
International Journal of Approximate Reasoning 55 (2014) 1659–1693
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Computational approaches to finding and measuring

inconsistency in arbitrary knowledge bases ✩

Kevin McAreavey a,∗, Weiru Liu b, Paul Miller a

a Centre for Secure Information Technologies, Institute of Electronics, Communications and Information Technology (ECIT), Queen’s University
Belfast, BT3 9DT, Northern Ireland, United Kingdom
b School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT7 1NN, Northern Ireland, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2013
Received in revised form 26 May 2014
Accepted 19 June 2014
Available online 27 June 2014

Keywords:
Inconsistency measures
Minimal inconsistent subsets
Minimal unsatisfiable subformulae
SAT
Random SAT

There is extensive theoretical work on measures of inconsistency for arbitrary formulae in
knowledge bases. Many of these are defined in terms of the set of minimal inconsistent
subsets (MISes) of the base. However, few have been implemented or experimentally
evaluated to support their viability, since computing all MISes is intractable in the worst
case. Fortunately, recent work on a related problem of minimal unsatisfiable sets of
clauses (MUSes) offers a viable solution in many cases. In this paper, we begin by
drawing connections between MISes and MUSes through algorithms based on a MUS
generalization approach and a new optimized MUS transformation approach to finding
MISes. We implement these algorithms, along with a selection of existing measures for
flat and stratified knowledge bases, in a tool called mimus. We then carry out an extensive
experimental evaluation of mimus using randomly generated arbitrary knowledge bases.
We conclude that these measures are viable for many large and complex random instances.
Moreover, they represent a practical and intuitive tool for inconsistency handling.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental law in classical logic says that if a knowledge base is inconsistent (contains a contradiction), then any
statement from its language can be proved through classical reasoning (ex falso quodlibet). While this is an uncompromis-
ing view, it does highlight the negative implications of inconsistency as well as a potential need to address the underlying
causes. Inconsistency has been studied extensively in a range of applications. For example, in network security, a logic-based
analysis of inconsistency in an Intrusion Detection System (IDS) was carried out in [49]. In this case the industry standard
IDS [64], which was the focus of this work, had a false alarm rate of between 69% [67] and 96% [66] and it was suggested
that this was, at least in part, the result of inconsistency in the rule set. Moreover, the size of the knowledge base in
this example (involving around 8500 unique rules) emphasizes the need for a formal computational approach to inconsis-
tency handling. A variety of techniques have been proposed for this purpose. In fault-based diagnostics [15], as well as in
coherence-based approaches for defeasible reasoning (such as default logic) [7,11] and argumentation systems [1], it is gen-
erally the case that reasoning from an inconsistent knowledge base is tolerated through the notion of (preferred) consistent
subsets. In the related approach of inconsistency resolution, it is argued that it may be more appropriate to resolve incon-
sistency. For example, in Requirements Engineering (RE), an inconsistency resolution approach for software requirements

✩ This is a significantly revised and extended version of [50].

* Corresponding author.
E-mail addresses: kmcareavey01@qub.ac.uk (K. McAreavey), w.liu@qub.ac.uk (W. Liu), p.miller@qub.ac.uk (P. Miller).
http://dx.doi.org/10.1016/j.ijar.2014.06.003
0888-613X/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2014.06.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:kmcareavey01@qub.ac.uk
mailto:w.liu@qub.ac.uk
mailto:p.miller@qub.ac.uk
http://dx.doi.org/10.1016/j.ijar.2014.06.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2014.06.003&domain=pdf

1660 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
specifications was proposed in [46]. In this work, resolving inconsistency was seen as a useful means to make trade-off
decisions between stakeholders. In particular, it was demonstrated that taking into account the stratification of different
requirements allowed a consistent knowledge base to be recovered while minimizing the loss of important requirements.
Inconsistency handling techniques have attracted attention from a range of other applications including knowledge merging
[62] and ontology management [51] as well as belief revision and negotiation [33].

In the Artificial Intelligence (AI) community, various methods have been proposed to address the issue of formal incon-
sistency handling. In general, understanding the nature of inconsistency in a knowledge base is an important requirement.
For example, it is well known that simply characterizing a knowledge base as either consistent or inconsistent is of little
practical value when dealing with inconsistency. However, it is often the case that an inconsistent knowledge base is the
result of more than one instance of inconsistent information. As a consequence of this, the field of quantitative inconsistency
measuring has developed a range of measures for characterizing inconsistent knowledge bases in a more meaningful way.
In an overview of the area, it is argued in [31] that, given a knowledge base represented as a set of formulae, inconsistency
measures can generally be divided into two classes: atom-centric measures, which focus on the atoms involved in inconsis-
tency; and formula-centric measures, which focus on the formulae involved in inconsistency. In addition to this, it is argued
in [31] that these measures can be further classified in terms of the level (in the knowledge base) at which inconsistency is
measured, namely:

base-level measures, which assign a single inconsistency value to the knowledge base; and
formula-level measures, which assign an inconsistency value to each formula in the knowledge base w.r.t. the inconsistency

in the base as a whole.

More specifically, base-level measures allow us to determine a degree of inconsistency for the knowledge base but do
not provide any description of the composition of inconsistency in the base. In other words, base-level measures can be
more useful than a simple binary truth value that the knowledge base is either consistent or inconsistent but are not
discriminative in terms of the syntactic composition of the base. Formula-level measures, on the other hand, allow us to
identify a degree of inconsistency for each formula in the base w.r.t. the overall inconsistency of the base. This provides a
means to analyze inconsistency in a more precise manner based on the syntactic composition and to define a total order
over formulae w.r.t. the inconsistency of the base. Therefore we can say that some formulae have a greater share in the
inconsistency of the knowledge base than others. Incorporating additional information, such as stratification of formulae,
has also proved beneficial when measuring formula-level inconsistency [48,49].

In a review of the field in [48], it is suggested that formula-level inconsistency measures in the literature have generally
been defined in terms of:

minimal inconsistent subsets, i.e., an inconsistent subset of formulae where every strict subset is consistent (removing any
one formula will make the set consistent); or

coalitional game models, where each formula is considered a player in a coalitional game (the knowledge base) and a
proportional inconsistency value, based on the Shapley value, is distributed between formulae from a base-level
measure for the whole knowledge base.

While both approaches for defining formula-level inconsistency measures can also be used to define base-level measures,
their real interest lies in analyzing inconsistency syntactically in terms of formulae. This syntax-sensitivity is also nec-
essary for a wide range of applications including the previously mentioned work on network security systems [49] and
requirements specifications [46]. Also, it has been said that minimal inconsistent subsets represent the purest form of
formula-centric inconsistency [63,33,48], so it is intuitive to define formula-level measures using this approach. In fact,
an inconsistency measure based on the coalitional game model has also been defined w.r.t. minimal inconsistent sub-
sets [33].

Essentially a minimal inconsistent subset represents a single cause of inconsistency (from a formula-centric perspec-
tive) in an inconsistent knowledge base and is the basis for the majority of formula-level inconsistency measures presented
in the literature. For this reason, this work will focus solely on those measures (whether for flat or stratified knowledge
bases) which are defined in terms of minimal inconsistent subsets. Finding the complete set of minimal inconsistent subsets
is therefore a fundamental challenge in computing many of these existing formula-level inconsistency measures. How-
ever, even though it is assumed that these minimal inconsistent subsets are derivable, work on formula-level inconsistency
measures does not generally discuss how they can be derived. Fortunately, in recent years, there has been much work
from the boolean satisfiability (SAT) community on a related problem. Specifically, given a boolean formula in conjunctive
normal form (CNF) and represented as a set of clauses, this problem deals with finding one, some or all minimal unsat-
isfiable subformulae (subsets) of this CNF formula. From a computational perspective, there are a number of fundamental
issues. For example, the underlying task of determining whether a CNF formula is satisfiable (resp. unsatisfiable) is a classic
NP-complete (resp. coNP-complete) problem. Also, determining whether a CNF formula is minimally unsatisfiable is DP-
complete [60] while computing a single minimal unsatisfiable subformula is in Σ P

2 [18]. Moreover, the number of minimal
unsatisfiable subformulae can be exponential on the number of clauses and thus enumerating them is intractable in the
worst case.

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1661
Given these hard restrictions however, there have been a number of algorithms proposed which can find minimal unsat-
isfiable subformulae in many practical instances (including existing difficult SAT benchmarks). In general, the most efficient
algorithms which can compute the exhaustive set of solutions involve some form of heuristics [43,28,14] or optimization
[29,24,55]. So, while formula-level inconsistency measures based on minimal inconsistent subsets are intractable in the
worst case, they may be viable for many practical problems (assuming the number of minimal inconsistent subsets remains
tractable). In this work we aim to address possible methods to compute minimal inconsistent subsets from existing work
on minimal unsatisfiable subformulae. We also aim to experimentally evaluate the viability of these methods, along with a
representative sample of some existing inconsistency measures, using a suitable and sufficiently large dataset.

To address these issues, in this paper we:

1. establish a relationship between minimal inconsistent subsets (from the inconsistency research community) and related
concepts from the SAT community, which allows us to explore the use of existing SAT algorithms in order to find
minimal inconsistent subsets;

2. propose an alternative sound and complete algorithm for computing minimal inconsistent subsets using existing SAT
algorithms;

3. evaluate implementations of these algorithms using a variety of randomly generated (flat and stratified) arbitrary knowl-
edge bases in order to illustrate their viability; and

4. evaluate an implementation of four representative formula-level inconsistency measures based on minimal inconsistent
subsets (including stratified measures), using these randomly generated arbitrary knowledge bases.

From this work we conclude that, in many cases, it is practically viable to compute minimal inconsistent subsets and
to calculate various formula-level inconsistency measures. Our evaluation demonstrates this with experimental results for
random arbitrary knowledge bases obtained from the genbal random non-CNF SAT generator [57] (which uses a fixed-
shape model for representing arbitrary formulae). In particular, these random arbitrary knowledge bases include those with
large amounts of formulae (both simple and complex) and those which are generated in the hard region for these random
instances (a well known phenomenon in random SAT). We find that, in some random knowledge bases, it is possible to
compute upwards of 60,000 minimal inconsistent subsets within 10 seconds (s). Moreover, we identify a suitable method
for finding minimal inconsistent subsets (given certain types of random inconsistent knowledge bases) through a full com-
parison of two possible approaches. We also find that the actual calculation of inconsistency measures for all formulae in
a knowledge base is trivial in comparison to the computation of minimal inconsistent subsets. For example, given the sum
of the cardinality of all MISes in a random knowledge base and a sample of random knowledge bases where the mean
of this value is under 25,000 for the sample, then the mean time for calculating two selected inconsistency measures for
flat knowledge bases was under 10 milliseconds (ms), in all cases. Similarly, where the mean of this value is under 30,000
for the sample, then the mean time for calculating two selected inconsistency measures for stratified knowledge bases was
under 1 second (s) in all cases (although the time increases w.r.t. to the number of strata). For this reason, the central focus
of this paper is on the issue of computing all MISes, rather than the actual calculation of inconsistency values.

The paper is organized as follows: in Section 2 we introduce notations and formally define minimal inconsistent subsets;
in Section 3 we discuss the relationship between existing SAT research and the problem of finding minimal inconsistent
subsets; in Section 4 we describe algorithms for computing minimal inconsistent subsets using existing SAT algorithms;
in Section 5 we describe a process for generating random arbitrary knowledge bases which we then use to thoroughly
evaluate implementations of these algorithms; in Section 6 we discuss the calculation of four representative formula-level
inconsistency measures for flat and stratified knowledge bases and evaluate implementations of these measures using our
randomly generated knowledge bases; in Section 7 we compare related work; and in Section 8 we conclude the paper.

2. Preliminaries

Set inclusion (resp. strict set inclusion) is denoted by ⊆ (resp. ⊂). Let
⋃

S (resp.
⋂

S) denote the union (resp. intersec-
tion) of elements in a set of sets S . Let |S| denote the cardinality of a set S . A total order over a set S is a binary relation for
all a, b, . . . ∈ S , denoted a � b, which satisfies the following: if a � b and b � a then a � b (antisymmetry); if a � b and b � c
then a � c (transitivity); and a � b ∨ b � a (totality). Let S be a set where S1, . . . , Sn ⊆ S , then [S] = {S1, . . . , Sn} denotes a
set of sets representing a partition of S where: (i) ∅ /∈ [S]; (ii) ⋃[S] = S; and (iii) ∀S ′, S ′′ ∈ [S] s.t. S ′ �= S ′′ , S ′ ∩ S ′′ = ∅. We
call Si ∈ [S] a cell of a partitioned set [S].

Let u, v ∈ Rn be vectors where u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn). If ui = vi for each i ≤ n, then u = v . The
lexicographical ordering relation between vectors, denoted ≥, is defined as u ≥v iff

1. u = v; or
2. there exists k ≤ n s.t. uk > vk and ui = vi for each i < k.

Also, u >v iff u ≥v and u �=v . Let 0 ∈Rn denote the n-size vector (0, . . . , 0).
Let L denote the propositional language built from a finite set of variables P using logical connectives {∧, ∨, ¬, →} and

logical constants {�, ⊥}. Let φ, ψ, ρ, . . . denote formulae from L and p, q, r, . . . denote variables from P . A knowledge base

1662 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
K ∈ 2L is a finite set of arbitrary formulae, interpreted as the conjunction of its elements. Every variable p ∈ P is called an
atomic formula (atom). A literal ρ is an atom or its negation. A clause ψ is a formula restricted to a disjunction of literals.
Let Lit(ψ) denote the set of literals in a clause ψ . A formula φ is in conjunctive normal form (CNF) iff φ consists of a
conjunction of clauses. Every formula can be translated into an equivalent CNF formula, called normalization, although this
can result in an exponential increase in size in the worst case. Let φ∗ denote the set of clauses in the equivalence-preserving
CNF translation of φ. A normalized knowledge base is a knowledge base in which every formula is a clause. Let K ∗ denote
a normalized knowledge base from the knowledge base K where K ∗ = {ψ : ψ ∈ φ∗ | φ ∈ K }.1 We say that K ∗ is optimized
iff ∀ψ ∈ K ∗ , �ψ ′ ∈ K ∗ s.t. ψ �= ψ ′ and Lit(ψ) = Lit(ψ ′). In other words, K ∗ is optimized if there are no redundant clauses.

In propositional logic, the syntactic approach in proof theory says that φ can be derived from K , denoted K � φ, iff φ
is provable from K via some inference method. If K � φ and K � ¬φ then K is inconsistent. With the semantic approach
in model theory, an interpretation or world ω is a function ω : P �→ {0, 1} from P to the set of boolean values {0, 1}. Let
2P denote the set of worlds of L. A world ω is a model of K , denoted ω |� K , iff K is true under ω in the classical
truth-functional manner. Let mod(K) denote the set of models of K , i.e., mod(K) = {ω : ω ∈ 2P | ω |� K }. We say that K is
satisfiable iff there exists a model of K . Conversely, K is unsatisfiable iff there are no models of K . In propositional logic
the syntactic concept of consistency and the semantic concept of satisfiability coincide [22], i.e., a knowledge base K is
consistent (resp. inconsistent) iff K is satisfiable (resp. unsatisfiable).

As mentioned previously, work on formula-level inconsistency measures originating from the inconsistency research
community is commonly defined in terms of minimal inconsistent subsets of formulae. We formally define this concept,
along with the dual concept of maximal consistency, as follows:

Definition 1. Let K be a knowledge base. A minimal inconsistent subset (MIS) Φ of K is a set of formulae s.t.

1. Φ ⊆ K ;
2. Φ � ⊥; and
3. ∀Φ ′ ⊂ Φ , Φ ′ �⊥.

Let MI(K) denote the set of MISes of K .

Definition 2. Let K be a knowledge base. A maximal consistent subset (MCS) Φ of K is a set of formulae s.t.

1. Φ ⊆ K ;
2. Φ � ⊥; and
3. ∀Φ ′ ⊆ K , if Φ ⊂ Φ ′ then Φ ′ � ⊥.

Let MC(K) denote the set of MCSes of K .

Definition 3. Let K be a knowledge base. A formula φ ∈ K is called a free formula of K iff �Φ ∈ MI(K) s.t. φ ∈ Φ .

Let FREE(K) denote the set of free formulae of K , i.e., FREE(K) = K \ ⋃
MI(K). However, the converse is also true, i.e.,

FREE(K) = ⋂
MC(K).

In the SAT community, the equivalent concept for minimal inconsistency (resp. maximal consistency) is minimal unsat-
isfiability (resp. maximal satisfiability). We formally define these as follows:

Definition 4. Let K ∗ be a set of clauses. A minimal unsatisfiable subformula (MUS) Ψ of K ∗ is a set of clauses s.t.

1. Ψ ⊆ K ∗;
2. �ω ∈ mod(Ψ); and
3. ∀Ψ ′ ⊂ Ψ s.t. Ψ ′ �= ∅, ∃ω ∈ mod(Ψ ′).

Let MU(K ∗) denote the set of MUSes of K ∗ .

Definition 5. Let K ∗ be a set of clauses. A maximal satisfiable subformula (MSS) Ψ of K ∗ is a set of clauses s.t.

1. Ψ ⊆ K ∗;

1 Generally, SAT work defines a normalized knowledge base K ∗ as a set of clauses. In practice however, SAT implementations consider K ∗ as a multiset
of clauses, which means the same clause can appear more than once. For example, K ∗ = {p, p, ¬p} is a valid multiset of clauses. For simplicity, we
define a normalized knowledge base K ∗ as a set of clauses where all elements are treated as unique even if they are identical syntactically. When this is
ambiguous, we will always distinguish between syntactically identical clauses by assigning unique identifiers, e.g., K ∗ = {ψ1, ψ2, ψ3} where ψ1 = p, ψ2 = p
and ψ3 = ¬p.

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1663
2. ∃ω ∈ mod(Ψ); and
3. ∀Ψ ′ ⊆ K ∗ , if Ψ ⊂ Ψ ′ then �ω ∈ mod(Ψ ′).

Let MS(K ∗) denote the set of MSSes of K ∗ .
Given that consistency and satisfiability coincide in propositional logic, MISes and MCSes can also be defined in terms

of satisfiability while MUSes and MSSes can be defined in terms of consistency. Clearly MISes (resp. MCSes) and MUSes
(resp. MSSes) are compatible, where the former can be viewed as the general case (arbitrary formulae) and the latter can
be viewed as a special case (clauses). Note that, in contrast to MISes, singleton MUSes are not possible since a clause cannot
be self-contradictory.

