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Abstract: The ability of an autonomous agent to select rational actions is vital in enabling it to achieve its goals. To do
so effectively in a high-stakes setting, the agent must be capable of considering the risk and potential reward
of both immediate and future actions. In this paper we provide a novel method for calculating risk alongside
utility in online planning algorithms. We integrate such a risk-aware planner with a BDI agent, allowing us
to build agents that can set their risk aversion levels dynamically based on their changing beliefs about the
environment. To guide the design of a risk-aware agent we propose a number of principles which such an
agent should adhere to and show how our proposed framework satisfies these principles. Finally, we evaluate
our approach and demonstrate that a dynamically risk-averse agent is capable of achieving a higher success
rate than an agent that ignores risk, while obtaining a higher utility than an agent with a static risk attitude.

1 INTRODUCTION

The Belief-Desire-Intention (BDI) model (Bratman,
1987) is a framework for designing rational agents in
which an agent is defined by its set of beliefs (what
it knows about the world), desires (what changes it
wants to bring about), and intentions (desires it has
comitted to bring about) (Rao and Georgeff, 1991).
Many implementations based on the BDI model have
been proposed in the literature, including AgentS-
peak (Rao, 1996) and Conceptual Agent Notation
(CAN) (Sardina et al., 2006) and 2APL (Dastani,
2008). However, these implementations use pre-
defined plans instead of lookahead planning to de-
scribe the execution of intentions and they ignore
the uncertainty/risk involved with undertaking ac-
tions. In real-world scenarios, actions are often un-
certain (e.g. a door may not open as expected) or risky
(e.g. line jumping may get you to checkout sooner, or
end you up at the back of the line). Risk can be in-
terpreted in many different ways. Here, however, it is
defined as the possibility of obtaining a utility/reward
lower than the expected utility due to an undesired
outcome of taking an action.

Recently, a number of papers have considered in-
tegrating first principles planners (FPPs) into BDI im-
plementations (Sardina et al., 2006; Chen et al., 2014;
Bauters et al., 2014). This allows an agent to gen-
erate custom plans when an unexpected situation is
encountered.

However, none of these contributions use the po-
tential of a planning algorithm to assess risk. By ig-
noring risk, the capabilities of such agents are limited
in high-stakes scenarios where pursuing high utility
often entails high potential costs. Instead, we want to
give an agent the ability to balance the trade-off be-
tween maximising expected utility (increasing utility)
and minimising potential costs (lowering risk).

Different agents may also have different risk aver-
sion attitudes. The approach proposed in this paper
allows an agent to assess risk alongside utility, and to
adapt to changed situations with varying levels of risk.
The contributions of this paper are threefold. First,
we propose a novel approach to calculate the risk of
an action in an online fashion by modifying existing
state-of-the-art online FPPs. Second, we define how
an agent can interact with a planner and obtain a set of
actions with associated utility and risk assessments.
Third, we define a way to assess the expected effect
of a risk reduction, and a way to induce a level of risk
aversion based on the agent’s current beliefs.

The following principles guide and motivate our
work in specifiying how a rational agent should react:
Principle 1. A rational agent will only consider an
action with a lower utility (resp. higher risk) when this
also involves a lower risk (resp. higher reward).
Principle 2. An action with a lower utility will only
be adopted when it sufficiently reduces the risk ac-
cording to the desired level of risk aversion.
Principle 3. The level of risk aversion increases as



the number of resources decreases.
We later show that our work satisfies these principles.

We also consider the following running example.
A number of robots are trying to reach a destination
(e.g. nuclear reactor) in succession to avoid a disas-
ter (e.g. a meltdown). The behaviour of the agents,
for simplicity, is fully determined by the underlying
risk-aware FPP. Each robot is aware of the success or
failure of the others. To reach the destination, a robot
has to cross a number of bridges. Some bridges are
narrower, implying a higher risk. In this scenario the
agents clearly need to balance risk and utility; nar-
rower bridges should only be taken when it leads to
a higher utility, and more risk-averse behaviour is re-
quired to improve the chance of mission success.

