park; 
!run_battery_storage;… 

P47: +fault_blade_1: wind_speed(h) & 
wind_direction(h) ← !stop_wind_mill_1; 
rotate_tower_head_2; rotate_tower_head_3;… 

Agent: House 

Assume the house is a grid-connected residential 

solar PV system that consists of a solar panel, an 

inverter and a meter (measuring electric power 

production and consumption). Sensors will measure 

temperature, voltage and frequency.  

 

P48: +!prepare_to_start_house_ : true ← 
calibrate_inverter; calibrate_meter; 
!start_house;…   

P49: +!start_house : not supplying_grid & 
calibrated_inverter & calibrated_meter ←  
!run_solar_panel_1;… 

P50: +!run_solar_panel_1 : temp(n) ← 
collect_protons; !run_inverter; …  

P51: +!run_inverter: temp(n) & freq(n) & volt(n) 
& collecting_protons ← convert_power; 
!run_meter;… 

P52: +!run_meter: temp(n) & freq(n) & volt(n) & 
converting_power ← measure_usage; 
use_appliance;… 

P53: +fault_meter : not measuring_usage ← 
!generate_alert;… 

P54: +volt(h) : collecting_protons & 
converting_power & using_appliance ← 
supply_grid;… 

P55: +volt(l) : collecting_protons & 
converting_power & not using_appliance ← 
obtain_power_from_grid,… 

P56: +fault_inverter : collecting_protons & not 
converting_power ← !generate_alert; 
!stop_inverter; obtain_power_from_grid;… 

P57: +!stop_inverter : ← temp(h) & not 
converting_power & not supplying_grid ← 
!maintain_inverter;… 

P58: +generate_alert : not measuring usage | not 
converting_power ← send_message_home_owner; 
flash_light_on_meter; send_message_utility;… 

P59: +maintain_inverter : temp(h) & 
stopped_inverter ← replace_inverter; 
calibrate_inverter;…  

Agent: Battery Storage Plant 

Assume the battery storage plant consists of a 

storage device i.e. battery and bi-directional inverter. 

The battery storage plant relieves the grid when there 

is an oversupply of electric power and will supply 

electric power to the power grid when required to 

meet demand. Sensors will measure ambient 

temperature and depth of discharge (battery 

capacity).  

 

P60: +!prepare_to_start_battery_storage : true ← 
calibrate_inverter; !start_battery_storage;…   

P61: +!start_battery_storage : calibrated_battery 
& calibrated_inverter &  ← !run_inverter;… 

P62: +!run_inverter: temp(n) & 
oversupply_in_powergrid ← convert_power; 
!run_battery;… 

P63: +!run_battery : temp(n) & 
battery_capacity(n) & oversupply_in_grid & 
converting_power ← 
charge_battery_with_power;… 

P64: +!run_battery : temp(n) & 
battery_capacity(n) & undersupply_in_powergrid 
← !run_inverter; discharge_battery;…  

P65: +!run_inverter: temp(n) & 
undersupply_in_grid & discharging_battery ← 
convert_power; !supply_grid;… 

P66: +temp(h): not converting_power ← 
!generate_alert; stop_inverter;… 
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