Unlike base-level inconsistency measures, there are few properties of formula-level inconsistency measures which are
applicable to a variety of measures and which are broadly accepted in the literature. However, we can suggest a general
definition of a formula-level inconsistency measure based on MISes as follows:

Definition 6. A formula-level inconsistency measure for a knowledge base is a function I : 2L × L �→ Rn s.t. ∀K ∈ 2L and
∀φ, φ′ ∈ K :

1. I(K , φ) = 0 iff φ ∈ FREE(K); and (consistency)
2. I(K , φ) = I(K \ {φ′}, φ) if φ′ ∈ FREE(K). (independence)

Given a knowledge base K , then a formula-level inconsistency measure I assigns an n-size vector of real numbers to each
formula φ ∈ K , denoted I(K , φ), called the inconsistency value of φ. When n = 1, we denote the formula-level inconsistency
measure by I, where I assigns a single real number to φ. The term blame (or degree of blame) is a synonym of this
inconsistency value [48]. An inconsistency ordering, or blame ordering, is a total order over formulae in a knowledge base
w.r.t. a formula-level inconsistency measure. Given a knowledge base K and a formula-level inconsistency measure I, then
a formula φ ∈ K is more inconsistent than another formula φ′ ∈ K w.r.t. I, denoted φ �I φ′ , iff I(K , φ) >I(K , φ′). In terms of
properties, consistency says that a formula-level inconsistency measure should only assign the null inconsistency value to
free formulae, since these formulae are not involved in the inconsistency of the knowledge base (defined by MISes/MCSes).
On the other hand, independence says that if a free formula is removed, then this should not effect the formula-level
inconsistency value of another formula in the knowledge base. Note that these properties may be too strong to characterize
formula-level inconsistency measures which are not based on MISes.

3. Background

The most common problem discussed in relation to MUSes, usually called MUS extraction, refers to computing a single
MUS [27,54] (also called an unsatisfiable kernel [53] or unsatisfiable core [8,58,70]), since this problem can often be solved
relatively efficiently through a linear traversal of the search space [13]. A related, but more difficult problem is finding a
minimum cardinality MUS, called a smallest MUS (SMUS) [40] or a minimum unsatisfiable subset [42]. However, neither
problem is directly relevant to the application of formula-level inconsistency measures where the complete set of MISes
is required. Fortunately there is some work on the problem of computing all MUSes which provides a suitable means to
compute the complete set of MISes. Importantly, the underlying approach taken by most of the state-of-the-art solutions to
this problem is to avoid expensive unsatisfiability tests (since testing for satisfiability is easier in practice) by computing the
dual concept of MSSes instead [6,10,41]. Then, by exploiting a relationship between MSSes and MUSes, the latter set can
be computed indirectly. Implementations of state-of-the-art exhaustive MUS algorithms have been shown to perform well
for many existing difficult SAT benchmarks involving thousands of clauses [43,29,55,54]. However, since MISes deal with
arbitrary formulae and MUSes deal with clauses, the two concepts are not directly equivalent (except when every formula
in an arbitrary knowledge base is a clause).

3.1. Associating MUSes and MISes

In the real-world, knowledge bases are usually defined in terms of sets of arbitrary formulae since this is an efficient,
intuitive and compact means of representation. For example, IDS rules in [49] and requirements specifications in [46] are
always defined in terms of arbitrary formulae. Applying these practical algorithms for computing MUSes to such real-world
applications is a useful path for research, but since they require knowledge bases in clausal form, the algorithms cannot
be directly applied. Also, when an arbitrary knowledge base is normalized as a set of clauses, the syntactic composition of
the knowledge base is lost. So, in the case of measuring inconsistency for example, it is not possible to apply MIS-based
formula-level inconsistency measures using MUSes as a substitute for MISes.

Extending MUS research for arbitrary formulae was touched on briefly in [43], where formulae (in CNF already) and
clauses were called high-level and low-level constraints, respectively. In this work, two methods for computing MISes (called
MUSes of high-level constraints) were suggested:

1664 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
generalization, whereby sets of clauses are grouped in relation to the formulae from which they originate, then, rather than
finding minimal unsatisfiable sets of clauses, minimal unsatisfiable sets of groups of clauses are found instead; or
alternatively

transformation, whereby minimal unsatisfiable sets of clauses are found as usual and mapped back to the formulae from
which they originate.

Unfortunately there are few technical details of either method and only the generalization approach was actually imple-
mented. However the generalization approach was said to have advantages since the search space could be reduced by
eliminating groups of clauses (rather than single clauses only), during the first phase of finding MSSes.

Recently the generalization approach, now called group MUSes (see Definition 10 in Section 4.2), has been receiving more
attention [13,5,56,28]. Essentially, this approach requires input as a set of clauses and a (non-overlapping) partition of this
set representing the group of clauses for each arbitrary formula.

Example 1. Given a knowledge base K1 = {p ∧ q, p ∧ r, ¬p}, then MI(K1) = {{p ∧ q, ¬p}, {p ∧ r, ¬p}}. Also, K ∗
1 =

{ψ1, ψ2, . . . , ψ5} where ψ1 = p, ψ2 = q, ψ3 = p, ψ4 = r and ψ5 = ¬p. Grouping clauses in K ∗
1 w.r.t. formulae in K1 re-

sults in a set of clause groups [K ∗
1] = {{ψ1, ψ2}, {ψ3, ψ4}, {ψ5}}, representing a partition of K ∗

1 . Then the group MUSes
{{ψ1, ψ2}, {ψ5}} and {{ψ3, ψ4}, {ψ5}} correspond to the MISes {p ∧ q, ¬p} and {p ∧ r, ¬p}, respectively.

In this sense, we can say that the input for this method is not optimized since it may be the case that for an input
K ∗ , there exists a clause ψ ∈ K ∗ and another clause ψ ′ ∈ K ∗ s.t. Lit(ψ) = Lit(ψ ′), i.e., where ψ or ψ ′ is redundant. Given
that these approaches were compared in [43] w.r.t. the same input, it is safe to assume that the transformation approach
suggested in this work is not optimized either.

Example 2. Given a knowledge base K1 = {p ∧ q, p ∧ r, ¬p}, then K ∗
1 = {ψ1, ψ2, . . . , ψ5} where ψ1 = p, ψ2 = q, ψ3 = p,

ψ4 = r and ψ5 = ¬p. Clearly Lit(ψ1) = Lit(ψ3), so K ∗
1 can be optimized as K ∗

1 = {ψ1, ψ2, ψ4, ψ5}.

It is likely that the lack of optimization would be acceptable for the generalization method since an overlapping partition
of an optimized set of clauses would only serve to reduce the size of the input, not reduce the number of group MUSes
to be found. In contrast, the transformation approach requires the computation of all low-level MUSes, so it is likely that
optimization would improve this method because the number of low-level MUSes could be reduced. The reason for this
potential improvement is that, given a non-optimized set of clauses K ∗ with clauses ψ, ψ ′ ∈ K ∗ s.t. Lit(ψ) = Lit(ψ ′), then
for every MUS Ψ ∈ MU(K ∗) s.t. ψ ∈ Ψ , there will be a MUS Ψ ′ ∈ MU(K ∗) s.t. ψ ′ ∈ Ψ ′ , i.e., Ψ and Ψ ′ are equivalent. So,
given the MUS Ψ , then computing Ψ ′ can be said to be redundant since Ψ ′ could be inferred from Ψ and K ∗ . This type
of preprocessing optimization is common in standard SAT problems [17,20] and has also been applied in MUS extraction
[5,28].

Example 3. Given a knowledge base K1 = {p ∧ q, p ∧ r, ¬p}, then K ∗
1 = {ψ1, ψ2, . . . , ψ5} where ψ1 = p, ψ2 = q, ψ3 = p,

ψ4 = r, and ψ5 = ¬p. So, MU(K ∗
1) = {{ψ1, ψ5}, {ψ3, ψ5}}. If K ∗

1 is optimized then K ∗
1 = {ψ1, ψ2, ψ4, ψ5}. So, MU(K ∗

1) =
{{ψ1, ψ5}}. Either way, MI(K1) = {{p ∧ q, ¬p}, {p ∧ r, ¬p}}.

In cases where a single MUS results in multiple MISes, as is the case in Example 3, an optimized MUS transformation
approach may outperform MUS generalization, since extrapolating multiple MISes would likely prove easier than computing
multiple MISes directly. However, there are potential issues when moving from traditional MUSes to MISes and these also
need to be investigated. For example, an approach to computational argumentation was proposed in [3] whereby support
for an argument was found by inserting the negated conclusion of that argument and then computing MUSes. With this
method, it was found that one MUS may result in support for an argument which is strictly included in some support
generated from a different MUS (Theorem 1 in [3]) and so a post-check for minimality was required. Given these reasons,
a formal proposal for a MUS transformation approach is justified since these issues were not addressed by the original
discussion in [43]. So, in the following section, we describe the state-of-the-art approach for finding all MUSes in a set of
clauses. Then, in order to thoroughly evaluate methods for computing MISes in arbitrary knowledge bases, we present details
of the existing MUS generalization approach and propose our own alternative optimized MUS transformation approach.

4. Computing all MISes from MUSes

There are a number of important ways of characterizing inconsistency. We might mention, for example, inconsistent
truth assignments in Belnap [2], LPm [59] or Quasi-classical [4] paraconsistent models as well as the notion of minimal
proofs [36]. However, MISes are often seen as the purest form of formula-centric inconsistency [63,33,48] since they express
inconsistency by means of conflicting formulae. It is because of this intuition that the majority of formula-level inconsistency
measures in the literature have been defined in terms of MISes. In fact, it was proved that a simple formula-level measure
based on MISes is equivalent to a measure based on the coalitional game model thereby giving MISes the support of

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1665
this game theoretic approach [33]. Formula-level inconsistency measures based on MISes are, therefore, a logical and well
supported approach to analyzing inconsistency and are important for a wide range of applications [9,46,25,49].

In order to calculate these inconsistency measures for large and complex knowledge bases (assuming the obvious
tractable limitations), we establish a link between MUSes and MISes which provides a viable means to compute the com-
plete set of MISes in many cases. So, in this section we present a state-of-the-art method for computing all MUSes in a set
of clauses followed by two MUS-based methods for computing all MISes in a knowledge base (including our new optimized
MUS transformation proposal).

4.1. Computing all MUSes

The problem of determining whether a set of clauses is satisfiable (SAT) is NP-complete. The converse problem of de-
termining whether a set of clauses is unsatisfiable (UNSAT) is coNP-complete. In practice, solving SAT problems tends to be
easier than solving UNSAT problems. This explains why, in practice, finding MSSes directly (via SAT calls) tends to be easier
than finding MUSes directly (via UNSAT calls) [43]. For this reason, much of the existing work on computing the set of
all MUSes is based on a relationship between MSSes and MUSes which allows the complete set of MUSes to be computed
indirectly from the complete set of MSSes. In order to describe this approach however, we must begin by introducing some
important concepts.

The first concept is as follows: by definition, a MSS Ψ of a set of clauses K ∗ is a maximal subset of clauses in K ∗ which
together are satisfiable. This means that given the set complement Ψ ′ = K ∗ \ Ψ , then ∀ψ ∈ Ψ ′ , Ψ ∪ {ψ} is unsatisfiable. The
set of clauses Ψ ′ is called the CoMSS2 of Ψ w.r.t. K ∗ .

Definition 7. Let K ∗ be a set of clauses and MS(K ∗) be the set of MSSes of K ∗ . The set of CoMSSes of K ∗ is a set of sets of
clauses, denoted MSc(K ∗), defined as:

MSc(K ∗) = {
K ∗ \ Ψ

∣∣ Ψ ∈ MS
(

K ∗)}.
We can demonstrate this with a simple example:

Example 4. Given a set of clauses K ∗
2 = {p, ¬p, ¬q, ¬p ∨ q, r}, then

MS
(

K ∗
2

) = {{¬p,¬q,¬p ∨ q, r}, {p,¬p ∨ q, r}, {p,¬q, r}},
MSc(K ∗

2

) = {{p}, {¬p,¬q}, {¬p,¬p ∨ q}}.
The second concept is as follows: informally, a hitting set (or hypergraph traversal) of a set of sets S , is a set containing

at least one element from every set in S .

Definition 8. Let S be a set of sets from some finite domain D . A hitting set of S is a set H ⊆ D s.t. ∀S ′ ∈ S, H ∩ S ′ �= ∅.

Let HIT(S) denote the set of hitting sets of S where ∀H ∈ HIT(S), �H ′ ∈ HIT(S) s.t. H ′ ⊂ H . Therefore HIT(S) is the set of
minimal hitting sets of S . We can demonstrate this with another example:

Example 5. Given a set of sets of integers S = {{1, 2, 3}, {2, 4}, {3, 4}}, then the hitting sets of S are

{1,2,3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,4}, {2,3}, {2,4}, {3,4}.
However, the set of all minimal hitting sets of S is

HIT(S) = {{1,4}, {2,3}, {2,4}, {3,4}}.
The most efficient algorithms for computing all MUSes are based on a relationship between the set of all CoMSSes and

the set of all MUSes. This relationship, called hitting set dualization, was discovered separately in [6,10,41]. Specifically, the set
of MUSes of a set of clauses K ∗ and the set of CoMSSes of K ∗ are hitting set duals of each other, i.e., the set of MUSes (resp.
CoMSSes) of K ∗ is equal to the set of all minimal hitting sets of the set of CoMSSes (resp. MUSes) of K ∗ . This relationship
is formalized as Theorem 4.5(c) and (d), along with a proof, in [6]. Consider the following example:

2 CoMSS was the original name for what was later called a minimal correction set in [43], however we use the original terminology to avoid confusion
with MCSes.

1666 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Example 6. Given a set of clauses K ∗
3 = {p, ¬p, p ∨ ¬q, q, q ∨ r}, then

MS
(

K ∗
3

) = {{¬p,q,q ∨ r}, {¬p, p ∨ ¬q,q ∨ r}, {p, p ∨ ¬q,q,q ∨ r}},
MSc(K ∗

3

) = {{p, p ∨ ¬q}, {p,q}, {¬p}},
MU

(
K ∗

3

) = {{p,¬p}, {¬p, p ∨ ¬q,q}}.
Clearly MSc(K ∗

3) and MU(K ∗
3) are hitting set duals, i.e.,

HIT
(
MSc(K ∗

3

)) = MU
(

K ∗
3

)
,

HIT
(
MU

(
K ∗

3

)) = MSc(K ∗
3

)
.

The process for finding the MUSes of a set of clauses K ∗ therefore involves two parts: firstly, computing the set of
all CoMSSes of K ∗ (related to computing the set of all MSSes); and secondly, computing the minimal hitting sets of the
set of all CoMSSes of K ∗ . This second step finds the complete set of MUSes of K ∗ . However, work based on this hitting
set dualization approach is primarily concerned with the first step, since there already exist efficient solutions for the
hitting set problem. Of the various solutions proposed for computing CoMSSes, one of the best known algorithms is camus

[43]. This algorithm is based on an iterative MaxSAT search (a SAT optimization problem which is concerned with finding
satisfiable subsets of clauses with maximum cardinality) and was shown to outperform earlier algorithms, e.g., those in
[6,10]. While camus remains near state-of-the-art, other algorithms have also been proposed which provide more efficient
solutions in some cases. For example, hycam [29] adapts camus by adding an inexpensive local search pretreatment while
picomcs [55] offers some additional optimizations. Also, hycam itself was improved with some additional heuristics in
[28]. Alternatively, fastdiag [24] offers some optimizations of the earlier quickxplain [37] algorithm while noptsat [14]
incorporates preferences when finding MUSes. More recently, a family of algorithms was proposed in [54].

As an example we can consider the camus approach to finding CoMSSes. Given that a MaxSAT search is concerned with
finding a satisfiable subset with maximum cardinality, it is clear that MSSes are a generalization of this problem since every
MaxSAT subset is also a MSS (although the converse does not hold). Clearly computing the set of all CoMSSes coincides
with the computation of the set of all MSSes. So, in camus, MSSes are found using an iterative MaxSAT search (utilizing
an incremental SAT solver) which finds the largest satisfiable subset that has not been found in previous iterations. Then,
finding all CoMSSes involves a standard SAT backtracking search where a yi clause-selector variable is added to each clause
ψi in order to enable or disable ψi (equivalent to setting yi to true or false, respectively). A CoMSS is found when a minimal
set of yi variables are set to false but the set of clauses remains satisfiable. Then the CoMSS is equivalent to the set of ψi

clauses relevant to this minimal set of yi variables.
As for computing minimal hitting sets, we can consider the algorithm from [43] used in conjunction with camus to find

the set of MUSes. In this case, let K ∗ be a set of clauses and let C = MSc(K ∗) be the set of CoMSSes of K ∗ . The general idea
of finding the set of MUSes from C , denoted HIT(C), is to begin with an empty set of clauses Ψ = ∅. Next, loop through
each CoMSS Ψ ′ ∈ C and add one clause ψ ∈ Ψ ′ from the current CoMSS Ψ ′ to the forming MUS Ψ , i.e., Ψ = Ψ ∪ {ψ}. Then,
remove any remaining CoMSSes from C which contain this clause ψ , i.e., C = C \ {Ψ ′ : Ψ ′ ∈ C | ψ ∈ Ψ ′}. Removing all other
CoMSSes from C which contain the clause ψ forces ψ to be essential to the forming MUS Ψ , since removing ψ would leave
at least one CoMSS (i.e., the current CoMSS) unrepresented in the final MUS. In other words, Ψ would not be a hitting set
of C . The set of all MUSes from C can be found recursively by repeating this process until all CoMSSes have been removed
from C , i.e., C = ∅.

Currently, hitting set dualization represents the most efficient approach to computing the complete set of MUSes. How-
ever, we must recall some of the related complexity issues. For example, the fundamental problems of SAT and UNSAT are
NP-complete and coNP-complete, respectively. Also, computing one MSS or one MUS belongs to the second level of the
polynomial hierarchy. Moreover, the number of MSSes (CoMSSes) and MUSes can be exponential on the number of clauses
and thus enumerating them is intractable in the worst case. On the other hand, while computing one minimum (cardinal-
ity) hitting set is NP-hard, computing one minimal hitting set is a less strict requirement and can actually be generated in
polynomial time [43,29]. Aside from these worst case complexity issues, some of the state-of-the-art algorithms have been
shown to be viable for many practical cases.