The remainder of the paper is organised as fol-
lows. Preliminaries are given in Section 2. In Sec-
tion 3, we propose a modified version of a UCT-
based online planner capable of assessing risk along-
side utility. Section 4 outlines how such a planner
can be integrated with a BDI agent to produce a set
of utility-ranked actions. The applicability of our ap-
proach is validated in Section 5 and related work and
conclusions are discussed in Section 6.

2 PRELIMINARIES

We start with some necessary preliminaries on the
CAN language, Markov Decision Processes (MDPs),
and Monte-Carlo algorithms for online planning.

BDI Agents In CAN (Sardina et al., 2006),
an agent configuration, or agent, C is a tuple C =
〈B,Π,Λ,Γ,H 〉. The belief base B is a set of atoms
describing the agent’s current beliefs. The plan li-
brary Π consists of a set of pre-defined plans of the
form e : ψ ← P with e an event-goal, ψ the con-
text, or preconditions, and P the plan body. The
plan body may consist of operations to add/delete be-
liefs +b,−b, trigger events !e, tests for conditions ?φ,
or execute primitive actions a. Primitive actions are
defined in the action description library Λ. The in-
tention base Γ consists of a set of (partially) executed
plans P. Finally, H is the sequence of primitive ac-
tions executed by the agent so far. A basic configura-
tion 〈B,H ,P〉 is also often used in notation.

The operational semantics of CAN are described
in terms of configurations C and transitions C→ C′.
A derivation rule describes in which cases the agent
can transition to a new configuration. Such a rule con-
sists of a (possibly empty) set of premises pi, and a
single transition relation c as conclusion:

p1 p2 . . . pn

c
l

We refer the reader to (Sardina et al., 2006) for an
overview of the full semantics.

Online Planning in MDPs An MDP consists of
a set of states S and actions A, a transition function
T , and a reward function R. The transition func-
tion is defined as T : S ×A× S → [0,1], i.e. given a
state s and an action a, we transition to a new state
s′ with probability T (s,a,s′). Rewards are defined
as R : S ×A× S → R with R(s,a,s′) the reward for
taking action a in state s and arriving in state s′. A
discount factor γ prioritises immediate rewards. Our
aim is to find the best action at each state. Such a
mapping between states and actions is referred to as a
policy. Since the objective is to maximise the overall
expected reward, an optimal policy will consistently
select actions which will maximise both immediate
and potential future rewards. We can define a non-
stationary policy1 as πt : S → A with t as the current
time step. The quantitative value of a policy π with an
initial state s0 is given by:

V (π(s0)) = E

(
h−1

∑
t=0

γ
t ·R(st ,πt(st),st+1)

)
Here, πt(st) produces an action according to policy
πt . The optimal policy π∗ maximises V (π∗(s0)).

Finding optimal policies in this way is infeasible
as the size of the problem grows. In recent years
focus has therefore shifted to approximate methods
such as Monte Carlo Tree Search (MCTS). Planners
which employ such methods are often referred to as
online or agent-centric planners because they do not
produce a policy, but simply return the single next
best action to execute. These methods use sampling
to quickly build up the most promising part of the
search tree and allow a “good enough” action to be
returned at any time. In each cycle, (1) a leaf node is
selected, (2) that node is expanded with a new child
node, (3) a simulation of a random playout from this
new child to a terminal state (or the horizon) is per-
formed, and (4) the rewards from this simulation are
backpropagated towards the root node to guide fu-
ture searches. Improvements to the selection phase,
e.g. using UCT (Kocsis and Szepesvári, 2006), have
led to very competitive online planning algorithms.
A comprehensive overview of MCTS approaches can
be found in (Browne et al., 2012).