As discussed previously, the two concepts of MUSes and MISes are compatible since an arbitrary knowledge base can be
normalized as a set of clauses. If we convert an arbitrary knowledge base to a set of clauses we can then apply existing algo-
rithms to find MUSes. However, if we wish to apply formula-level inconsistency measures we can only calculate clause-level
values for this normalized knowledge rather than formula-level values for the original knowledge base. For this reason we
must extend work on MUSes for arbitrary knowledge bases. Clearly this will also introduce an additional complexity issue
since translating an arbitrary formulae to CNF while preserving equivalence has complexity O (2n) in the worst case. In the
following sections, we present an existing MUS generalization method, as well as our new optimization MUS transformation
method, which allow the complete set of MISes to be found in many practical cases.

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1667
4.2. Computing all MISes by MUS generalization

The MUS generalization approach involves grouping clauses in a normalized knowledge base w.r.t. formulae in the origi-
nal knowledge base.

Definition 9. Let K be a knowledge base. A set of clause groups, denoted [K ∗], is a set of sets of clauses3 defined as:[
K ∗] = {

φ∗ ∣∣ φ ∈ K
}
.

As with a set of clauses (or formulae), a set of clause groups is interpreted as the conjunction of its elements. In
other words, given a set of clause groups [K ∗], then mod([K ∗]) denotes the set of models of a formula equivalent to the
conjunction of all clauses in [K ∗]. Given a knowledge base K , then recall that the non-optimized set of clauses K ∗ from K
is defined as K ∗ = {ψ : ψ ∈ φ∗ | φ ∈ K } where ∀φ ∈ K and ∀ψ ∈ φ∗ , ψ is assumed to be unique. Clearly, [K ∗] represents a
partition of K ∗ w.r.t. K . We can demonstrate this with an example:

Example 7. Given a knowledge base K4 = {p, ¬p, ¬p ∧ q, q ∨ r}, then K ∗
4 = {ψ1, ψ2, . . . , ψ5} where ψ1 = p, ψ2 = ¬p, ψ3 =

¬p, ψ4 = q and ψ5 = q ∨ r. So[
K ∗

4

] = {{ψ1}, {ψ2}, {ψ3,ψ4}, {ψ5}
}
.

In order to describe the MUS generalization approach to finding MISes, we must generalize the definitions of MUSes,
MSSes and CoMSSes w.r.t. a set of clause groups as follows:

Definition 10. Let [K ∗] be a set of clause groups. A group MUS (GMUS) [Ψ] of [K ∗] is a set of clause groups s.t.

1. [Ψ] ⊆ [K ∗];
2. �ω ∈ mod([Ψ]); and
3. ∀[Ψ ′] ⊂ [Ψ], ∃ω ∈ mod([Ψ ′]).

Let GMU([K ∗]) denote the set of GMUSes of [K ∗].

Definition 11. Let [K ∗] be a set of clause groups. A group MSS (GMSS) [Ψ] of [K ∗] is a set of clause groups s.t.

1. [Ψ] ⊆ [K ∗],
2. ∃ω ∈ mod([Ψ]),
3. ∀[Ψ ′] ⊆ [K ∗], if [Ψ] ⊂ [Ψ ′] then �ω ∈ mod([Ψ ′]).

Let GMS([K ∗]) denote the set of GMSSes of [K ∗].

Definition 12. Let [K ∗] be a set of clause groups and GMS([K ∗]) be the set of GMSSes of [K ∗]. The set of CoGMSS of [K ∗]
is a set of sets of clause groups, denoted GMSc([K ∗]), defined as:

GMSc([K ∗]) = {[
K ∗] \ [Ψ] ∣∣ [Ψ] ∈ GMS

([
K ∗])}.

Essentially, a GMUS is a minimal unsatisfiable set of clause groups and can be found in the same way as MUSes with the
exception that clauses are treated as groups (cells in the partitioned set), rather than individually. In the camus algorithm
for example, CoGMSSes are found by adding the same yi variable to each clause group gi , i.e., ∀ψ j ∈ gi , yi is added to
ψ j . This allows groups of clauses to be enabled or disabled together (setting yi to true or false, respectively). Then the set
of GMUSes is equal to the minimal hitting sets of the CoGMSSes of a set of clause groups. Converting each formula in a
knowledge base to a set of clauses produces each clause group and so each MIS in the original knowledge base is directly
equivalent to a GMUS in the set of clause groups. However this approach requires a non-overlapping partition of clauses,
since each clause must be assigned one and only one yi variable, which means that the set of clauses K ∗ from a knowledge
base K cannot be optimized.

A simple method for finding MISes using GMUSes is shown in Algorithm 1. In detail: line 3 converts an arbitrary formula
φ to a set of clauses and constructs a mapping Ψφ , from φ to this set of clauses; line 4 constructs the set of clause groups
ΨK for the input knowledge base K ; line 6 finds the set of GMUSes for ΨK ; line 9 constructs the equivalent MIS Φ for each
GMUS Ψ ∈ GMU(ΨK); line 10 constructs the set of MISes in K ; and finally, line 11 returns the complete set MI(K).

3 As with K ∗ , we consider all elements in [K ∗] to be unique even if they are syntactically equal. When this is ambiguous we will always distinguish
between syntactically equal elements by assigning unique identifiers.

1668 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Algorithm 1: Finding MISes using MUS generalization.

Input: Knowledge base K
Output: MI(K)

1 ΨK ← ∅;
2 for each φ ∈ K do
3 Ψφ ← φ∗;
4 ΨK ← ΨK ∪ {Ψφ};

5 M ← ∅;
6 for each Ψ ∈ GMU(ΨK) do
7 Φ ← ∅;
8 for each Ψφ ∈ Ψ do
9 Φ ← Φ ∪ {φ};

10 M ← M ∪ {Φ};

11 return M;

4.3. Computing all MISes by optimized MUS transformation

As an alternative to the MUS generalization approach, we now propose a new optimized transformation approach to
computing MISes. This serves to both formalize and improve the transformation approach mentioned in [43].

Definition 13. Let K be a knowledge base and K ∗ be the optimized set of clauses from K . A mapping σK : K ∗ �→ 2K is
defined ∀ψ ∈ K ∗ as:

σK (ψ) = {
φ : φ ∈ K

∣∣ ∃ψ ′ ∈ φ∗ where Lit(ψ) = Lit
(
ψ ′)}.

This function accounts for clause optimization by mapping each clause in the optimized set of clauses to a set of formulae
from the original knowledge base, such that the clause is equivalent to an element in the set of clauses for each formula in
the set. With this mapping, we can determine the formula (or formulae) from which each clause in a MUS originated. So for
a knowledge base K and a clause ψ ∈ K ∗ s.t. K ∗ is optimized, σK (ψ) is the set of formulae in K from which ψ originated.

Example 8. Given a knowledge base K = {p ∧ q, p ∧ r, ¬p}, then K ∗ = {ψ1, ψ2, . . . , ψ5} where ψ1 = p, ψ2 = q, ψ3 = p,
ψ4 = r and ψ5 = ¬p. If K ∗ is optimized then K ∗ = {ψ1, ψ2, ψ4, ψ5}. So, σK (ψ1) = {p ∧ q, p ∧ r}.

Definition 14. Let K be a knowledge base, K ∗ be the optimized set of clauses from K , Ψ ∈ MU(K ∗) be a MUS of K ∗ and σK

be a mapping from K ∗ to 2K . A FoMUS of Ψ w.r.t. σK , denoted MUσK (Ψ), is a set of sets of formulae defined as:

MUσK (Ψ) = {
σK (ψ)

∣∣ ψ ∈ Ψ
}
.

The FoMUS for a MUS Ψ contains all the formulae that have provided clauses to Ψ . This accounts for clause optimization
with the assumption that any formula containing a clause which is equivalent to any clause in Ψ , can be considered to have
provided a clause to Ψ .

Definition 15. Let K be a knowledge base, K ∗ be the optimized set of clauses from K and Ψ ∈ MU(K ∗) be a MUS of K ∗ .
Then the scope of Ψ w.r.t. K , denoted KΨ , is defined as:

KΨ =
⋃

MUσK (Ψ).

In other words, given a knowledge base K and its optimized set of clauses K ∗ , then the scope of a MUS Ψ ∈ MU(K ∗)
w.r.t. K is the set of formulae KΨ ⊆ K where ∀φ ∈ KΨ , ∃ψ ∈ Ψ and ∃ψ ′ ∈ φ∗ s.t. Lit(ψ) = Lit(ψ ′). Simply put, the scope of
Ψ w.r.t. K is the set of all formulae in the FoMUS MUσK (Ψ), i.e., the set of formulae in K which are touched by Ψ , while
accounting for clause optimization.

Definition 16. Let K be a knowledge base, K ∗ be the optimized set of clauses from K and Ψ ∈ MU(K ∗) be a MUS of K ∗ .
Then

HIT
(
MUσK (Ψ)

)
is called the set of pseudo-MISes of Ψ .

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1669
Lemma 1. Let K be a knowledge base, K ∗ be the optimized set of clauses from K and Ψ ∈ MU(K ∗) be a MUS of K ∗ . Then

HIT
(
MUσK (Ψ)

) = MI(KΨ),

if MU((KΨ)∗) = {Ψ }.

Proof. Let K be a knowledge base and K ∗ be the optimized set of clauses from K . By definition, if K is inconsistent then
there exists a MUS of K ∗ . Conversely, if there exists a MUS of K ∗ then K is inconsistent. Let Ψ ∈ MU(K ∗) be a MUS
of K ∗ . Recall that the FoMUS of Ψ w.r.t. K , denoted MUσK (Ψ), is a set of sets of formulae from K . Specifically, for each
clause ψ ∈ Ψ , there is a set of formulae Φ ∈ MUσK (Ψ) s.t. for each formula φ ∈ Φ , there exists a clause ψ ′ ∈ φ∗ where
Lit(ψ) = Lit(ψ ′). Recall that a hitting set of MUσK (Ψ) is a set of formulae containing at least one formula from each element
of MUσK (Ψ). Let Φ be a hitting set of MUσK (Ψ). Then, for each clause ψ ∈ Ψ , by definition, there exists a formula φ ∈ Φ s.t.
there exists a clause ψ ′ ∈ φ∗ where Lit(ψ) = Lit(ψ ′), i.e., Φ is an inconsistent set of formulae since Ψ is inconsistent and for
every clause ψ ∈ Ψ , there exists an equivalent clause ψ ′ ∈ Φ∗ . Thus, for every MUS Ψ ∈ MU(K ∗), a hitting set of MUσK (Ψ)

is inconsistent since Ψ is inconsistent. Recall that the set of minimal hitting sets of MUσK (Ψ) is defined as HIT(MUσK (Ψ)).
This is called the set of pseudo-MISes of Ψ . So, if Φ is a pseudo-MIS of Ψ then, by definition, Φ is inconsistent since Ψ
is inconsistent and Φ is minimal w.r.t. the set of pseudo-MISes of Ψ . Finally, recall that the scope of a MUS Ψ w.r.t. K ,
denoted KΨ , is defined as the set of formulae in the FoMUS of Ψ w.r.t. K , i.e.,

⋃
MUσK (Ψ). Since the lemma is restricted

to the case where MU((KΨ)∗) = {Ψ }, then Ψ is the only MUS of (KΨ)∗ . In other words, there cannot exist a pseudo-MIS of
another MUS which is strictly included in a pseudo-MIS of Ψ . Thus, if MU((KΨ)∗) = {Ψ }, then the set of pseudo-MISes of
Ψ is the sound and complete set of MISes of KΨ , i.e., HIT(MUσK (Ψ)) = MI(KΨ). �

Therefore, given a knowledge base K , a MIS w.r.t. the scope KΨ of a MUS Ψ ∈ MU(K ∗) is simply a minimal hitting set of
the FoMUS MUσK (Ψ), as long as Ψ is the only MUS in the set of clauses for KΨ . So the set of pseudo-MISes of a MUS can
be found using the same method used for finding a set of MUSes from a set of CoMSSes. The set of all pseudo-MISes of K
is then defined as{

Φ : Φ ∈ HIT
(
MUσK (Ψ)

) ∣∣ Ψ ∈ MU
(

K ∗)}.
The final issue, however, is that given a knowledge base K , although each pseudo-MIS of a MUS Ψ ∈ MU(K ∗) is min-

imal w.r.t. the set of pseudo-MISes of Ψ , it may not be minimal w.r.t. a pseudo-MIS of another MUS Ψ ′ ∈ MU(K ∗). So a
pseudo-MIS of Ψ is locally minimal w.r.t. the set of pseudo-MISes of Ψ but may not be globally minimal w.r.t. the set of all
pseudo-MISes in K . The algorithm presented in [50] for example, was not sound in that it found the set of all pseudo-MISes
but this set contains potentially non-minimal sets.

Example 9. Given a knowledge base K5 = {p → (q ∧ r), p ∧ ¬q, ¬r}, then K ∗
5 = {¬p ∨ q, ¬p ∨ r, p, ¬q, ¬r}. Clearly, K ∗

5 is
optimized. So, MU(K ∗

5) = {{p, ¬p ∨q, ¬q}, {p, ¬p ∨r, ¬r}}. This results in the set of pseudo-MISes {{p → (q ∧r), p ∧¬q}, K5}.
However, given that {p → (q ∧ r), p ∧ ¬q} ⊂ K5, then MI(K5) = {{p → (q ∧ r), p ∧ ¬q}}.

For this reason, a final post-check for set inclusion is required to remove non-minimal sets from the set of all pseudo-
MISes of a knowledge base. As mentioned in Section 3, this issue was also encountered in [3] where it was found that
using MUSes to compute arguments may produce an argument from one MUS which is strictly included in an argument
from a different MUS. To address this, a post-check for minimality was required. Also, in [45], an equivalent post-check for
set inclusion was required to remove result sets which are locally minimal but not globally minimal. A similar requirement
was made in [44] to remove result sets which are locally maximal but not globally maximal. Essentially, optimized MUS
transformation is a heuristic approach to finding MISes using MUSes as an indication of minimality and inconsistency and
can be formalized as follows:

Theorem 1. Let K be a knowledge base and K ∗ be the optimized set of clauses from K . Let P be the set of pseudo-MISes from K where

P = {
Φ : Φ ∈ HIT

(
MUσK (Ψ)

) ∣∣ Ψ ∈ MU
(

K ∗)}.
Let M be the set of minimal sets in P where

M = {
Φ : Φ ∈ P

∣∣ �Φ ′ ∈ P ,Φ ′ ⊂ Φ
}
.

Then

M = MI(K).

Proof. Soundness: Let K be a knowledge base and let K ∗ be the optimized set of clauses from K . By definition, if K is
inconsistent then there exists a MUS of K ∗ . Conversely, if there exists a MUS of K ∗ then K is inconsistent. Let Ψ ∈ MU(K ∗)

1670 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Algorithm 2: Finding MISes using optimized MUS transformation.

Input: Knowledge base K
Output: MI(K)

1 ΨK ← ∅;
2 for each φ ∈ K do
3 for each ψ ∈ φ∗ do
4 if ∃ψ ′ ∈ ΨK s.t. Lit(ψ) = Lit(ψ ′) then
5 σψ ′ ← σψ ′ ∪ {φ};
6 else
7 ΨK ← ΨK ∪ {ψ};
8 σψ ← {φ};

9 P ← ∅;
10 for each Ψ ∈ MU(ΨK) do
11 Φ ← ∅;
12 for each ψ ∈ Ψ do
13 Φ ← Φ ∪ {σψ }
14 P ← P ∪ HIT(Φ);

15 M ← Minimal(P);
16 return M;

be a MUS of K ∗ . Recall from Lemma 1 that the set of pseudo-MISes of Ψ is defined as HIT(MUσK (Ψ)). Recall also that if a
set of formulae Φ is a pseudo-MIS of Ψ , then Φ is inconsistent since Ψ is inconsistent and Φ is minimal w.r.t. the set of
pseudo-MISes of Ψ .

(i) Inconsistency: Given that P = {Φ : Φ ∈ HIT(MUσK (Ψ)) | Ψ ∈ MU(K ∗)} is defined as the set of pseudo-MISes for all MUSes
of K ∗ , then by definition, for every set of formulae Φ ∈ P , Φ is inconsistent. Also, by definition, M ⊆ P . Thus, for every
set of formulae Φ ∈ M , then Φ is inconsistent.

(ii) Minimality: Given that P = {Φ : Φ ∈ HIT(MUσK (Ψ)) | Ψ ∈ MU(K ∗)} is defined as the set of pseudo-MISes for all MUSes
of K ∗ , then by definition, for every MUS Ψ ∈ MU(K ∗), every pseudo-MIS of Ψ is in P . Also, by definition, M = {Φ : Φ ∈
P | �Φ ′ ∈ P , Φ ′ ⊂ Φ} is the set of minimal pseudo-MISes in P . Thus, for every set of formulae Φ ∈ M , there does not
exist another set of formulae Φ ′ ∈ M s.t. Φ ′ ⊂ Φ , i.e., Φ is minimal w.r.t. M .

Completeness: Let K be a knowledge base and K ∗ be the optimized set of clauses from K . By definition, if K is inconsistent
then there exists a MUS of K ∗ . Conversely, if there exists a MUS of K ∗ then K is inconsistent. Let Φ ∈ MI(K) be a MIS of
K . Then, by definition, there exists a MUS of Φ∗ (which is also a MUS of K ∗) since Φ is inconsistent. However, for each
set of formulae Φ ′ ⊂ Φ , there does not exist a MUS of Φ ′ , since Φ ′ is consistent. Let Ψ ∈ MU(K ∗) be a MUS of K ∗ s.t.
Ψ ∈ MU(Φ∗). Recall from Lemma 1 that the set of pseudo-MISes of Ψ is defined as HIT(MUσK (Ψ)). Recall also that if a set
of formulae Φ ′ is a pseudo-MIS of Ψ , then Φ ′ is inconsistent since Ψ is inconsistent and Φ ′ is minimal w.r.t. the set of
pseudo-MISes of Ψ . Clearly, Φ is a pseudo-MIS of Ψ since, by definition, Φ is a MIS and Ψ is a MUS of Φ∗ but, given any
strict subset Φ ′ ⊂ Φ , then Ψ is not a MUS of (Φ ′)∗ . Also, given that P = {Φ : Φ ∈ HIT(MUσK (Ψ)) | Ψ ∈ MU(K ∗)} is defined
as the set of pseudo-MISes for all MUSes of K ∗ , then by definition, Φ ∈ P . Finally, by inconsistency, there does not exist a
set of formulae Φ ′ ∈ P s.t. Φ ′ is consistent. Thus, given that M = {Φ : Φ ∈ P | �Φ ′ ∈ P , Φ ′ ⊂ Φ} is defined as the minimal
elements from P , then Φ ∈ M since for each strict subset Φ ′ ⊂ Φ , Φ ′ is consistent and so Φ ′ /∈ P . �

A suitable method to compute the MISes of a knowledge base using optimized MUS transformation is described in
Algorithm 2. We assume that clauses are represented as sets of literals. In other words, equivalent clauses are equal sets of
literals. Also, given a set of sets P , then the function Minimal(P) returns the minimal elements of P . In detail: line 3 converts
each arbitrary formula φ ∈ K to a set of clauses φ∗; for each clause ψ ∈ φ∗ , line 4 checks if an equivalent clause has already
been encountered; lines 5–8 then construct the optimized set of clauses ΨK and the σK mappings using either ψ or the
existing clause ψ ′; line 10 finds the set of MUSes of ΨK ; line 13 constructs the FoMUS Φ for each MUS Ψ ∈ MU(ΨK) as
a set of sets of formulae where each element is the σc mapping for each clause ψ ∈ Ψ ; line 14 constructs the complete
set of pseudo-MISes in K by finding the minimal hitting sets of each FoMUS Φ from the MUS Ψ , i.e., the minimal sets of
formulae which (when converted to CNF) contain a set of clauses equivalent to Ψ ; line 15 is a post-check for set inclusion
to remove non-minimal sets from the set of pseudo-MISes in K ; and finally, line 16 returns the complete set MI(K).

4.4. A practical example

We now demonstrate the process of computing the complete set of MISes in a knowledge base (using MUS generalization
and optimized MUS transformation) with an example selected from the literature (the knowledge base
1 from [31]).

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1671
Example 10 (CNF). Given a knowledge base K6 = {φ1, φ2, . . . , φ14} where

φ1 = red → fast,

φ2 = fast → ¬fuelEfficient,

φ3 = offRoad → expensive,

φ4 = sporty → (
expensive

∧ (black ∨ red ∨ white)
)
,

φ5 = ¬expensive → under 20K ,

φ6 = cabriolet → ¬bigCapacity,

φ7 = fuelEfficient → ¬offRoad,

φ8 = red,

φ9 = offRoad,

φ10 = ¬expensive,

φ11 = fuelEfficient,

φ12 = sporty,

φ13 = cabriolet,

φ14 = bigCapacity,

then converting each φ ∈ K6 to CNF results in the following clauses:

φ∗
1 = { ψ1 = ¬red ∨ fast },

φ∗
2 = { ψ2 = ¬fast ∨ ¬fuelEfficient },

φ∗
3 = { ψ3 = ¬offRoad ∨ expensive },

φ∗
4 =

{
ψ4 = ¬sporty ∨ expensive,
ψ5 = ¬sporty ∨ black ∨ red ∨ white

}
,

φ∗
5 = { ψ6 = expensive ∨ under 20K },

φ∗
6 = { ψ7 = ¬cabriolet ∨ ¬bigCapacity },

φ∗
7 = { ψ8 = ¬fuelEfficient ∨ ¬offRoad },

φ∗
8 = { ψ9 = red },

φ∗
9 = { ψ10 = offRoad }

φ∗
10 = { ψ11 = ¬expensive },

φ∗
11 = { ψ12 = fuelEfficient },

φ∗
12 = { ψ13 = sporty },

φ∗
13 = { ψ14 = cabriolet },

φ∗
14 = { ψ15 = bigCapacity }.

Therefore, K ∗
6 is the set of clauses from K6 where K ∗

6 = {ψ1, ψ2, . . . , ψ15}. Since there are no equivalent clauses in K ∗
6 ,

we can say that K ∗
6 is optimized. Finally, the set of clause groups [K ∗

6] from K6 is:

[
K ∗

6

] =
{ {ψ1}, {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ8},

{ψ9}, {ψ10}, {ψ11}, {ψ12}, {ψ13}, {ψ14}, {ψ15}
}
.

We can now demonstrate finding the MISes in K6 using MUS generalization.

Example 11 (MUS generalization). Given the knowledge base K6 and the set of clause groups [K ∗
6] from Example 10, then

the set of GMSSes from [K ∗
6] is GMS([K ∗

6]) = {[Ψ1], [Ψ2], . . . , [Ψ69]} where

[Ψ1] = { {ψ1}, {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ8}, {ψ9}, {ψ10}, {ψ13}, {ψ14}, {ψ15}
}
,

[Ψ2] = { {ψ1}, {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ8}, {ψ9}, {ψ10}, {ψ13}, {ψ14}
}
,

[Ψ3] = { {ψ1}, {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ8}, {ψ9}, {ψ10}, {ψ13}, {ψ15}
}
,

[Ψ4] = { {ψ1}, {ψ3}, {ψ5}, {ψ6}, {ψ8}, {ψ9}, {ψ11}, {ψ12}, {ψ13}, {ψ14}, {ψ15}
}
,

[Ψ5] = { {ψ1}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ8}, {ψ9}, {ψ12}, {ψ13}, {ψ15}
}
,

[Ψ6] = { {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ9}, {ψ10}, {ψ12}, {ψ13}, {ψ15}
}
,

[Ψ7] = { {ψ1}, {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ8}, {ψ12}, {ψ13}, {ψ15}
}
,

[Ψ8] = { {ψ1}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ9}, {ψ10}, {ψ12}, {ψ13}, {ψ15}
}
,

[Ψ9] = { {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ8}, {ψ9}, {ψ12}, {ψ13}, {ψ15}
}
,

. . .

[Ψ69] = { {ψ1}, {ψ2}, {ψ3}, {ψ4,ψ5}, {ψ6}, {ψ7}, {ψ10}, {ψ12}, {ψ13}, {ψ15}
}
.

1672 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
The following CoGMSSes can be found from the set of GMSSes GMS([K ∗
6]):

[Ψi] GMSc([K ∗
6])

[Ψ1]
{ {ψ7}, {ψ11}, {ψ12}

}
[Ψ2]

{ {ψ11}, {ψ12}, {ψ15}
}

[Ψ3]
{ {ψ11}, {ψ12}, {ψ14}

}
[Ψ4]

{ {ψ2}, {ψ4,ψ5}, {ψ7}, {ψ10}
}

[Ψ5]
{ {ψ2}, {ψ10}, {ψ11}, {ψ14}

}
[Ψ6]

{ {ψ1}, {ψ8}, {ψ11}, {ψ14}
}

[Ψ7]
{ {ψ9}, {ψ10}, {ψ11}, {ψ14}

}
[Ψ8]

{ {ψ2}, {ψ8}, {ψ11}, {ψ14}
}

[Ψ9]
{ {ψ1}, {ψ10}, {ψ11}, {ψ14}

}
. . .

[Ψ69]
{ {ψ8}, {ψ9}, {ψ11}, {ψ14}

}
The set of minimal hitting sets from the set of CoGMSSes GMSc([K ∗

6]) is HIT(GMSc([K ∗
6])) = {[Ψ ′

1], [Ψ ′
2], . . . , [Ψ ′

5]} where

[
Ψ ′

1

] = { {ψ1}, {ψ2}, {ψ9}, {ψ12}
}
,[

Ψ ′
2

] = { {ψ8}, {ψ10}, {ψ12}
}
,[

Ψ ′
3

] = { {ψ3}, {ψ10}, {ψ11}
}
,

[
Ψ ′

4

] = { {ψ4,ψ5}, {ψ11}, {ψ13}
}
,[

Ψ ′
5

] = { {ψ7}, {ψ14}, {ψ15}
}
.

So, with a simple mapping to formulae in K6, the MISes in K6 can be found from the set HIT(GMSc([K ∗
6])), i.e., [Ψ ′

1] →
Φ1, [Ψ ′

2] → Φ2, . . . , [Ψ ′
5] → Φ5 where

Φ1 = { φ1, φ2, φ8, φ11 },
Φ2 = { φ7, φ9, φ11 },
Φ3 = { φ3, φ9, φ10 },

Φ4 = { φ4, φ10, φ12 },
Φ5 = { φ6, φ13, φ14 }.

Finally:

MI(K6) = {Φ1,Φ2, . . . ,Φ5}.

Next we demonstrate finding MISes by optimized MUS transformation.

Example 12 (Optimized MUS transformation). Given the knowledge base K6 and the optimized set of clauses K ∗
6 from Exam-

ple 10, then the set of MSSes from K6 is MS(K ∗
6) = {Ψ1, Ψ2, . . . , Ψ69} where

Ψ1 = { ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ8,ψ9,ψ10,ψ13,ψ14,ψ15 },
Ψ2 = { ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9,ψ10,ψ13,ψ14 },
Ψ3 = { ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9,ψ10,ψ13,ψ15 },
Ψ4 = { ψ1,ψ3,ψ5,ψ6,ψ8,ψ9,ψ11,ψ12,ψ13,ψ14,ψ15 },
Ψ5 = { ψ1,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9,ψ12,ψ13,ψ15 },
Ψ6 = { ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ9,ψ10,ψ12,ψ13,ψ15 },
Ψ7 = { ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ12,ψ13,ψ15 },
Ψ8 = { ψ1,ψ3,ψ4,ψ5,ψ6,ψ7,ψ9,ψ10,ψ12,ψ13,ψ15 },
Ψ9 = { ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ8,ψ9,ψ12,ψ13,ψ15 },

. . .

Ψ69 = { ψ1,ψ2,ψ3,ψ4,ψ5,ψ6,ψ7,ψ10,ψ12,ψ13,ψ15 }.
The following CoMSSes can be found from the set of MSSes MS(K ∗):
6

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1673
Ψi MSc(K ∗
6)

Ψ1 { ψ7,ψ11,ψ12 }
Ψ2 { ψ11,ψ12,ψ15 }
Ψ3 { ψ11,ψ12,ψ14 }
Ψ4 { ψ2,ψ4,ψ7,ψ10 }
Ψ5 { ψ2,ψ10,ψ11,ψ14 }
Ψ6 { ψ1,ψ8,ψ11,ψ14 }
Ψ7 { ψ9,ψ10,ψ11,ψ14 }
Ψ8 { ψ2,ψ8,ψ11,ψ14 }
Ψ9 { ψ1,ψ10,ψ11,ψ14 }

. . .

Ψ69 { ψ8,ψ9,ψ11,ψ14 }
The set of minimal hitting sets of the set of CoMSSes MSc(K ∗

6) is HIT(MSc(K ∗
6)) = {Ψ ′

1, Ψ
′
2, . . . , Ψ

′
5} where

Ψ ′
1 = { ψ1,ψ2,ψ9,ψ12 },

Ψ ′
2 = { ψ8,ψ10,ψ12 },

Ψ ′
3 = { ψ3,ψ10,ψ11 },

Ψ ′
4 = { ψ4,ψ11,ψ13 },

Ψ ′
5 = { ψ7,ψ14,ψ15 }.

In other words MU(K ∗
6) = {

Ψ ′
1,Ψ

′
2, . . . ,Ψ

′
5

}
. To transform the MUSes of K ∗

6 to the MISes of K6, we must first determine the
formulae from which each clause in each MUS originated (FoMUSes), i.e.:

Ψ ′
i MUσK (Ψ ′

i)

Ψ ′
1

{ {φ1}, {φ2}, {φ8}, {φ11}
}

Ψ ′
2

{ {φ7}, {φ9}, {φ11}
}

Ψ ′
3

{ {φ3}, {φ9}, {φ10}
}

Ψ ′
4

{ {φ4}, {φ10}, {φ12}
}

Ψ ′
5

{ {φ6}, {φ13}, {φ14}
}

Then to find the pseudo-MISes from each FoMUS, we find the minimal hitting sets from each FoMUS. This is straight-
forward for K6 since no clause originates from more than one formula, i.e.:

HIT
(
MUσK

(
Ψ ′

1

)) = { Φ1 },
HIT

(
MUσK

(
Ψ ′

2

)) = { Φ2 },
HIT

(
MUσK

(
Ψ ′

3

)) = { Φ3 }
HIT

(
MUσK

(
Ψ ′

4

)) = { Φ4 },
HIT

(
MUσK

(
Ψ ′

5

)) = { Φ5 }.

where

Φ1 = { φ1, φ2, φ8, φ11 },
Φ2 = { φ7, φ9, φ11 },
Φ3 = { φ3, φ9, φ10 },

Φ4 = { φ4, φ10, φ12 },
Φ5 = { φ6, φ13, φ14 }.

So, the pseudo-MISes in K6 are Φ1, Φ2, . . . , Φ5. Finally, since each pseudo-MIS is minimal, this is exactly the set of MISes
in K6, i.e.:

MI(K6) = {Φ1,Φ2, . . . ,Φ5} .

5. Evaluation for computing MISes

The algorithms for computing the MISes of a knowledge base (using the existing MUS generalization and our new
optimized MUS transformation approaches) were implemented in a tool called mimus (MISes from MUSes). Some selected
inconsistency measures were also implemented and evaluated and this will be detailed in Section 6. Many real-world
knowledge bases (e.g., the previously mentioned QRadar and Snort rule sets) represent interesting problems for evaluating
mimus. However, the process of formalizing these systems into propositional or first-order logic is rarely a trivial task.
Since our motivation is to analyze inconsistency in these systems, it is essential that this process results in an accurate
representation of the original knowledge base and does not introduce inconsistencies which were not originally present.
For this reason, the formalization process generally requires some form of domain expertise. Moreover, it is unlikely that
any single real-world knowledge base would provide a sufficiently large and varied dataset to thoroughly evaluate mimus.
For example, if we wish to consider the effect of the number of variables in the language, the complexity of formulae, or

1674 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
the number of MISes, then a range of inconsistent knowledge bases would be required. Finally, it is often the case that
these real-world knowledge bases are highly optimized through a manual process involving some informal inconsistency
checking. This is certainly true of the default QRadar rule set where we believe the primary interest of mimus is to validate
user-customized (private and unoptimized) rule sets. Note that a case study of formalizing the QRadar rule set (including
some examples of the types of inconsistencies which may occur in user-customized rule sets) can be found in [50]. So, while
we hope to evaluate mimus with real-world knowledge bases in the future, in this work we opt for generating synthetic
sets of knowledge bases which will allow us to evaluate various practical properties of our algorithms.

To fulfill this purpose, we obviously require knowledge bases which are: (i) non-trivial; (ii) constrained enough so that
the probability of generating MISes is sufficiently high; and (iii) sufficient to demonstrate the key properties of the algo-
rithms. In the SAT community, the complexity of creating efficient SAT solvers has resulted in the development of a range
of SAT benchmarks. Many of these benchmarks have been used in the literature for evaluating MUS implementations. For
example, the DC benchmark set from an automotive product configuration domain [65] was used in [43,69], while pigeon-
hole and xor-chain benchmarks4 were used in [43,29]. More generally, there has been extensive work on generating random
SAT benchmarks for evaluating SAT solvers [21]. Whether random or not, these benchmarks are usually formatted as sets of
clauses which means they have little experimental value for the problem of finding MISes. Some of these benchmarks were
actually used in [50] as a test set to evaluate a prototype implementation of mimus whereby each clause was considered an
arbitrary formula. However, as stated in Section 3, when every formula in a knowledge base is a clause, MISes and MUSes
are equivalent. For this reason, the early evaluation of mimus presented in [50] focused solely on the performance of the
implemented inconsistency measures (since the complexity of formulae is irrelevant for most formula-level measures).

Fortunately there has been some work on generating random non-CNF SAT benchmarks in [57,52], which provide a
means to generate the type of arbitrary knowledge base for which mimus was intended. In particular, this work is based on
generating formulae with a fixed-shape model where all formulae have an equal number of conjunctions, disjunctions and
literals. While this restricts us to knowledge bases where formulae have uniform complexity, this is sufficient to evaluate
the performance of mimus since these knowledge bases will still exhibit varying amounts of MISes. In fact, the fixed-shape
model is ideal for this evaluation since it allows greater control over the types of inconsistent knowledge bases which
will be generated. In other words, it supports a more principled evaluation of mimus in terms of analyzing the impact of
certain factors (e.g., formula complexity, the number of MISes, etc.) on the efficiency of mimus. Also, this method can be
easily extended to generate a random weight for each random formula and thereby generate random stratified knowledge
bases. So, in this section, we first describe some general properties of random SAT benchmarks before giving an overview of
how random arbitrary knowledge bases can be generated. Finally, we present a thorough evaluation of mimus using these
random knowledge bases.

5.1. Generating random unsatisfiable SAT instances

In the SAT community, k-SAT is the problem of determining the satisfiability of a SAT instance (a set of clauses) with at
most k literals per clause (k-CNF). It is well known that the clause : variable ratio (clause density) is the most important aspect
in terms of the probability that a given random k-SAT instance will be satisfiable. When the ratio is low (i.e., little repetition
of variables) random k-SAT instances are more likely to be satisfiable, but as the ratio increases (i.e., more repetition of
variables) random k-SAT instances are more likely to be unsatisfiable [21]. This is intuitive since a low ratio means the
k-SAT instance is under-constrained and a high ratio means the k-SAT instance is over-constrained.

The hardness of determining satisfiability follows the easy–hard–easy (or more specifically, easy–hard–moderately hard)
pattern based on this ratio, where the most difficult problems are in the sharp phase transition (satisfiability threshold)
between problems being satisfiable with a high probability and problems being unsatisfiable with a high probability [57].
This sharp phase transition is where the k-SAT instance is just constrained enough to be potentially unsatisfiable [52].
Furthermore, for random k-SAT instances the phase transition is dependent on k. For example, in random 2-SAT instances
(which can actually be solved in polynomial time) the threshold is known to be where the clause : variable ratio is around 1,
while for random 3-SAT instances the best lower bound is 3.52 and the best upper bound is 4.506 [12]. It is known that a
threshold also exists when k > 3 but there are no accepted interval values [23].

For this evaluation, our main requirement is to generate random knowledge bases which are inconsistent, i.e., exhibit
MISes. In order to thoroughly evaluate mimus however, an important requirement will be the ability to generate (with some
degree of accuracy) knowledge bases exhibiting an increasing number of MISes. It is clear that in terms of generating ran-
dom unsatisfiable k-SAT instances, the clause : variable ratio is the most important factor. This feature suggests that, given
some parameter values for a random generator, it is possible to reliably predict whether a randomly generated knowledge
base will be inconsistent. By implication, this suggests that increasing the probability that a randomly generated knowl-
edge base will be inconsistent, is also likely to increase the number of MISes in the generated knowledge base (since the
knowledge base will become more constrained).