3 ASSESSING RISK ONLINE

In this section, we discuss how an online planner
can be modified to assess risk alongside utility. We

1The behaviour of a nonstationary (resp. stationary) pol-
icy is dependent (resp. independent) on the current timestep.



start with the popular UCT algorithm (Kocsis and
Szepesvári, 2006), which combines MCTS with a
Multi-Bandit selection procedure to balance explo-
ration and exploitation (Auer et al., 2002). We mod-
ify UCT so that it provides a set of utility-ranked
actions, each with an associated risk assessment, in-
stead of a single “best” action. UCT constructs a bi-
ased layered search tree where higher utility nodes are
explored more thoroughly while also biasing explo-
ration toward rarely visited branches (Keller and Ey-
erich, 2012). As shown in Figure 1, layers in the tree
alternate between decision nodes and chance nodes
(resp. states and actions). The children of a deci-
sion node reflect the actions available at this state.
The children of a chance node reflect the states ob-
tained as a stochastic outcome of applying the action.

Decision

Chance Chance

Decision Decision new state

stochastic outcome

action

agent decision

current state

Figure 1: Chance and decision nodes.

3.1 Establishing a Risk Metric

There are a number of ways to produce a measure of
risk from knowledge of rewards and probabilities of
occurrence (Johansen and Rausand, 2014). The most
appropriate metric for this framework is variance. We
therefore treat the immediate risk of taking an action
in a given state as the probability-weighted variance
of rewards from that action’s outcomes.
Definition 1. The immediate risk of taking action a in
state s, denoted IR(s,a), is defined as:

IR(s,a) = ∑
s′∈S

T (s,a,s′) · (R(s,a,s′)−E(s,a))2

where E(s,a) = ∑s′∈S T (s,a,s′)R(s,a,s′) is the ex-
pected utility of taking action a in state s. IR(s,a) is
simply the probability weighted variance of the out-
come rewards of an action a.

To assess the risk of each immediate action, we
compute the variance of this chance node, where the
expected utility functions as the mean. However, a
number of issues prevent us from doing so directly.
One problem is that the classical way of computing
variance as shown above is an offline method which
assumes all samples are known. Crucially, an online
planning algorithm has to be able to return a solution
that is “good enough” at any moment. Therefore, this

approach for calculating variance is unsuitable. In-
stead, we must rely on approximations of variance
that work in an online setting such as the method pro-
posed in (Welford, 1962). Another problem is that we
must treat decision and chance nodes differently. In-
deed, a chance node imposes a risk due to the stochas-
tic outcome. In a decision node, an agent has a choice
of which action to take. As a result, the risk in a de-
cision node should adhere to rational decision con-
straints where it can be viewed as e.g. the risk of the
least risky action available.

s0

a0

s1

15

0.5

s2

8

0.4

s3

-10

0.1

a1

s4

10

0.7

s5

5

0.3

a2

s6

2

1

Figure 2

We now formalise these ideas. For simplicity, we
first consider a full search tree to explain how we
compute risk, and how the notion of risk exposure is
used to associate a level of risk with decision nodes.
The search tree is depicted in Figure 2, with alternat-
ing decision and chance nodes, probabilities of transi-
tions on the edges, and rewards below the leaf nodes.
Example 1. Clearly, from Figure 2, we can see that
taking action a2 does not involve risk. Indeed, we
are guaranteed of the outcome, so there is no chance
of obtaining any other utility than the expected one.
Similarly, IR(s0,a2) = 0 based on 100 samples. This
is not the case for actions a0 and a1. For action a0 it is
easy to verify that the expected utility is E(s0,a0) =
0.5 ·15+0.4 ·8+0.1 ·(−10) = 9.7. However, we find
that IR(s0,a0) = 54.0 based on 100 samples. For a1
we have E(s0,a1) = 8.5 and IR(s0,a1) = 5.3. Intu-
itively, a0 is indeed the riskiest action since we have
the potential for a wider range of rewards.

While it is possible to simply use immediate vari-
ance as the risk indicator for an action, this would
tend toward very short-sighted behaviour with regards
to risk. Consider the example of the choice between
joining the army and becoming an accountant. Both
immediate actions (apply for, and accept, the job)
have the same, very low, risks. The level of risk one
would be exposed to having taken these initial actions
is, however, very different. In order to make informed
decisions, our risk metric must consider both imme-
diate risk and the risk of future actions.

We only calculate the risk measure for chance
nodes, which have stochastic outcomes, as only these



nodes can convey an unexpected outcome. Risk as we
define it does not apply to decision nodes since gen-
erally there is a choice of which action to take. To
consider the risk of future actions however, we intro-
duce the notion of risk exposure to quantify the risk
of being in a state with a choice of actions.
Definition 2. Let As⊆A be the set of available actions
in state s. We have:

IRE(s) = min
a∈As

IR(s,a).

With IRE(s) as the immediate risk exposure of s.
We define it as such since this is the minimum

amount of risk which the agent must take. Note that
this minimum risk action is not guaranteed to be the
action the agent will take in this state if it is encoun-
tered. However, when weighing cumulative expected
utility against cumulative risk it is more useful to have
a risk measure indicating the risk the agent must take
by following a certain path, rather than some distribu-
tion of the available risks at each step.
Definition 3. Let As⊆A be the set of available actions
in state s and γ t be a discount factor for time t. Then
the cumulative minimum risk up to horizon h of taking
action a in state s, denoted CMR, is defined as:

CRE(s,h) = min
a∈As

CMR(s,a,h) (1)

CMR(s,a,h)=
h−1

∑
t=1

(
γ

t−1
∑

s′∈S
T (s,a,s′) ·CRE(s′,h−1)

)
(2)

where CRE(s,h) is the cumulative risk exposure up to
horizon h of state s such that min( /0) = 0.

The CRE is identical to IRE(s′) except that it con-
siders the cumulative minimum risk of an action a in-
stead of the immediate risk. CMR is used as our risk
metric when considering actions. Note that it is based
on the probability adjusted risk exposure of relevant
states s′ ∈ S (i.e. s′ ∈ S such that T (s,a,s′)> 0 ).

a1

s4

a3

IR = 200

a4

IR = 70

a5

IR = 10
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10 5

Figure 3

Example 2. We now extend Figure 2 to show out-
comes and subsequent available actions from action
a1. From s4 we can take actions a3,a4 or a5 and from

state s5 we have a single action choice a6. The subtree
with a1 as its root is shown in Figure 3. For simplicity,
a set of terminal state outcomes are implied for each
leaf action a3 . . .a6. We know the immediate risk (IR)
of a1 is 5.3 and the IR of a3,a4,a5 and a6 is resp. 200,
70, 10 and 40. In order to determine the CMR of tak-
ing a1, we must first calculate the risk exposure of
its child decision nodes s4 and s5. This is given by
CRE(n) = minc∈Cn

(
IR(n,c)

)
where n is a decision

node and each c ∈Cn a child chance node. These risk
exposure values will then be modulated by the deci-
sion node’s likelihood of occurrence. We thus assess
CMR of a1 as IR(s0,a1)+CRE(s4) · 0.7+CRE(s5) ·
0.3 = 5.3+10+40 = 55.3.

3.2 Approximate Algorithms

In calculating CMR, we have thus far assumed that the
tree is fully known. However, in order to harness the
speed and tractability afforded by agent-centric plan-
ning algorithms, we provide a method of calculating
our proposed risk metric in an online fashion. This is
carried out alongside the usual accumulation of ex-
pected reward. When not all outcome rewards are
known and only a single value is sampled at a time, an
algorithm is required which is capable of maintaining
a running variance estimate based on the rewards of
the nodes which have been sampled so far.