4 SATLIB. Benchmark Problems. http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html.

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1675
Fig. 1. Balanced tree representing the structure of an arbitrary 〈2, 2, 3〉-formula. Given the parameter v (denoting the number of variables), then to generate
a random formula, each literal ρi in the balanced tree is randomly generated from the set of variables P = {p1, . . . , pv }.

5.2. Generating random arbitrary formulae

As mentioned previously, there are some existing random SAT generators which can generate non-CNF formulae. A suit-
able example is genbal from [57] which can generate a single arbitrary formula as a conjunction of fixed-shape arbitrary
subformulae in negation normal form (NNF). So, if we treat the formula as a knowledge base and its immediate subformulae
as formulae in the knowledge base, genbal can generate a knowledge base with a set of random fixed-shape formulae. The
limitation is that we are restricted to knowledge bases where all formulae are of equal complexity (in terms sharing an
equal number of conjunctions, disjunctions and literals).

Three parameters are required by genbal in order to generate a random knowledge base. These are:

v the number of variables;
r the formula : variable ratio; and
s the shape of the arbitrary formulae.

The value of v is an integer representing the finite number of variables in the language P = {p1, . . . , pv}. However, rather
than defining the number of formulae to be generated, genbal requires a real number r representing the target formula :
variable ratio. Note that this value does not necessarily represent the actual formula : variable ratio of the generated knowl-
edge base since not all variables in the language may be randomly selected.5 The remaining parameter, s, is denoted by a
collection of integers 〈s1, . . . , sn〉 representing a fixed-shape balanced tree with n levels, where s1 is the highest level and
sn is the lowest. We call si the i-th level of s. The balanced tree is defined in terms of alternating disjunctions and conjunc-
tions between levels, starting with a disjunction at s1, and represents the shape of the generated formulae. A formula with
a shape s is called an s-formula. Fig. 1 shows a balanced tree representing the structure of a 〈2, 2, 3〉-formula.

Example 13. Given a randomly generated knowledge base K7 from parameters v = 5, r = 1 and s = 〈2〉 where

K7 = {¬p1 ∨ ¬p4,¬p4 ∨ p2,¬p1 ∨ ¬p3,¬p3 ∨ ¬p5, p5 ∨ p4} ,

then

K ∗
7 = K7.

If s is restricted to a single integer, then the resulting formulae will always be in CNF since the shape has only one
level s1 (where the first level s1 is always a disjunction). In Example 13, a knowledge base with 5 formulae (v × r) is
generated where all formulae are in 2-CNF. In fact, a set of random 〈k〉-formulae will always be in k-CNF. This means that
the formula : variable ratio for a knowledge base K , where s = 〈k〉, will be equal to the clause : variable ratio for a random
k-SAT instance. For example, a set of random 〈2〉-formulae, where r > 1, will be inconsistent with a high probability since
the phase transition for random 2-SAT instances is where the clause : variable ratio is around 1. Obviously MUSes and MISes
are equivalent for 〈k〉-formulae though.

Example 14. Given a randomly generated knowledge base K8 from parameters v = 5, r = 0.2 and s = 〈3, 2〉 where

K8 = {
(¬p3 ∧ p1) ∨ (p2 ∧ p4) ∨ (p5 ∧ ¬p4)

}
,

then

5 Random CNF generators take the same approach where r is instead the clause : variable ratio, i.e., in the literature, suggested phase transitions for
random CNF k-SAT instances are based on the parameter values rather than the final clause : variable ratio of generated instances.

1676 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
K ∗
8 =

⎧⎪⎪⎨
⎪⎪⎩

¬p3 ∨ ¬p4 ∨ p2, ¬p3 ∨ ¬p4 ∨ p4,

¬p3 ∨ p2 ∨ p5, ¬p3 ∨ p4 ∨ p5,

¬p4 ∨ p1 ∨ p2, ¬p4 ∨ p1 ∨ p4,

p1 ∨ p2 ∨ p5, p1 ∨ p4 ∨ p5

⎫⎪⎪⎬
⎪⎪⎭ .

In Example 14, importantly, MUSes and MISes are no longer equivalent since the (single) formula in K8 is not a clause.
So, for a random knowledge base K where s = 〈3, 2〉, conversion of φ ∈ K to CNF results in 8 clauses with 3 literals each
(3-CNF). In other words, given r and a 〈3, 2〉 shaped arbitrary knowledge base K , then a clause : variable ratio for K ∗ could
be determined by 8r. So in this example, the clause : variable ratio for K8 w.r.t. r would be 1.6. However, since K8 is not in
CNF originally, a phase transition for K8 cannot be directly inferred from existing work on k-SAT phase transitions. In fact,
results in [57] demonstrate that the probability of satisfiability in a fixed-shape knowledge base K does not reliably match
that of K ∗ . In other words, given that 〈3, 2〉-formulae will be in 3-CNF, we cannot simply say that for a random knowledge
base K where s = 〈3, 2〉, K ∗ will have a phase transition equal to that of a 3-SAT instance. Fortunately, experiments in [57]
have shown that random arbitrary fixed-shape knowledge bases do exhibit sharp phase transitions of their own w.r.t. the
formula : variable ratio r. This means that, as with standard random k-SAT instances, it is possible to predict the parameter
values needed to generate random arbitrary knowledge bases in the phase transition region (where inconsistent knowledge
bases may exhibit the fewest MISes) for a given value of s.

Importantly, work in [57] also attempted to find if these random fixed-shape SAT instances also exhibit the easy-hard-
easy pattern (around the phase transition region) which is present in random k-SAT instances. This was achieved by: firstly,
applying a standard (equivalence-preserving) and an optimized (equisatisfiable) CNF translation of randomly generated non-
CNF fixed-shape formulae; and secondly, measuring the number of branches explored by a variety of popular DPLL-based
CNF SAT solvers (which generally indicates the hardness of a SAT problem) when solving these translated CNF formulae. It
was found that the fixed-shape model for random non-CNF formulae does, in fact, exhibit the same easy–hard–easy pattern
around the phase transition of a particular shape.

In summary, given that equivalence-preserving CNF translation results in a potentially exponential increase in the size of
the problem, it is clear that the value of s for a random knowledge base K has a dramatic effect on the size of K ∗ . Also,
standard random k-SAT problems exhibit an easy–hard–easy pattern where the hardest problems are in the sharp clause :
variable ratio region (phase transition) where the probability of generating an unsatisfiable SAT instance goes from almost 0
to almost 1. An equivalent sharp phase transition phenomenon exists in random fixed-shape arbitrary knowledge bases in
relation to the formula : variable ratio. These random fixed-shape knowledge bases also exhibit an equivalent easy–hard–easy
pattern around the phase transition. However, we suggest that the number of MISes in these random fixed-shape arbitrary
knowledge bases will increase as the formula : variable ratio increases through the phase transition region. Moreover, we
suggest that the hardness of computing the complete set of MISes will increase as the formula : variable ratio increases. In
other words, while using the comparatively efficient and succinct encodings of random fixed-shape knowledge bases, we can
theoretically predict the optimal parameter values for genbal in order to generate random knowledge bases which exhibit
a range of MISes. This will allow a structured evaluation of mimus.

5.3. Experiments

The implementation of mimus
6 was written in C++ and compiled for x64 with g++. A CNF converter was implemented for

parsing an infix propositional expression, building a binary expression tree using the traditional Shunting-yard algorithm and
applying the standard equivalence-preserving CNF translation. Internally, the camus 1.0.5 [43] implementation of the camus

algorithm was used for computing CoMSSes, CoGMSSes and minimal hitting sets. This version of camus uses the popular
and highly optimized minisat 1.12b [19] SAT solver for incremental SAT checking. For the optimized MUS transformation
algorithm, equivalence between clauses was determined by a simple comparison of ordered sets. Also, a naive set inclusion
function was implemented for the post-check to remove non-minimal pseudo-MISes. The test version was mimus 1.0.4. All
experiments were carried out on a 2.67 GHz Intel Xeon 12 core HPC server with 94 GB of RAM running Red Hat Enterprise
GNU/Linux Server 5.7. For each experiment, 10 instances of mimus were run concurrently with each instance using a single
core. In other words, the experiments were run efficiently but CPU performance for mimus was comparable to a standard
desktop computer.

5.3.1. Generating suitable knowledge bases exhibiting MISes
Firstly, we define a sample (of knowledge bases) as a set of fixed-shape knowledge bases randomly generated with gen-

bal. Unless otherwise stated, we assume all random knowledge bases in a sample are generated from the same parameters
values for: the number of variables v; the formula : variable ratio r; and the fixed-shape s.

In [57], random s-formulae knowledge bases were shown to exhibit phase transitions w.r.t. their formula : vari-
able ratio (analogous to the clause : variable ratio in random k-SAT instances). Fig. 2 shows the results of an experi-
ment on the probability of satisfiability for different random s-formulae knowledge bases in relation to r. So for each

6
mimus is available from http://www.cs.qub.ac.uk/~kmcareavey01/mimus.html.

http://www.cs.qub.ac.uk/~kmcareavey01/mimus.html

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1677
Fig. 2. Probability of satisfiability w.r.t. the formula : variable ratio of random 140 variable s-formulae knowledge bases (generated with genbal).

Fig. 3. Phase transitions, represented by 0.01 (thinner line) and 0.1 (thicker line) ε-windows, w.r.t. the formula : variable ratio of random v variable
〈2, 2〉-formulae knowledge bases where v ∈ {100, 200, . . . , 500}. The vertical line indicates the crossover point where the formula : variable ratio values
to the left (resp. right) result in a probability of satisfiability greater than (resp. less than) 0.5.

s ∈ {〈2〉, 〈3〉, 〈2, 2〉, 〈2, 3〉, 〈3, 2〉} and a constant v = 140, the probability of satisfiability for each value of r ∈ {0.01, 0.02, . . .}
was determined from a sample of 500 randomly generated knowledge bases. Then the experiment, for each value of s, ran
until the samples for 10 consecutive values of r were found to have a probability of satisfiability equal to 0. The sharp phase
transition for each s is the formula : variable ratio range where the probability of satisfiability goes from almost 1 to almost 0.
These results, as well as those in [57], show that increasing the value of r also increases the probability of randomly gen-
erating an inconsistent knowledge base with genbal. However, the value of r required to generate inconsistent knowledge
bases is dependent on s. For example, a random 〈2, 2〉-formulae knowledge base where r = 0.75 will be inconsistent with a
high probability, but a random 〈3, 2〉-formulae knowledge base where r = 0.75 will be consistent with a high probability.

In order to describe phase transitions more formally, we now introduce the concept of an ε-window [57].

Definition 17. Let S be a set of ordered pairs of real numbers s.t. (a, b) ∈ S , a > 0 and 0 ≤ b ≤ 1. Let ε be a real number
s.t. 0 < ε < 0.5. Let Sε be a set of ordered pairs of real numbers defined as Sε = {(a, b) ∈ S | b ∈ [ε, 1 − ε]}. Let min(Sε, a)

(resp. max(Sε , a)) denote the minimum (resp. maximum) value for a where (a, b) ∈ Sε . Then the ε-window of S w.r.t. b is
an interval of real numbers defined as [min(Sε, a), max(Sε, a)].

Let E = {e1, e2, . . . , en} be a set of samples of randomly generated knowledge bases. Let S = {(r1, p1), (r2, p2), . . . , (rn, pn)}
be a set of ordered pairs of real numbers where ri (0 ≤ i ≤ n) represents the parameter value of r used to generate each
random knowledge base K ∈ ei and where pi represents the probability of satisfiability for the sample ei . Then the proba-
bility of satisfiability ε-window for E is an interval of real numbers representing the formula : variable ratio range defined
by the minimum and maximum values of r required to generate a sample ei ∈ E where the probability of satisfiability for
ei is in the interval [ε, 1 − ε].

Fig. 3 shows the phase transitions, represented by 0.01 and 0.1 ε-windows, for random 〈2, 2〉-formulae knowledge
bases with different values for v . Specifically, given each v ∈ {100, 200, . . . , 500}, then samples of 1000 knowledge bases

1678 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Fig. 4. Phase transitions, represented by 0.01 (thinner line) and 0.1 (thicker line) ε-windows, w.r.t. the formula : variable ratio of random 20 variable
s-formulae knowledge bases where s ∈ {〈2〉, 〈2, 2〉, . . . , 〈2, 2, 2, 2〉}.

were generated for each r ∈ {0.11, 0.12, . . . , 0.7}. A probability of satisfiability was then determined for each sample. These
ε-windows clearly demonstrate that increasing the number of variables in the language serves to sharpen the phase transi-
tion region for random fixed-shape knowledge bases but does not change the region’s general position. In other words, it is
likely that the phase transition for a given value of s will be roughly the same for any value of v (this is supported by the
results found in [57]). However, the phase transition region is less precise with lower numbers of variables, e.g., v = 100 in
Fig. 3.

In a similar experiment, Fig. 4 shows the phase transitions, represented by 0.01 and 0.1 ε-windows, for random 20
variable s-formulae knowledge bases. From this group, s = 〈2, 2, 2, 2〉 represents the largest and most complex formulae
while s = 〈2〉 represents the smallest and least complex. Of the four values of s, the phase transition occurs at the highest
formula : variable ratio range when s = 〈2, 2, 2〉 in contrast to the lower ratios required when s = 〈2, 2〉 and s = 〈2, 2, 2, 2〉.
In other words, given a fixed set of variables, a random 〈2, 2, 2〉-formulae knowledge base will need significantly more
formulae in order to increase the probability of generating an inconsistent base, since a higher ratio means there is a
greater number of formulae in relation to the fixed number of variables.

We now move on to analyzing inconsistency through MISes. Since finding MISes in a knowledge base is a computationally
difficult problem, a solution may not always be found within a fixed period of time. For this reason, in order to carry out
a suitable evaluation of mimus, it is necessary to characterize the feasibility of computing MISes in a given sample of
knowledge bases with mimus.

Definition 18. Let S be a sample of knowledge bases, let n be a real number and let {Gen, Trans} denote the MUS general-
ization and optimized MUS transformation methods for finding MISes with mimus, respectively. Then the n second feasible
set of knowledge bases from S w.r.t. a method Σ ∈ {Gen, Trans}, denoted FΣ(S, n), is the set of knowledge bases from S
where the complete set of MISes can be found by mimus within n seconds using a method Σ .

We can then define a feasibility measure for a sample of knowledge bases.

Definition 19. Let S be a sample of knowledge bases, let n be a real number and let Σ be a method for finding MISes with
mimus. Then the probability of n second feasibility for S w.r.t. Σ , denoted PFΣ(S, n), is defined as:

PFΣ(S,n) = |FΣ(S,n)|
|S| .

If we have a sample of random knowledge bases S generated from fixed parameters v , r and s, then we can determine
a probability of n second feasibility w.r.t. a method Σ and these parameters. In general, as we increase the difficulty of
samples, e.g., by increasing the value of r (resp. v) but maintaining the values of the remaining parameters, then the value
of PFΣ(S, n) should not increase.

Up to this point we have been considering both consistent and inconsistent knowledge bases. However, from this point,
will are only interested in inconsistent knowledge bases. So, in order to evaluate samples of equal size, and since a randomly
generated knowledge base may be consistent, then for each sample, random knowledge bases are repeatedly generated and
a satisfiability check is carried out until a complete sample is obtained.

In Fig. 5, the previous intuition that the number of MISes would increase as the value of r increases through the phase
transition region is shown to be correct. In this experiment, samples of 1000 inconsistent knowledge bases were generated
for each r ∈ {0.11, 0.12, . . . , 0.6}, given a constant v = 100 and s = 〈2, 2〉. Then, for each knowledge base in each sample,

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1679
Fig. 5. Mean number of MISes w.r.t. the formula : variable ratio of random 100 variable 〈2, 2〉-formulae knowledge bases. Each increment of r represents a
sample of inconsistent knowledge bases S where |S| = 1000. The complete points indicate the mean number of MISes for S since PFGen(S, 10) = 1. The
incomplete points indicate the mean number of MISes for the samples FGen(S, 10) and FGen(S, 60) from S , respectively.

mimus was run using the generalization method to find MISes, with a timeout set at 10 s. The complete points in Fig. 5,
e.g., where r ≤ 0.41, show the mean number of MISes for the complete sample, since MISes were found for all knowledge
bases in the sample within this timeout. The incomplete points on the other hand, e.g., where r > 0.41, only show the mean
number of MISes for the subset of the sample where all MISes were found within the 10 s timeout or a longer 60 s timeout.
It is likely that the actual mean number of MISes for the samples where timeouts occurred will be higher than is shown.
This is supported by the results for both timeouts, where the mean number of MISes rises more sharply as the timeout
is increased from 10 s to 60 s. In other words, the most difficult problems (where a timeout occurred) have, on average,
a greater number of MISes.

Given that the probability of satisfiability crossover point for 100 variable 〈2, 2〉-formulae knowledge bases was found in
Fig. 3 to be where r = 0.39, it is clear from Fig. 5 that an explosion of MISes occurs past this point. The significance of this
result is that we can say, with a high degree of certainty, that increasing the value of r will increase the number of MISes.
This is particularly important for the evaluation of any MIS implementation (and equally relevant to the evaluation of MUS
implementations) since we can identify the region where the number of MISes will begin to increase from 1, i.e., the phase
transition region. Moreover, we know to expect that the difficulty (in terms of finding all MISes) will also increase with r,
becoming prohibitively difficult soon after this point.

We have seen in Fig. 3 that increasing the number of variables serves to sharpen the probability of satisfiability phase
transition region but does not affect the region’s general position. Fig. 6 shows the results of an experiment on the effect
of the number of variables in 〈2, 2〉-formulae knowledge bases w.r.t. the mean number of MISes and the formula : variable
ratio. So, for each r ∈ {0.11, 0.12, . . . , 0.6}, 1000 inconsistent knowledge bases were generated for each sample S and the
mean number of MISes was found for the set of 10 s feasible knowledge bases FGen(S, 10). The sequence was aborted when
MISes were found within 10 s for fewer than 50% of knowledge bases in a sample S , i.e., PFGen(S, 10) < 0.5. The results
in Fig. 6 show that the explosion of MISes occurs more quickly as the number of variables is increased. The implication in
terms of evaluating mimus, is that the maximum feasible formula : variable ratio (in terms of the maximum value of r where
all MISes can be found within a specified time) will decrease as the number of variables increases, since the number of
MISes will increase more quickly in relation to r.