During the backpropagation step, the reward asso-
ciated with the most recently sampled decision node
and its parent (chance node) is used to update the vari-
ance estimate of the chance node. This value is then
compared to the current variance estimates of all sib-
ling nodes and, if a sibling exists with lower variance,
then the variance of that sibling will be backpropa-
gated to the parent (decision) node instead.

An issue which arises when calculating variance
online is that accuracy is severely reduced when sam-
ple counts are very low. This is exacerbated when
we backpropagate the lowest variance node, since this
will often be a node which has not been sampled and
thus has a variance of zero. To tackle this problem,
we further modify the UCT procedure to include mul-
tiple “variance” rollouts. This provides a preliminary
estimate of the variance of a newly generated chance
node with an accuracy corresponding to the number of
rollouts performed, denoted as ρ. Unlike traditional
rollouts carried out in UCT, which simulate a play-
out of the domain until a terminal state is reached,
variance rollouts repeatedly sample the outcomes of
a single leaf decision node to build up a preliminary
estimate of immediate variance for this node.

We can now obtain a reasonably accurate variance
estimate for each action by the time it is initially sam-



pled. When the sibling nodes are compared during
backpropagation, nodes with no samples are ignored.
Nodes with at least one sample can now be guaranteed
to already have a reasonably accurate variance esti-
mate. Both the variance rollout and backpropagation
steps of the algorithm are shown resp. in Algorithm 1
and Algorithm 2. The selection, expansion and roll-
out procedures are omitted for brevity as they remain
largely unchanged from a plain UCT implementation.

Algorithm 1 Variance rollout
1: function VARROLLOUT(n)
2: if visits(n) = 0 then
3: n← parent(n)
4: visits(n)← visits(n)+1
5: for i← 0,ρ do
6: outcome← SimulateAction(node)
7: rwd← GetRwd(action(n),outcome)
8: risk(n)← UpdateRisk(n,rwd)
9: risk(n)← risk(n)/ρ

10: M(n)← 0
11: mean(n)← 0
12: n← SimulateAction(n)
13: return n

Both algorithms assume that the parameter (n) is a
decision node containing a state. In Algorithm 1, the
UpdateRisk(·) function implements an online vari-
ance calculation (Welford, 1962), taking a new reward
and producing a running variance estimate, which is
then saved in risk(n).

Algorithm 2 Backpropagation
1: function BACKPROPAGATION(n)
2: while n 6= nil do
3: cReward← 0
4: cRisk← 0
5: visits(n)← visits(n)+1
6: outcome← state(n)
7: n← parent(n)
8: visits(n)← visits(n)+1
9: rwd← GetRwd(action(n),outcome)

10: risk(n)←U pdateRisk(n,rwd)
11: cReward← cReward + rwd · γ depth

12: cRisk← cRisk+ risk(n) · γ depth

13: lwstRisk← lwstRSib.risk/lwstRSib.visits
14: if cRisk > lwstRisk then
15: cRisk← lwstRisk
16: UpdateReward(n,cReward)
17: n← parent(n)

The backpropagation algorithm shown in Algo-
rithm 2 steps back through the constructed tree un-
til the root node is reached (parent(n) = nil). Lines
8 and 9 show the reward and risk being accumulated
and discounted by γ depth. Lines 10 to 12 state that
if a sibling with a lower risk exists (lwstRSib), then
the value to be backpropagated (cRisk) should accu-

mulate the risk level of that sibling, instead of the risk
level of the node sampled. This has the effect of build-
ing CMR estimates for each of the root node’s chil-
dren, which correspond to the agent’s available ac-
tions. The function U pdateReward(·) adds the accu-
mulated reward from this backpropagation to the node
n’s total accumulated reward.

4 A RISK-AWARE BDI AGENT

Agents with the ability to perform lookahead plan-
ning can respond to an unforeseen event by generat-
ing custom plans for these events. In this section, we
improve on this idea by describing how an agent can
decide between actions given both utility and risk as-
sessments from an online planner. We consider sce-
narios in which we may encounter dilemmas between
risk and utility and must therefore be able to make
risk-aware decisions. To do this, the agent must have
a choice of actions from which it can select based on
some decision strategy. Such a strategy must be ca-
pable of appropriately balancing the utility and risk
associated with an action. The latter part of this sec-
tion addresses how a BDI agent can adjust its level of
risk aversion based on beliefs about its environment.

4.1 Integrating an Online Planner

Returning multiple actions from an online planner re-
quires a trivial modification to existing algorithms.
This is because online planners rank actions by util-
ity and simply return the action with highest utility.
Instead of returning a single action, we return a set
of assessed actions A , where each α ∈ A is a tuple
〈a,u,r〉 with a as a primitive action, u the cumulative
utility approximation and r the CMR approximation
for that action, as produced by the planner. We de-
note the cumulative utility and CMR of an assessed
action α as resp. u(α) and r(α), and the primitive ac-
tion as a(α). An action with a lower utility is not
guaranteed to also have a lower risk. It is therefore
possible to have an assessed action with both a lower
utility and a higher risk than that of alternative ac-
tions. Such actions generally pose no benefit to the
agent and are referred to as irrational.
Definition 4. Let A be a set of assessed actions. The
set of rational assessed actions AR in A is defined as:

AR = {〈a,u,r〉 ∈A | @〈a′,u′,r′〉 ∈A ,u≤ u′∧ r≥ r′}.

The set of irrational assessed actions in A , denoted
AI , is defined as AI = A \AR.

Consider the running example. A robot is one de-
cision away from its goal of reaching the reactor (also
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Figure 4: A simple risk/utility trade-off.

see Figure 4). We have the assessed actions α0 =
〈a0,12.5,4218.75〉, α1 = 〈a1,20,9600〉, and α2 =
〈a2,−25,5625〉. We can see that AR = {a0,a1}. The
expected utility of a0 is 0.75 ·50+0.25 ·−100 = 12.5,
and its IR value is 4218.75. These same calculations
give a1 a utility of 20 and an IR value of 9600. The
agent must decide whether to take a riskier action for
a possibility of higher gain (a1), or take the safer op-
tion (a0) and gain a lower reward if successful. This
decision must be based upon the agent’s determined
level of risk aversion, which in turn is based on its
beliefs about its current situation.

4.2 Risk-aware Decision Making

We now discuss a decision rule capable of balancing
the risk and utility of actions produced by the plan-
ner in order to decide between rational assessed ac-
tions. The BDI agent has no control over how the
FPP produces its results, but chooses from the actions
returned. The agent’s influence is therefore purely in
the post-planning phase. This rule requires a defined
risk aversion level R in order to produce a single next
best action from a set of assessed actions.

Unlike in the BDI agent framework, “goals” in
MDPs are expressed implicitly in the rewards as-
signed to action outcomes. Therefore in order to have
the planner be goal-oriented, we must assign some
relatively high reward to the goal state(s) and rela-
tively low rewards to any fail state(s)2. By consis-
tently selecting the best action in terms of utility, as in
plain UCT, the agent should accumulate a higher total
reward over a sequence of actions if it is successful in
reaching the goal state. However, when considering
scenarios where there are trade-offs between risk and
utility, we can observe that taking lower risk actions
increases the likelihood of success while obtaining a
lower overall reward if successful.