5.3.2. Performance of mimus

In the next experiment, shown in Fig. 7, the total runtime of mimus (using the MUS generalization method) was ana-
lyzed w.r.t. the number of MCSes (resp. MISes) in random inconsistent knowledge bases. Specifically, Fig. 7 represents the
individual results for the set of 60 s feasible random 100 variable 〈2, 2〉-formulae knowledge bases from all samples shown
in Fig. 5. Clearly, in these knowledge bases, there is more correlation between the number of MCSes and the time it takes
mimus to find the complete set of MISes (using the generalization method), than with the actual number of MISes. Notably,
with this set of knowledge bases, it becomes much more difficult to find all MISes when the number of MCSes reaches
the 2000–3000 region, after which the payoff in terms of finding the complete set of MISes within 60 s, begins to decline.
However this result is unsurprising given the hitting set dualization approach taken by camus and a more direct approach
to finding MISes would likely produce a greater degree of correlation between runtime and the number of MISes.

So far we have made several findings w.r.t. random 〈2, 2〉-formulae knowledge bases and the performance of mimus,
including: an explosion of MISes that occurs in the phase transition region; a correlation between the number of MCSes
and the time taken by mimus to find the complete set of MISes (using the MUS generalization method); and the effect
of increasing the number of variables in the language. Importantly, these findings are equally applicable to other types of
random s-formulae knowledge bases. For example, in each case we have found that an explosion of MISes occurs where

1680 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Fig. 6. Mean number of MISes in random v variable 〈2, 2〉-formulae knowledge bases. For each v ∈ {100, 200, . . . , 500}, each increment of r represents a
sample of knowledge bases S where |S| = 1000. The points indicate the mean number of MISes for the sample FGen(S, 10) from S where PFGen(S, 10) ≥ 0.5.

Fig. 7. Total runtime of mimus using MUS generalization for random 100 variable 〈2, 2〉-formulae knowledge bases where r ∈ {0.11, 0.12, . . . , 0.6} in a
sample S . Each point indicates the total runtime for a knowledge base K ∈ FGen(S, 60) w.r.t. the number of MCSes (resp. MISes) in K .

the interval values of r represents the unique phase transition region for a particular s (as was shown in Fig. 5 for random
100 variable 〈2, 2〉-formulae knowledge bases). However, the value of s (as with r and v) will also have an impact on the
performance of mimus. Before going any further, we now compare the two approaches to finding MISes: MUS generalization;
and optimized MUS transformation.

In Fig. 8, samples of 1000 random inconsistent 20 variable 〈2, 2〉-formulae knowledge bases were generated for each
r ∈ {0.11, 0.12, . . . , 2}. Then, for each sample, mimus was run (with a timeout set at 10 s) using the MUS generalization and

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1681
Fig. 8. Probability of 10 s feasibility for random 20 variable 〈2, 2〉-formulae knowledge bases. Each increment of r represents a sample S where |S| = 1000.
The generalization and transformation points indicate the probability of feasibility values PFGen(S, 10) and PFTrans(S, 10) for S , respectively.

then the optimized MUS transformation methods for finding MISes. A probability of 10 s feasibility for both methods was
then determined for each sample. So, the results in Fig. 8 confirm the findings in [43] that MUS generalization has a clear
advantage over the optimized MUS transformation approach. The main reason for the poor performance of the optimized
MUS transformation method is that, in random fixed-shape knowledge bases, MUSes will be evenly distributed between
MISes and so, as the size of formulae increases, so too does the number of MUSes that must be computed for each MIS.
On the other hand, if a knowledge base were to have a MUS : MIS ratio below 1, then it is possible that the optimized
MUS transformation method would be preferable since extrapolating multiple MISes from one MUS would be easier than
computing multiple GMUSes. However, since the state-of-the-art algorithms for finding MUSes are based on hitting set
dualization, the number of CoMSSes may prove problematic in this case. Fortunately, the optimized MUS transformation
approach is independent of the algorithm used to compute MUSes so future algorithms may improve its viability. In terms
of this evaluation, these factors justify the selection of the generalization approach for all remaining experiments.

Moving on to Fig. 9. In this experiment, the total runtime and the number of MISes for different types of random 20
variable s-formulae knowledge bases are compared w.r.t. the formula : variable ratio for each sample. Given that lower values
of r have a high probability of satisfiability, generating inconsistent knowledge bases is more difficult with these values. For
this reason, we first found the lowest value of r for which a sample of 1000 inconsistent knowledge bases could be feasibly
generated for each s ∈ {〈2〉, 〈2, 2〉, 〈2, 2, 2〉, 〈2, 2, 2, 2〉}. From these lower bounds, samples were obtained for each s as usual
by incrementing r by 0.01, generating a sample S and attempting to compute the set of MISes for each knowledge base in S
within a 10 s timeout. As such, mean values for runtime and the number of MISes were found from the set of 10 s feasible
knowledge bases FGen(S, 10). This process was aborted for each s when 10 samples were found to have a probability of
10 s feasibility equal to 0. Thus, the range of r for each s represents a lower bound of r at which MISes could be feasibly
generated, to an upper bound of r at which MISes could be feasibly computed within 10 s. So, for each s and for each
sample in this range, Fig. 9 shows the mean runtime on the left y-axis and the mean number of MISes on the right y-axis.

It is worth noting that while we increment r by a fixed 0.01 for each s, in practice this increment may be too small
to have an immediate effect. For example, if we generate a random knowledge base where v = 100 and r = 0.611 and
another where v = 100 and r = 0.612, then both will have 100 variables and 100 × r � 61 formulae either way. This effect
is apparent in the ‘step’ pattern which is most visible in Fig. 9d. Seeing as we focus on different regions of r for each s,
a 0.01 increment was chosen as a simple compromise for providing comparable parameter values but precise results. From
this figure we can see that mean runtime values level off towards 10 s. This is a result of the timeout, since the results
only include runtime values for 10 s feasible knowledge bases. In other words, the mean runtime for the incomplete points
represents a baseline for these samples since the results reflect easier problems. Likewise, referring to the results from Fig. 5
(which shows an increase in the mean number of MISes when the timeout is increased), we can infer that the mean number
of MISes for the incomplete points is a probable baseline for these samples. In addition, the incomplete curves become less
uniform for each s as r is increased because the 10 s feasible sample sizes decrease as r is increased. However, if we follow
the curves w.r.t. the mean number of MISes for the complete points, it is easy to see why computing MISes quickly becomes
infeasible as r is increased – even conservative estimates will show that the number of MISes becomes huge.

Further to this finding, we can also see that the number of MISes does not predictably increase from 1 for the lowest
values of r. When s = 〈2, 2, 2〉 for example, the lowest value of r in which samples of inconsistent knowledge bases can
be feasibly generated was found to be around r = 2.1. However, when inconsistent knowledge bases are occasionally gen-
erated at this ratio, they generally contain at least several hundred MISes. Thus, it is very difficult in practice to generate
〈2, 2, 2〉-formulae knowledge bases exhibiting small numbers of MISes (e.g., less than 100). This also helps to explain why,
for this s, only one sample was found to have a probability of 10 s feasibility equal to 1. In general terms, we can see that
mimus can compute as many as 60,000 MISes within 10 s for many complex formulae, e.g., where s = 〈2, 2, 2〉, while in

1682 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Fig. 9. Mean runtime and number of MISes for random 20 variable s-formulae knowledge bases around the phase transition region. Each increment of r
represents a sample S where |S| = 1000. The left y-axis indicates the mean runtime while the right y-axis indicates the mean number of MISes. In each
case, the complete points indicate the results for S since PFGen(S, 10) = 1, while the incomplete points indicate the results for FGen(S, 10).

others, e.g., where s = 〈2〉, the number of MISes computed within 10 s is much lower. So, given that 〈2, 2, 2〉-formulae are
more complex than 〈2〉-formulae, this suggests that there is no obvious correlation between s-formula complexity and the
number of MISes in 10 s feasible knowledge bases.

5.3.3. Summary
In summary, the findings of these experiments on properties of random inconsistent knowledge bases and the perfor-

mance of mimus in computing MISes, include:

• the probability of generating an inconsistent random fixed-shape knowledge base increases with the formula : variable
ratio (r) (see Fig. 2);

• the interval values of r where the probability of generating inconsistent knowledge bases rapidly increases (i.e., the
phase transition region) is dependent on the type of fixed-shape formulae (s) (see Figs. 2 and 4);

• increasing the number of variables (v) serves to sharpen this region (see Fig. 3);
• when v is fixed, the number of MISes in a random inconsistent knowledge base explodes in the phase transition region

(see Figs. 5 and 6);
• this explosion occurs more quickly as the number of variables is increased (see Fig. 6);
• the number of variables has a major impact on the feasibility of computing MISes (see Fig. 6);
• when v is fixed, the number of MCSes has a greater impact on the performance of mimus, using MUS generalization,

than the number of MISes (see Fig. 7);
• the generalization approach for finding MISes significantly outperforms optimized MUS transformation (see Fig. 8); and

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1683
Fig. 9. (continued)

• there is no clear correlation between s-formula complexity and the number of MISes in 10 s feasible knowledge bases
(see Fig. 9).

In the following section we will consider how these approaches to finding MISes can be incorporated into practical
inconsistency handling techniques using a variety of inconsistency measures.

6. Measuring the inconsistency of formulae

In the previous sections we have shown that computing the MISes of a knowledge base is possible. However, in terms
of inconsistency handling, identifying MISes is not a solution in itself. Taking the approach of inconsistency resolution for
example, the next step would be to modify the parts of the knowledge base involved in inconsistency. However, when
considering large or highly inconsistent knowledge bases, manually resolving these inconsistencies would quickly become
impractical. Furthermore, not all parts of the knowledge base involved in inconsistency contribute equally to the inconsis-
tency of the base. For this reason, the area of inconsistency measurements has developed.

Obviously there are too many existing inconsistency measures for us to provide a comprehensive overview. However,
Fig. 10 shows the classification of a selection of relevant formula-level (and some important base-level) inconsistency
measures from the literature. These include: the measure from [30] (denoted IncG in [31]); η-consistency from [38]; the
Coherence measure from [34]; the S scoring function from [35]; the IMI , ILPm and MIMI measures from [33]; the SIMI and
SILPm

Shapley Inconsistency Values also from [33]; the IR , MIVR , IW and MIVW measures from [47]; the Blamev measure from
[48]; the BlameL measure from [49]; the IDMUS measure from [69]; and the IPm measure from [36]. Each circle indicates a
particular category of measure where the intersections indicate measures which fall into multiple categories.

In terms of the level at which inconsistency is measured, IncG , η-consistency, Coherence, IMI , ILPm , IR , IW and IDMUS are
all base-level measures, while MIMI , SIMI , SILP , MIVR , MIVW , Blamev and BlameL are all formula-level measures. However,
m

1684 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Fig. 10. Euler diagram for the classification of some existing inconsistency measures. In this paper we focus on those in the grey intersection, i.e., formula-
centric formula-level measures.

Fig. 11. Euler diagram for the knowledge base K6 from Example 10 showing MI(K6) = {Φ1, Φ2, . . . , Φ5}. The intersections indicate formulae which con-
tribute to multiple MISes, i.e., φ11 = fuelEfficient, φ9 = offRoad and φ10 = ¬expensive.

the S scoring function and the IPm measure can be considered as a special case since they represent subset-level measures,
i.e., they can be applied both as base-level and as formula-level measures.

The measures can be similarly classified as formula-centric and atom-centric measures. In this case, η-consistency, IMI ,
S, MIMI , SIMI , IR , IW and Blamev are all formula-centric measures while IncG , Coherence, ILPm , and SILPm

are all atom-centric
measures. Measures that are considered both atom-centric and formula-centric are those which deal with atoms (rather
than formulae) involved in some formula-centric characterization of inconsistency such as MISes. The measures BlameL ,
IDMUS and IPm fall into this category.

As discussed previously, formula-level measures can be more useful than base-level measures from a perspective of
inconsistency resolution. The reason for this is that they allow an inconsistency value to be assigned to formulae based on
their involvement in the inconsistency of the base, rather than simply assigning an inconsistency value to the knowledge
base as a whole. MISes are particularly suitable for defining this type of measure since they represent the purest form of
formula-centric inconsistency [63,33,48]. Specifically, every formula in a MIS is essential, i.e., removing any formula would
resolve that particular MIS, so the more MISes in which a particular formula is involved, the more it contributes to the
inconsistency of the base. Fig. 11 demonstrates this concept with the knowledge base K6 from Example 10.

Also, it is often the case that knowledge bases contain additional information which may be useful in characterizing
the responsibility of formulae for the inconsistency of the base. In the case of stratified knowledge bases for example,
where some formulae are considered more important than others, it may be useful to also consider this when measuring
inconsistency. Some measures, such as Blamev and BlameL , can take this additional information into account. So, for each

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1685
formula in a knowledge base, the inconsistency value is based on its contribution to inconsistency as well as its degree of
importance in the base.

Either way, once an inconsistency ordering of formulae in a knowledge base has been determined, methods such as
deletion, splitting or weakening [26] of the most inconsistent formulae, provide a means to systematically and efficiently
remove the causes of inconsistency in the base by resolving MISes. The practical benefit of these measures in relation to
inconsistency resolution in a network IDS rule set has been discussed in [49].

Although many different inconsistency measures have been proposed theoretically, there is little practical discussion
about the implementation of these measures, nor about the feasibility of computing these measures for arbitrary knowledge
bases with hundreds or thousands of formulae, such as in QRadar7 or Snort8 systems. In most theoretical studies, only toy
examples were used. To systematically study the feasibility of computing inconsistency measures for a given knowledge
base, in this section we provide a brief overview of some well known inconsistency measures. These include: the MIMI

and SIMI measures for flat knowledge bases; and the Blamev and BlameL measures for stratified knowledge bases. The
rational for selecting these measures is that they represent formula-centric formula-level inconsistency measures, founded
on MISes, which can be applied to traditional or stratified knowledge bases. As discussed previously, formula-level measures
represent a more discriminative inconsistency measure in terms of the syntactic composition of the knowledge base which
is useful for a range of applications. Moreover, MISes are often viewed as representing the purest form of formula-centric
inconsistency [63,33,48] so formula-level measures based on them are intuitive. The S scoring function is omitted from our
study since, when applied to a formula, S is equivalent to the MIMI measure. We also omit the MIVR and MIVW measures
since they represent an extension of the SIMI measure which has been incorporated into the Blamev measure. We omit
other types of formula-level measures which are not based on MISes, e.g., those based on inconsistent truth assignments in
paraconsistent models, such as SILPm

. We then carry out a full evaluation of these measures (which have been implemented
in mimus) using the randomly generated arbitrary knowledge bases discussed in the previous section.

6.1. Measures for flat knowledge bases

A simple base-level measure, denoted IMI(K), was defined in [33] as the number of causes of (formula-centric) inconsis-
tency in a knowledge base K , i.e., IMI(K) = |MI(K)|. A simple formula-level measure for a formula φ ∈ K , denoted MI(K , φ),
was then defined in terms of a base-level measure I. When IMI is applied as an MI formula-level measure on φ ∈ K , denoted
MIMI (K , φ), the result is the total number of MISes in which φ is involved. In other words, since every formula in a MIS is
essential, MIMI(K , φ) is the number of MISes that would be resolved if φ were removed from K . So, the more inconsistencies
caused by φ, the higher the MIMI value of φ.

The Shapley Inconsistency Value (SIV), another formula-level inconsistency measure, was also proposed in [33]. This
measure takes a base-level inconsistency measure as a payoff function in coalitional form and, using the Shapley value from
coalitional game theory, determines a proportional inconsistency value for each formula in a knowledge base. So, given a
knowledge base K and ∀Φ ⊆ K , the SIV for φ ∈ K , denoted SI(K , φ), calculates the sum of the inconsistency of φ w.r.t. Φ ,
normalized with a weighting for Φ w.r.t. K . Unfortunately, given a knowledge base K , a formula φ ∈ K and a base-level
inconsistency measure I, then the number of subsets is exponential on the size of K where, for each Φ ⊆ K , the value of
I(Φ) − I(Φ \ {φ}) must be computed in order to calculate the value of SI(K , φ). So, compounded with the complexity of the
underlying base-level inconsistency measure I, the SIV is a computationally difficult measure to calculate. However, a logical
property of the IMI measure when applied as a SIV allows a feasible computation of this particular SIV [32]. Basically, when
the IMI measure is applied as a SIV on a formula φ ∈ K , denoted SIMI (K , φ), the result is the sum of the inverse of the
cardinality of each MIS in which φ is involved, i.e., ∀Φ ∈ MI(K) s.t. φ ∈ Φ ,

∑ 1
|Φ| .

6.2. Measures for stratified knowledge bases

If there are two formulae, φ ∈ K and φ′ ∈ K , which are equally involved in the MISes of K , but where φ is considered
more important than φ′ , then it makes sense that they should not be treated equally from a perspective of inconsistency
resolution. However, both MIMI and SIMI are based solely on the involvement of φ and φ′ in the MISes of K , which means
that MIMI (K , φ) = MIMI (K , φ′) and SIMI (K , φ) = SIMI (K , φ′). To address this issue, a number of inconsistency measures have
been proposed which can discriminate between the responsibility of φ and φ′ for the inconsistency of K , if K is stratified.
Before discussing these however, we first introduce a particular type of stratified knowledge base.

Definition 20. Let K be a knowledge base. Let [K] be a partition of K where [K] = {K1, . . . , Kn}. Let Km �p Km+1 (where
1 ≤ m < n) denote that Km has a higher priority than Km+1. A prioritized knowledge base9 K̂ from K is an n-tuple of cells
from [K], denoted K̂ = 〈K1, . . . , Kn〉, where K1 �p . . . �p Kn .

7 QRadar is an exploit detection system from Q1 Labs/IBM.
8 Snort is an industry standard network IDS.
9 For the purposes of this work, we simplify the definition of a Type-II prioritized knowledge base presented in [48].

1686 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Let K̂ (i) denote the i-th priority level of K̂ . Given a prioritized knowledge base K̂ = 〈K1, . . . , Kn〉, then the flattening of K̂ ,
denoted K̂ , is defined as

K̂ =
n⋃

i=1

K̂ (i).

To illustrate this definition, we introduce a prioritized version of the knowledge base K6 from Example 10, which will
be referred to for the remainder of this paper.