In order to appropriately balance utility and risk
given the information from the planner, we treat util-
ity and risk as resp. the mean and variance. The in-

2For our purposes, goal and fail states must also be ter-
minal states.

terval u(α)±R
√

r(α) provides the interval in which
we can reasonably expect to find the expected utility
given a risk aversion level R. Since we are risk-averse,
we only consider the lower bound of each interval,
and select the action with the maximum lower bound
to minimise our potential worst-case. For actions with
higher risk values, raising the R will widen the inter-
val more significantly than for actions with lower risk.
Thus, a risk aversion level can be defined in terms of
R that will ensure our model satisfies Principle 2.
Definition 5. Let A be a set of assessed actions and
R ∈ [0,+∞] be a risk aversion degree. Then the opti-
mal assessed action in A , denoted α∗, is defined as:

α
∗ = argmax

α∈A

(
u(α)−R

(√
r(α)

))
.

This formula will select a “best” action α∗ from
the set of assessed actions according to a risk aver-
sion setting R. R = 0 corresponds to absolute risk
tolerance, as the lower bound of the interval will be
equivalent to the utility. Therefore at R = 0, max-
imising the lower bound will give us the action with
the highest utility and also, if only considering ratio-
nal actions, the highest risk. As R is increased, when
considering only AR, the lower interval bound of high
utility actions will begin to fall below that of lower
utility actions, due to their lower associated risk val-
ues. This means as we raise R, we will increasingly
accept lower utility (u(α)) actions provided they have
a proportional reduction in associated risk (r(α)).
Proposition 1. Let A be a set of assessed actions,
given Definition 5, then α∗ ∈ AR.

Proof. Since ∀αI ∈ AI ,∃α ∈ A u(α) > u(αI) ∧
r(α) < r(αI), at R = 0, the rule defined in Defini-
tion 5 will consistently select the action with the high-
est u(α). This eliminates the possibility of an action
from AI being selected since otherwise u(α)> u(αI)
would not hold. For any given R where R > 0, the
lower bound R

√
r(α) of the interval will never be

greater than other actions’ lower bounds since other-
wise r(α)< r(αI) would not hold.

At R = ∞, the lowest risk action would always be
chosen, regardless of any loss of utility. We define
maxR as the value at which, for a given domain, the
probability of successfully reaching the goal is high-
est. Values above this will be more risk-averse, but
will not necessarily produce goal-oriented behaviour
in the agent. Since goals in MDPs are implicitly en-
coded in the reward values of actions; a completely
risk-averse agent will not be sufficiently utility-driven
to ensure it progresses towards its goal.

As R is increased, the agent should take paths to-
wards a goal which have higher probabilities of suc-
cess. Of course, these paths may not exist in a given



pi

+!robot failed : robots left(3)← risk(a);
−robots left(3);+robots left(2).

+!robot failed : robots left(2)← risk(b);
−robots left(2);+robots left(1).

Figure 5: Plan sets which alter the agent’s R value when an
event is triggered. Where for p1 : a =−3.5,b =−1 and for
p2 : a =−2.5,b =−2.

domain. It is perfectly possible that the path provid-
ing the highest payoff is also the path with the lowest
risk. In such domains, awareness of the risk provides
no benefit. We argue however that this risk vs. reward
dilemma is common, as committing less resources to
achieving a goal tends to entail a higher risk of failure.

As outlined in Principle 3, an agent’s risk aversion
level R should be dynamic with respect to its situation.
To achieve this, we utilise the agent’s plan library Π

and instantiate a set of pre-defined plans which al-
ter the R value when a set of preconditions are met.
We then define a CAN derivation rule describing this
behaviour. The plan’s preconditions represent states
considered to signal a change in the agent’s risk state.
This enables the agent to adopt an appropriate risk
aversion level based on its current situation.

We now extend the standard agent configuration
to include our risk aversion value R, producing a tu-
ple C = 〈B,Π,Λ,Γ,H ,R〉. We illustrate this idea in
the context of the running scenario by considering
three robots simultaneously trying to reach the goal.
The number of robots left is treated as an indicator of
the risk aversion level remaining robots should adopt.
This assumes awareness of the failure/success status
of the other agents. Given three robots operating si-
multaneously, the chances of reaching the goal suc-
cessfully with any given strategy is increased. Each
robot should therefore be more risk tolerant (lower R).
If a robot fails, however, the remaining robots should
become more risk-averse (higher R), to ensure a simi-
lar chance of success as before. The plans outlined in
Figure 5 increase an agent’s risk aversion level when
another agent has failed.