Example 15. Given the knowledge base K6 = {φ1, φ2, . . . , φ14} from Example 10, then the prioritized knowledge base K̂6 is
defined as

K̂6 = 〈{φ1, φ2, φ3, φ4, φ5, φ6, φ7}, {φ11, φ14}, {φ8, φ9, φ10, φ12, φ13}
〉
.

The knowledge base K6 represents a scenario of choosing a new family car. In particular, the formulae φ1, φ2, . . . , φ7
represent domain knowledge while the formulae φ8, φ9, . . . , φ14 represent the combined preferences from different family
members. In this case, the family’s preferences are constrained by domain knowledge and so, in the prioritized knowledge
base K̂6, domain knowledge has a higher priority level than preferences. Moreover, the formulae φ11 and φ14 are agreed
by the family to be the most important (or desirable) preferences. In other words, K̂1 has three priority levels representing
domain knowledge, more important preferences and less important preferences, in that order.

The Blamev measure was introduced in [48] as a formula-level inconsistency measure for prioritized knowledge bases.
Essentially, given a prioritized knowledge base K̂ and a formula φ ∈ K̂ , then Blamev(K̂ , φ) is a measure of the involvement
of φ in the MISes of K̂ , over each priority level. As such the result of Blamev(K̂ , φ), where K̂ = 〈K1, . . . , Kn〉, is a vector of
n inconsistency values representing the inconsistency of φ at each level. So using lexicographic ordering between vectors,
the Blamev measure can identify a total order over formulae in a prioritized knowledge base in terms of their involvement
in the MISes of the base as well as their relative priority.

The final inconsistency measure we discuss, denoted BlameL , was introduced in [49] as an extension to the Blamev

measure. Unlike the three previous measures, BlameL also considers the atoms involved in MISes. Essentially the Blamev

measure is extended with a new significance function for MISes, defined in terms of the normalized number of atoms
at each priority level of a MIS. The rational being that if two formulae are of varying degrees of complexity, e.g., where
φ4 : sporty → (expensive ∧ (black ∨ red ∨ white)) is more complex than φ12 : sporty, then they should not be treated as
contributing equally to the inconsistency of the base. This is also the approach subsequently applied in the IDMUS measure
from [69]. In general the BlameL measure provides a deeper inspection of the formulae involved in inconsistency. In this
way, blame can be attributed to formulae in terms of their involvement in inconsistency, their knowledge base priority level
and their syntactic complexity.

6.3. A practical example

A full comparison, based on the knowledge base K6 from Example 10 (prioritized as K̂1 in Example 15), of the four
inconsistency measures reviewed in this section is shown in Table 1. The formula φ5 is assigned a null inconsistency value
by each measure, since φ5 is a free formula. The simplest measure MIMI produces an inconsistency ordering with two strata
where φ9, φ10 and φ11 are considered (equally) as more inconsistent than the remaining formulae. On the other hand, the
more discriminative SIMI measure identifies φ9 and φ10 equally as being more inconsistent than φ11. Unsurprisingly, when
the prioritization of formulae is taken into consideration (as K̂6) by the measures Blamev and BlameL , a more precise
inconsistency ordering is found. Interestingly, Blamev identifies φ9 as most inconsistent, while in contrast, BlameL identifies
φ10 as the most inconsistent. This disagreement can be explained by the number of atoms involves in the MISes for which
φ9 and φ10 are responsible, as well as the distribution of atoms across priority levels.

6.4. Experiments

Having analyzed properties of random fixed-shape knowledge bases and the feasibility of finding MISes with mimus

in the previous section, we can now begin to focus on the main motivation behind this work, i.e., the computation of
formula-level inconsistency measures. First of all, given a knowledge base K , then the cardinality sum of MISes is defined as:∑

Φ∈MI(K)

|Φ|.

In Fig. 12, the mean runtime required to calculate the MIMI and SIMI measures for all formulae in a knowledge base is
shown w.r.t. cardinality sum of MISes. In this case, the subset of random inconsistent knowledge bases generated in Fig. 9,
exhibiting between 1 and 1000 MISes, were divided into 40 (varying) sample groups for each s: those with 1–25 MISes;
those with 26–50 MISes; etc. Then, for each s and for each sample group, the mean cardinality sum of MISes and the mean
calculation time for each measure were recorded. The purpose of this was to allow the calculation time to be analyzed

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1687
Table 1
Comparison of formula-level inconsistency values for the knowledge base K6 from Exam-
ple 10 (and the related prioritized knowledge base K̂6 from Example 15) rounded to 2
decimal places. Each row represents a formula φi ∈ K6 and each column represents the
inconsistency value for φ w.r.t. a formula-level inconsistency measure. Darker cells denote
formulae which are more inconsistent w.r.t. this measure.

Fig. 12. Mean runtime required to calculate the MIMI and SIMI measures w.r.t. the cardinality sum of MISes for samples of random fixed-shaped knowledge
bases with up 1000 MISes and different mean MIS cardinalities.

1688 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
Fig. 13. Mean runtime required to calculate the Blamev measure w.r.t. the cardinality sum of MISes for samples of random fixed-shaped knowledge bases
with up 1000 MISes and different mean MIS cardinalities.

Fig. 14. Mean runtime required to calculate the Blamev measure w.r.t. the cardinality sum of MISes for samples of random fixed-shaped knowledge bases
with up 1000 MISes and different degrees of prioritization.

w.r.t. the cardinality sum of MISes while avoiding the difficulty in randomly generating specific numbers of MISes. However,
the limitation was that the number of samples in each group decreased with the increasing number of MISes caused by
the explosion of MISes in the phase transition region. Next, in order to evaluate the effect of MIS cardinality, mean MIS
cardinality values were determined for each s and these are shown in the figure. Clearly calculating the MIMI and SIMI

measures is linear in time w.r.t. the cardinality sum of MISes. Moreover, the cardinality of individual MISes is irrelevant as
long as the cardinality sum of MISes remains the same.

By repeating this experiment on the Blamev measure, differences between this measure and the previous measures
become apparent. Fig. 13 shows that while this measure is also linear in time w.r.t. the cardinality sum of MISes, in this
case the cardinality of MISes does have an impact on runtime. It is clear that random knowledge bases with larger MISes,
i.e., where the mean MIS cardinality is 30.78, represent more difficult problems. The explanation for this overhead is the
requirement to compute Oppv for each formulae in a MIS (see full definition in [48]). Aside from this, the Blamev measure
is significantly more difficult than the MIMI and SIMI measures (taking around 200 ms for a 10,000 cardinality sum of MISes,
given a flat knowledge base with 6.64 mean MIS cardinality, compared to 4 ms and 6 ms for MIMI and SIMI , respectively).

Up to this point we have only carried out experiments on flat knowledge bases. However, in order to accurately evaluate
the Blamev and BlameL prioritized measures, random prioritized knowledge bases must also be generated. The format used
by mimus to represent these prioritized knowledge bases is to append an integer to each formula representing its relative
ordering. So, in order to randomly prioritize a knowledge base K with n levels (where n ≤ |K |), a tool was implemented
using the in-built bash pseudo-random integer generator $RANDOM. Then for each φ ∈ K , an integer 1 ≤ i ≤ n was randomly
generated and assigned to φ. After all formulae were assigned a priority level, the knowledge base was analyzed to ensure
that the number of unique priority levels was exactly n. If this was not the case then the process was repeated until the
knowledge base contained exactly n priority levels.

Fig. 14 shows the results of an experiment on calculating the Blamev measure for this type of randomly generated
prioritized knowledge base. Specifically, the set of 〈2, 2〉-formulae knowledge bases from Fig. 13 were randomly prioritized

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1689
Fig. 15. Mean runtime required to calculate the BlameL measure w.r.t. the cardinality sum of MISes for samples of random fixed-shaped knowledge bases
with up 1000 MISes and for each shape s ∈ {〈2〉, 〈2, 2〉, . . . , 〈2, 2, 2, 2〉}.

with n ∈ {1, 2, 4, 8} priority levels. Again the knowledge bases, exhibiting between 1 and 1000 MISes, were split into 40
sample groups and, for each sample group, the mean calculation time and mean cardinality sum of MISes were recorded.
In this case we can see that increasing the number of priority levels in a knowledge base results in a linear increase in the
runtime required to calculate the Blamev measure (taking an additional 100 ms per level given a 10,000 cardinality sum of
MISes). Whether a knowledge base is flat or prioritized has no effect on the difficulty of finding MISes.

The final experiment is shown in Fig. 15. Since BlameL is an extension of the Blamev measure, properties of Blamev ,
such as the effect of MIS cardinality and priority levels, will also be true for BlameL . For this reason the mean Blamev

time was subtracted from the mean BlameL time and so Fig. 15 only shows the additional time required to calculate
BlameL . This serves to isolate the computation time required to calculate the additional information and, importantly,
to accurately evaluate the effect of formula complexity on this measure. So, given the same sample groups of random
s-formulae knowledge bases from Fig. 13, Fig. 15 shows the additional runtime required to calculated the BlameL measure
w.r.t. the cardinality sum of MISes for each s. The results are unsurprising in that the most difficult knowledge bases w.r.t.
BlameL are those with the most complex formulae, e.g., where s = 〈2, 2, 2, 2〉.

7. Related work

There are very few implementations of MIS-based formula-level inconsistency measures for knowledge bases. As far
as we are aware, the most relevant examples include: an implementation for measuring incoherence in description logic
through scoring functions [61]; an implementation of an abstract and refine technique for finding MUSes, using the SIMI mea-
sure as a heuristic on arbitrarily grouped clauses [28]; the incmeasurer tool for measuring the significance of inconsistency
in requirements specifications from [45]; and the prism reasoning platform (based on the SIMI measure) from [39].

The Scoring function from [35] is defined for a knowledge base K and ∀Φ ⊆ K , denoted S(K , Φ), as S(K , Φ) = |MI(K)| −
|MI(K \ Φ)|. As mentioned in Section 6, the Scoring function is equivalent to the MIMI measure when applied to individual
formulae in a knowledge base, i.e., ∀φ ∈ K then S(K , {φ}) = MIMI (K , Φ). In description logic, the notion of incoherence in
ontologies corresponds (loosely) to the notion of inconsistency in classical knowledge bases. In particular, the notion of
minimal incoherence-preserving sub-TBoxes (MIPSes) corresponds to the notion of MISes. The relationship between MIPSes
and MISes was used in [61] to extend the Scoring function for ontologies in description logic. This new scoring function
for ontologies was implemented using the kaon2 reasoner10 and MIPSes were found through a process incorporating an
early algorithm for computing MUSes [16]. A preliminary experimental evaluation was then carried out using three existing
ontology datasets. While this evaluation is limited, it is interesting because it represents an experimental evaluation of
formula-level inconsistency measures involving real-world data. However, since this implementation is based on description
logic, it is not strictly comparable to mimus.

In [28], a new abstract and refine technique for computing MUSes was proposed to improve the feasibility of the hycam

algorithm from [29]. This work was primarily concerned with computing a single MUS but also supported the computation
of the exhaustive set of MUSes. In particular, this approach involves arbitrarily splitting a set of clauses into m clause groups
(called clusters), then finding the set of GMUSes and using SIMI to measure the inconsistency of each clause group. Then,
based on these inconsistency values, clauses groups are split or pruned in order to refine the search space. A MUS is found
when each clause group in a GMUS consists of a single clause. Essentially, the SIMI measure is used as a heuristic to indicate
where low-level MUSes might be found w.r.t. GMUSes in a set of arbitrarily constructed clause groups. This is an interesting

10 http :/ /kaon2 .semanticweb .org.

http://kaon2.semanticweb.org

1690 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
application of a formula-level inconsistency measure since it shows that these measures can improve the efficiency of
computing low-level MUSes. In fact, this approach could be easily adapted to find GMUSes in a predefined set of clause
groups where these clause groups, rather than individual clauses, could be clustered. Thus, formula-level inconsistency
measures could be applied during the actual search for MISes.

In terms of the incmeasurer tool, a new algorithm was proposed for finding MISes as a variation on an existing algo-
rithm for finding MSSes from [44]. Specifically, the algorithm formulates the task of finding MISes as a breadth-first search
problem in a binomial tree. However, in contrast to the state-of-the-art work on finding MUSes, the algorithm does not
exploit the relationship between the dual concepts of MSSes (resp. MCSes) and MUSes (resp. MISes). Instead the algorithm
computes MISes directly and so, while it benefits from root and leaf pruning (as is the case in [44]), it requires expensive
unsatisfiability tests. Also, since it is possible to find locally minimal subsets w.r.t. one branch which are not minimal w.r.t.
the set of subsets for the tree, the algorithm requires a post-check for set inclusion to remove these pseudo-minimal subsets.

The implementation of this algorithm in incmeasurer requires arbitrary formulae to be input in CNF and uses the sat4j
11

library to determine unsatisfiability. In other words, this implementation finds GMUSes, rather than strictly finding MISes.
So in order to integrate this into a real-world arbitrary knowledge base system, CNF conversion and a mapping of formulae
to clauses would also be required (as described in Algorithm 1). Furthermore, there has been no experimental evaluation
of the performance of incmeasurer. However, since the sat4j library is designed for flexibility and ease of use rather than
performance, and given that their algorithm does not exploit the state-of-the-art hitting set dualization approach, it is
unlikely that incmeasurer would perform as well as other systems (e.g., mimus) which are based on implementations such
as camus or hycam.

As for the prism reasoning platform, arbitrary formulae are automatically converted to equisatisfiable CNF using the
Tseitin [68] translation. This allows conversion of arbitrary formulae to CNF with (at most) a linear, rather than exponential,
increase in size at the cost of introducing additional variables. Then the sat4j in-built GMUS implementation is used to
find GMUSes in the equisatisfiable CNF which are mapped back to the original formulae. Again, no experimental evaluation
of this method for finding MISes, nor of the SIMI measure, was carried out in this work. Aside from CNF translation, it is
unlikely that prism would outperform mimus in terms of computing MISes, since (as with incmeasurer) prism is based on
the sat4j library. In fact the GMUS implementation in sat4j actually proved unreliable in the recent SAT 2011 Competition,12

where it produced 40.61% bad answers (incorrect results). However, the authors of prism have identified this limitation and
have suggested incorporating camus or hycam in future work.

Each system represents an interesting application of formula-level inconsistency measures, namely: incoherence in de-
scription logic ontologies; a heuristic MUS search; inconsistency in requirements specifications; and a reasoning platform
based on the SIMI measure, respectively. Of the four examples, incmeasurer and prism are most closely related to mimus.
However, in terms of performance, their reliance on the sat4j library for finding GMUSes means that other systems which
are based on state-of-the-art implementations such as camus or hycam (e.g., mimus), are likely to outperform them in
terms of finding MISes. On the other hand, given that mimus currently incorporates exponential CNF conversion, the Tseitin
translation (used by prism) for CNF conversion is an interesting optimization and could be included in future versions of
mimus. Importantly, the main limitation of these two systems as we see it, is the lack of an experimental evaluation. We
believe that the approach taken in our evaluation, in terms of generating random arbitrary knowledge bases, represents a
suitable and effective means of evaluating these systems.

8. Conclusion

In this paper we have argued that there is a need for an automated approach to inconsistency handling in many real-
world knowledge bases. To that end we have suggested the use of formula-level inconsistency measures, based on MISes, as
a viable means of achieving this. Through the development and implementation of the mimus tool, followed by an extensive
evaluation with random arbitrary knowledge bases, we have demonstrated the feasibility of this approach. In particular, MUS
algorithms such as camus represent a practical means to accomplish the computationally difficult task of finding MISes. Our
evaluation has shown that these algorithms are viable for many large and complex inconsistent knowledge bases. In terms of
calculating MIS-orientated formula-level inconsistency measures, our experiments have shown that they are comparatively
trivial to compute after the set of MISes has been found.

To summarize the main contributions of this paper, we have:

• established connections between MUSes (from the SAT community) and MISes (from the inconsistency measure com-
munity);

• presented an existing MUS generalization approach to finding MISes;
• proposed an alternative optimized MUS transformation approach;
• implemented both approaches to finding MISes (using the state-of-the-art camus MUS algorithm) in a tool called mimus;
• selected and compared a representative sample of formula-level inconsistency measures from the literature, including

those for stratified knowledge bases;

11 http://www.sat4j.org.
12 http://www.cril.univ-artois.fr/SAT11/results.

http://www.sat4j.org
http://www.cril.univ-artois.fr/SAT11/results

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1691
• implemented this selection of inconsistency measures in mimus;
• proposed the use of genbal to generate random arbitrary knowledge bases (including stratified knowledge bases) and

described their characteristics in terms of inconsistency and MISes; and
• completed an extensive experimental evaluation of mimus using these random arbitrary knowledge bases.

The approach taken during this evaluation of mimus, in terms of generating random arbitrary propositional knowledge
bases (both flat and stratified), provides a useful foundation for evaluating a number of similar applications. These include:

• other inconsistency measures for propositional knowledge bases not included in this work, such as base-level and
model-based measures;

• belief merging and revision operators which are still largely theoretical; and
• uncertain knowledge bases where random formulae could, for example, be assigned a random probability value.

The nature of real-world systems means that it can be a challenge to obtain suitable knowledge bases for evaluating these
applications. This in itself can limit such an evaluation because of the quantity and variety of experimental data available.
While not a comprehensive solution, random knowledge bases on the other hand provide a solid and well supported source
of experimental data. The properties of random knowledge bases identified and discussed in this evaluation, such as sharp
phase transitions and the explosion of MISes, will have implications for these applications also.

In terms of future work, we plan to investigate the use of an equisatisfiable CNF translation of arbitrary formulae during
MIS computation. We intend to implement this in mimus to support an experimental evaluation. We also aim to extend this
type of evaluation (using randomly generated arbitrary knowledge bases) to other application areas. Evaluating implemen-
tations of belief merging operators is particularly suitable since obtaining suitable test data represents a similar challenge as
faced when evaluating mimus. Finally, having demonstrated the viability of mimus, as well as the benefit of these measures
in terms of analyzing large inconsistent knowledge bases, we hope to incorporate this tool into a real-world knowledge base
system.

Acknowledgements

This work was supported by the EPSRC projects EP/G034303/1, EP/H049606/1 and EP/J012149/1. We would like to thank
Jianbing Ma for his helpful comments on the proof for Theorem 1. We would also like to thank the anonymous referees for
their insightful and constructive feedback.

References

[1] Salem Benferhat, Didier Dubois, Henri Prade, Argumentative inference in uncertain and inconsistent knowledge bases, in: Proceedings of the 9th
International Conference on Uncertainty in Artificial Intelligence, 1993, pp. 411–419.

[2] Nuel Belnap, A useful four-valued logic, in: Modern Uses of Multiple-Valued Logic, 1977, pp. 8–37.
[3] Philippe Besnard, Éric Grégoire, Cédric Piette, Badran Raddaoui, MUS-based generation of arguments and counter-arguments, in: Proceedings of the

2010 IEEE International Conference on Information Reuse & Integration, 2010, pp. 239–244.
[4] Philippe Besnard, Anthony Hunter, Quasi-classical logic: non-trivializable classical reasoning from inconsistent information, in: Symbolic and Quantita-

tive Approaches to Uncertainty, in: LNCS, vol. 946, 1995, pp. 44–51.
[5] Anton Belov, Matti Järvisalo, João Marques-Silva, Formula preprocessing in MUS extraction, in: Proceedings of the 19th International Conference on

Tools and Algorithms for the Construction and Analysis of Systems, 2013, pp. 108–123.
[6] Elazar Birnbaum, Eliezer Lozinskii, Consistent subsets of inconsistent systems: structure and behaviour, J. Exp. Theor. Artif. Intell. 15 (1) (2003) 25–46.
[7] Gerhard Brewka, Preferred subtheories: an extended logical framework for default reasoning a framework for nonmonotonic systems, in: Proceedings

of the 11th International Joint Conference on Artificial Intelligence, 1989, pp. 1043–1048.
[8] Renato Bruni, Minimal unsatisfiable subformulae by means of adaptive core search, Discrete Appl. Math. 130 (2) (2003) 85–100.
[9] Steve Barker, Peter Stuckey, Flexible access control policy specification with constraint logic programming, ACM Trans. Inf. Syst. Secur. 6 (4) (2003)

501–546.
[10] James Bailey, Peter Stuckey, Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization, in: Proceedings of the 7th Interna-

tional Conference on Practical Aspects of Declarative Languages, 2005, pp. 174–186.
[11] Claudette Cayrol, Marie-Christine Lagasquie-Schiex, Thomas Schiex, Nonmonotonic reasoning: from complexity to algorithms, Ann. Math. Artif. Intell.

22 (3–4) (1998) 207–236.
[12] Amin Coja-Oghlan, Alan Frieze, Random k-SAT: the limiting probability for satisfiability for moderately growing k, Electron. J. Comb. 15 (1) (2008) N2.
[13] Johannes Dellert, Interactive extraction of minimal unsatisfiable cores enhanced by meta learning, Informatik diplom, Eberhard Karls Universität Tübin-

gen, 2013.
[14] Emanuele Di Rosa, Enrico Giunchiglia, Marco Maratea, Solving satisfiability problems with preferences, Constraints 15 (4) (2010) 485–515.
[15] Johan de Kleer, Brian Williams, Diagnosing multiple faults, Artif. Intell. 32 (1) (1987) 97–130.
[16] Maria Garcia de la Banda, Peter Stuckey, Jeremy Wazny, Finding all minimal unsatisfiable subsets, in: Proceedings of the 5th ACM SIGPLAN International

Conference on Principles and Practice of Declaritive Programming, 2003, pp. 32–43.
[17] Niklas Eén, Armin Biere, Effective preprocessing in SAT through variable and clause elimination, in: Proceedings of the 8th International Conference on

Theory and Applications of Satisfiability Testing, 2005, pp. 1–15.
[18] Thomas Eiter, Georg Gottlob, On the complexity of propositional knowledge base revision, updates, and counterfactuals, Artif. Intell. 57 (2–3) (1992)

227–270.
[19] Niklas Eén, Niklas Sörensson, An extensible SAT-solver, in: Proceedings of the 6th International Conference on Theory and Applications of Satisfiability

Testing, 2003, pp. 502–518.

http://refhub.elsevier.com/S0888-613X(14)00102-9/bib42656E66657268617431393933s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib42656E66657268617431393933s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib42656C6E617031393737s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4265736E61726432303130s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4265736E61726432303130s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4265736E61726431393935s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4265736E61726431393935s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib42656C6F7632303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib42656C6F7632303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4269726E6261756D32303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib427265776B6131393839s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib427265776B6131393839s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4272756E6932303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4261726B657232303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4261726B657232303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4261696C657932303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4261696C657932303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib436179726F6C31393938s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib436179726F6C31393938s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib436F6A612D4F67686C616E32303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib44656C6C65727432303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib44656C6C65727432303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4469526F736132303130s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib44654B6C65657231393837s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib44656C6142616E646132303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib44656C6142616E646132303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib45656E32303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib45656E32303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib456974657231393932s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib456974657231393932s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib45656E32303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib45656E32303033s1

1692 K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693
[20] Olivier Fourdrinoy, Éric Grégoire, Bertrand Mazure, Lakhdar Saïs, Eliminating redundant clauses in SAT instances, in: Proceedings of the 4th Interna-
tional Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 2007, pp. 71–83.

[21] Abraham Flaxman, Algorithms for random 3-SAT, in: Encyclopedia of Algorithms, 2008, pp. 742–744.
[22] John Franco, John Martin, A history of satisfiability, in: Armin Biere, Marijn Heule, Hans van Maaren, Toby Walsh (Eds.), Handbook of Satisfiability, in:

Frontiers in Artificial Intelligence and Applications, vol. 185, IOS Press, 2009, pp. 3–76 (Chapter 1).
[23] Ehud Friedgut, Sharp thresholds of graph properties, and the k-sat problem, J. Am. Math. Soc. 12 (4) (1999) 1017–1054.
[24] Alexander Felfernig, Monika Schubert, Christoph Zehentner, An efficient diagnosis algorithm for inconsistent constraint sets, Artif. Intell. Eng. Des. Anal.

Manuf. 26 (1) (2011) 53–62.
[25] John Govaerts, Arosha Bandara, Kevin Curran, A formal logic approach to firewall packet filtering analysis and generation, Artif. Intell. Rev. 29 (3–4)

(2009) 223–248.
[26] John Grant, Anthony Hunter, Measuring consistency gain and information loss in stepwise inconsistency resolution, in: Proceedings of the 11th Euro-

pean Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2011, pp. 362–373.
[27] Éric Grégoire, Bertrand Mazure, Cédric Piette, Local-search extraction of MUSes, Constraints 12 (3) (2007) 325–344.
[28] Éric Grégoire, Bertrand Mazure, Cédric Piette, Does this set of clauses overlap with at least one MUS?, in: Automated Deduction – CADE-22, in: LNCS,

vol. 5663, 2009, pp. 100–115.
[29] Éric Grégoire, Bertrand Mazure, Cédric Piette, Using local search to find MSSes and MUSes, Eur. J. Oper. Res. 199 (3) (2009) 640–646.
[30] John Grant, Classifications for inconsistent theories, Notre Dame J. Form. Log. 19 (3) (1978) 435–444.
[31] Anthony Hunter, Sébastien Konieczny, Approaches to measuring inconsistent information, in: Inconsistency Tolerance, in: LNCS, vol. 3300, 2005,

pp. 189–234.
[32] Anthony Hunter, Sébastien Konieczny, Measuring inconsistency through minimal inconsistent sets, in: Proceedings of the 11th International Conference

on Knowledge Representation, 2008, pp. 358–366.
[33] Anthony Hunter, Sébastien Konieczny, On the measure of conflicts: Shapley inconsistency values, Artif. Intell. 174 (14) (2010) 1007–1026.
[34] Anthony Hunter, Measuring inconsistency in knowledge via quasi-classical models, in: Proceedings of the 18th American National Conference on

Artificial Intelligence, 2002, pp. 68–73.
[35] Anthony Hunter, Logical comparison of inconsistent perspectives using scoring functions, Knowl. Inf. Syst. 6 (5) (2004) 1–16.
[36] Said Jabbour, Badran Raddaoui, Measuring inconsistency through minimal proofs, in: Proceedings of the 12th European Conference Symbolic and

Quantitative Approaches to Reasoning with Uncertainty, 2013, pp. 290–301.
[37] Ulrich Junker, QUICKXPLAIN: preferred explanations and relaxations for over-constrained problems, in: Proceedings of the 19th National Conference on

Artificial Intelligence, 2004, pp. 167–172.
[38] Kevin Knight, Measuring inconsistency, J. Philos. Log. 31 (1) (2002) 77–98.
[39] Sébastien Konieczny, Stéphanie Roussel, A reasoning platform based on the MI Shapley inconsistency value, in: Proceedings of the 12th European

Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2013, pp. 315–327.
[40] Mark Liffiton, Maher Mneimneh, Inês Lynce, Zaher Andraus, João Marques-Silva, Karem Sakallah, A branch and bound algorithm for extracting smallest

minimal unsatisfiable subformulas, Constraints 14 (4) (2008) 415–442.
[41] Mark Liffiton, Michael Moffitt, Martha Pollack, Karem Sakallah, Identifying conflicts in overconstrained temporal problems, in: Proceedings of the 19th

International Joint Conference on Artificial Intelligence, 2005, pp. 205–211.
[42] Inês Lynce, João Marques-Silva, On computing minimum unsatisfiable cores, in: Proceedings of the 7th International Conference on Theory and Appli-

cations of Satisfiability Testing, 2004, pp. 305–310.
[43] Mark Liffiton, Karem Sakallah, Algorithms for computing minimal unsatisfiable subsets of constraints, J. Autom. Reason. 40 (1) (2007) 1–33.
[44] Robert Malouf, Maximal consistent subsets, Comput. Linguist. 33 (2) (2007) 153–160.
[45] Kedian Mu, Zhi Jin, Weiru Liu, Didar Zowghi, Bo Wei, Measuring the significance of inconsistency in the viewpoints framework, Sci. Comput. Program.

78 (9) (2013) 1572–1599.
[46] Kedian Mu, Zhi Jin, Ruqian Lu, Weiru Liu, Measuring inconsistency in requirements specifications, in: Proceedings of the 8th European Conference on

Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2005, pp. 440–451.
[47] Kedian Mu, Weiru Liu, Zhi Jin, A general framework for measuring inconsistency through minimal inconsistent sets, Knowl. Inf. Syst. 27 (1) (2010)

85–114.
[48] Kedian Mu, Weiru Liu, Zhi Jin, Measuring the blame of each formula for inconsistent prioritized knowledge bases, J. Log. Comput. 22 (3) (2012)

481–516.
[49] Kevin McAreavey, Weiru Liu, Paul Miller, Kedian Mu, Measuring inconsistency in a network intrusion detection rule set based on snort, Int. J. Semant.

Comput. 5 (3) (2011) 281–322.
[50] Kevin McAreavey, Weiru Liu, Paul Miller, Chris Meenan, Tools for finding inconsistencies in real-world logic-based systems, in: Proceedings of the 6th

Starting AI Researchers’ Symposium, 2012, pp. 192–203.
[51] Yue Ma, Guilin Qi, Pascal Hitzler, Zuoquan Lin, Measuring inconsistency for description logics based on paraconsistent semantics, in: Proceedings of

the 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 2007, pp. 30–41.
[52] Muhammad Rafiq, Peter Stuckey, A stochastic non-CNF SAT solver, in: Proceedings of the 9th Pacific Rim International Conference on Artificial Intelli-

gence, 2006, pp. 120–129.
[53] Bertrand Mazure, Lakhdar Saïs, Éric Grégoire, A powerful heuristic to locate inconsistent kernels in knowledge-based systems, in: Proceedings of the

International Conference on Information Processing and Management of Uncertainty in Knowledge-Base Systems, 1996, pp. 1265–1269.
[54] João Marques-Silva, Federico Heras, Mikoláš Janota, Alessandro Previti, Anton Belov, On computing minimal correction subsets, in: Proceedings of the

23rd International Joint Conference on Artificial Intelligence, 2013, pp. 615–622.
[55] Alexander Nöhrer, Armin Biere, Alexander Egyed, Managing SAT inconsistencies with HUMUS, in: Proceedings of the 6th International Workshop on

Variability Modeling of Software-Intensive Systems, 2012, pp. 83–91.
[56] Alexander Nadel, Vadim Ryvchin, Ofer Strichman, Efficient MUS extraction with resolution, in: Proceedings of the 13th Conference on Formal Methods

in Computer Aided Design, 2013, pp. 197–200.
[57] Juan Navarro, Andrei Voronkov, Generation of hard non-clausal random satisfiability problems, in: Proceedings of the 20th National Conference on

Artificial Intelligence, 2005, pp. 436–442.
[58] Yoonna Oh, Maher Mneimneh, Zaher Andraus, Karem Sakallah, Igor Markov, AMUSE: a minimally-unsatisfiable subformula extractor, in: Proceedings

of the 41st Annual Conference on Design Automation, 2004, pp. 518–523.
[59] Graham Priest, Minimally inconsistent LP, Stud. Log. 50 (2) (1991) 321–331.
[60] Christos Papadimitriou, David Wolfe, The complexity of facets resolved, J. Comput. Syst. Sci. 37 (1) (1988) 2–13.
[61] Guilin Qi, Anthony Hunter, Measuring incoherence in description logic-based ontologies, in: The Semantic Web, in: LNCS, vol. 4825, 2007, pp. 381–394.
[62] Guilin Qi, Weiru Liu, David Bell, Measuring conflict and agreement between two prioritized belief bases, in: Proceedings of the 19th International Joint

Conference on Artificial Intelligence, 2005, pp. 552–557.
[63] Raymond Reiter, A theory of diagnosis from first principles, Artif. Intell. 32 (1) (1987) 57–95.

http://refhub.elsevier.com/S0888-613X(14)00102-9/bib466F75726472696E6F7932303037s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib466F75726472696E6F7932303037s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib466C61786D616E32303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib426965726532303039s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib426965726532303039s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib467269656467757431393939s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib46656C6665726E696732303131s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib46656C6665726E696732303131s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib476F76616572747332303039s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib476F76616572747332303039s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4772616E7432303131s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4772616E7432303131s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib477265676F6972653230303761s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib477265676F6972653230303961s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib477265676F6972653230303961s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib477265676F69726532303039s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4772616E7431393738s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303130s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303032s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303032s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib48756E74657232303034s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4A6162626F757232303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4A6162626F757232303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4A756E6B657232303034s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4A756E6B657232303034s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4B6E6967687432303032s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4B6F6E6965637A6E7932303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4B6F6E6965637A6E7932303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C69666669746F6E32303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C69666669746F6E32303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C69666669746F6E3230303561s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C69666669746F6E3230303561s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C796E63653230303461s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C796E63653230303461s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4C69666669746F6E32303037s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D616C6F756632303037s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D753230313361s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D753230313361s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7532303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7532303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7532303130s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7532303130s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7532303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7532303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D634172656176657932303131s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D634172656176657932303131s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D634172656176657932303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D634172656176657932303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D613230303761s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D613230303761s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7568616D6D616432303036s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D7568616D6D616432303036s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D617A75726531393936s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D617A75726531393936s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D6172717565732D53696C766132303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4D6172717565732D53696C766132303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4E6F6872657232303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4E6F6872657232303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4E6164656C32303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4E6164656C32303133s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4E61766172726F32303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4E61766172726F32303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4F6832303034s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib4F6832303034s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib50726965737431393931s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5061706164696D697472696F7531393838s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib516932303037s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib516932303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib516932303035s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib52656974657231393837s1

K. McAreavey et al. / International Journal of Approximate Reasoning 55 (2014) 1659–1693 1693
[64] Martin Roesch, Snort-lightweight intrusion detection for networks, in: Proceedings of the 13th USENIX Systems Administration Conference, 1999,
pp. 229–238.

[65] Carsten Sinz, Andreas Kaiser, Wolfgang Küchlin, Formal methods for the validation of automotive product configuration data, Artif. Intell. Eng. Des.
Anal. Manuf. 17 (1) (2003) 75–97.

[66] Gina Tjhai, Maria Papadaki, Steven Furnell, Nathan Clarke, Investigating the problem of IDS false alarms: an experimental study using snort, in:
Proceedings of the IFIP TC 11 23rd International Information Security Conference, 2008, pp. 253–267.

[67] Gina Tjhai, Maria Papadaki, Steven Furnell, Nathan Clarke, The problem of false alarms: evaluation with snort and DARPA 1999 dataset, in: Proceedings
of the 5th International Conference: Trust, Privacy and Security in Digital Business, 2008, pp. 139–150.

[68] Grigorii Samuilovich Tseitin, On the complexity of derivation in propositional calculus, in: Studies in Mathematics and Mathematical Logics, vol. 2,
1968, pp. 115–125.

[69] Guohui Xiao, Yue Ma, Inconsistency measurement based on variables in minimal unsatisfiable subsets, in: Proceedings of the 20th European Conference
on Artificial Intelligence, 2012, pp. 864–869.

[70] Lintao Zhang, Sharad Mali, Extracting small unsatisfiable cores from unsatisfiable boolean formula, in: Proceedings of the 6th International Conference
on Theory and Applications of Satisfiability Testing, 2003.

http://refhub.elsevier.com/S0888-613X(14)00102-9/bib526F6573636831393939s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib526F6573636831393939s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib53696E7A32303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib53696E7A32303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib546A68616932303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib546A68616932303038s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib546A6861693230303861s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib546A6861693230303861s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5473656974696E31393638s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5473656974696E31393638s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5869616F32303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5869616F32303132s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5A68616E6732303033s1
http://refhub.elsevier.com/S0888-613X(14)00102-9/bib5A68616E6732303033s1

	Computational approaches to ﬁnding and measuring inconsistency in arbitrary knowledge bases
	1 Introduction
	2 Preliminaries
	3 Background
	3.1 Associating MUSes and MISes

	4 Computing all MISes from MUSes
	4.1 Computing all MUSes
	4.2 Computing all MISes by MUS generalization
	4.3 Computing all MISes by optimized MUS transformation
	4.4 A practical example

	5 Evaluation for computing MISes
	5.1 Generating random unsatisﬁable SAT instances
	5.2 Generating random arbitrary formulae
	5.3 Experiments
	5.3.1 Generating suitable knowledge bases exhibiting MISes
	5.3.2 Performance of mimus
	5.3.3 Summary

	6 Measuring the inconsistency of formulae
	6.1 Measures for ﬂat knowledge bases
	6.2 Measures for stratiﬁed knowledge bases
	6.3 A practical example
	6.4 Experiments

	7 Related work
	8 Conclusion
	Acknowledgements
	References