We now define a CAN derivation rule describing
the semantics of the risk() plan shown in Figure 5.

k ∈ R R′ = R+ k
〈B,H ,risk(+k),R〉 −→ 〈B,H ,nil,R′〉

risk

The event robot f ailed indicates to surviving agents
that another robot has failed. Depending on the num-
ber of robots left (comprising the plan’s context), the
risk level is adjusted accordingly and the beliefs about
the number of robots remaining is updated.

Figure 6: Different levels of risk aversion for a single agent.

5 EVALUATION

We first demonstrate that raising an agent’s risk
aversion level will indeed cause it to take less risky
actions and, by extension, have a greater probability
of successfully reaching its goal. We illustrate this
using the running example. We assign a reward of 100
and -100 for resp. reaching the goal or falling in the
pits. Negative rewards (costs) are assigned to actions
based on how much time they will take to carry out,
with higher costs for actions reflecting longer paths.

The graph in Figure 6 shows the effects of in-
creasing R values on the scenario outcome. For each
setting of R, the scenario is run through to comple-
tion (either succeeding or failing) 1000 times. As
can be seen, The probability of success initially in-
creases (at the cost of diminishing overall reward) as
R is increased, showing that increasing risk awareness
causes the agent to select less risky paths over those
with greater expected utility. However, probability of
success only increases up to a point. Further bias to-
ward risk aversion causes the agent to be overly cau-
tious and not progress toward the goal, leading to both
diminishing total reward and likelihood of success.

To observe the benefits of situation-dependant risk
awareness, we run the scenario with three agents, one
of which must reach the destination for the mission to
succeed. For comparison, we first run the scenario
with various static R values. For these agents, the
risk aversion level remains the same regardless of the
number of robots remaining. We then consider two
sets of dynamic R values with R changing depend-
ing on the number of robots remaining. Their risk
aversion level is therefore reactive to changes in the
environment. The results are shown in Figure 7. The
dynamic values correspond to plans p1 and p2 respec-
tively, as per Figure 5. The dynamic R values show an
increased likelihood of success with only a slightly re-
duced total reward compared to a low, static risk aver-
sion level such as R = 1.



Figure 7: Static/dynamic R values in agent collaboration.

6 CONCLUSIONS

The MARAB algorithm (Galichet et al., 2014), is
a risk-aware multi-armed bandit algorithm. It pro-
vides an alternative to the UCB1 selection formula
and treats the conditional value at risk as the mea-
sure of branch quality. This approach can deal with
risk, but does not offer any decision making aspect.
Other approaches, such as (Liu and Koenig, 2008),
solve MDPs in a risk sensitive manner, while tak-
ing resource levels into consideration. This is done
by making use of a type of non-linear utility func-
tions known as “one-switch” utility functions. How-
ever, this approach computes offline policies, and thus
cannot readily be integrated with the highly dynamic
framework of BDI.

In this paper we presented a novel approach to cal-
culate risk alongside utility in popular MCTS algo-
rithms. We showed how such an online planner can be
integrated with a BDI agent. This integration allows
an autonomous agent to reason about its risk tolerance
level based on its current beliefs (e.g. the availability
of resources) and dynamically adjust them. It also al-
lows such an agent to react to unforeseen events, an
approach impossible in BDI agents that only use pre-
defined plans. Furthermore, our proposed framework
agrees with the principles as outlined in Section 1, en-
abling an agent to act appropriately in high-stakes en-
vironments. Experimental results underpin our theo-
retical contributions and show that taking risk dynam-
ically into account can lead to higher success rates
with only minimal reductions in utility compared to
agents with static risk aversion levels.
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