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Abstract. The ability of an agent to make quick, rational decisions in
an uncertain environment is paramount for its applicability in realistic
settings. Markov Decision Processes (MDP) provide such a framework,
but can only model uncertainty that can be expressed as probabilities.
Possibilistic counterparts of MDPs allow to model imprecise beliefs, yet
they cannot accurately represent probabilistic sources of uncertainty and
they lack the efficient online solvers found in the probabilistic MDP com-
munity. In this paper we advance the state of the art in three important
ways. Firstly, we propose the first online planner for possibilistic MDP by
adapting the Monte-Carlo Tree Search (MCTS) algorithm. A key com-
ponent is the development of efficient search structures to sample possi-
bility distributions based on the DPY transformation as introduced by
Dubois, Prade, and Yager. Secondly, we introduce a hybrid MDP model
that allows us to express both possibilistic and probabilistic uncertainty,
where the hybrid model is a proper extension of both probabilistic and
possibilistic MDPs. Thirdly, we demonstrate that MCTS algorithms can
readily be applied to solve such hybrid models.

1 Introduction

A Markov Decision Process (MDP) [2] is a successful framework for dealing
with sequential decision problems under uncertainty, particularly when the un-
certainty is due to underlying stochastic processes. However, when dealing with
uncertainty due to a lack of knowledge it is often easier to find acceptable quali-
tative estimates. Possibilistic counterparts of MDPs [17], referred to as π-MDP,
have been introduced in recent years to tackle this problem. In some situations,
optimal strategies to compute the policy of a π-(PO)MDP have even been shown
to give better results than their probabilistic counterparts [3]. A limitation of
π-MDP, though, is that current solvers for π-MDP rely on offline algorithms
to compute the optimal policy. Conversely, state-of-the-art MDP planners are
online approximate anytime planners (e.g. [12,15]). Since such planners only
have to determine the next best “enough” action instead of coming up with a
complete optimal policy, they are considerably faster. Furthermore, these online
planners are often simpler to integrate with, for example, BDI systems [16] where
the online nature fits well with the reactive nature of such systems. MDP and
π-MDP also share a common downside: both frameworks only allow for a single



kind of representation for all sources of uncertainty, either all probabilistic, or all
possibilistic. This is often at odds with realistic settings, where the underlying
causes of uncertainty are diverse. Consider this example:

Example 1. Patrols are being used in a wildlife preserve to deter poachers. Some
areas, such as the grassland, have rich statistical data available about the effects
of patrolling near herds. These areas are easy to observe and various sensors are
installed to monitor the herd movement. In the grassland, we know that moving
a patrol to the grassland will prevent poaching in 82% of the cases if the herd is
there. Furthermore, in 11% of the situations the herd will move to the marshes
and in 7% to the mountains when we have a patrol near them on the grassland.
Otherwise, the herd stays on the grassland for the remainder of the day.

For the other areas, only the rangers’ experience is available to predict the
effectiveness of patrols, and their result on herd movements. For instance, in the
mountains we know that it is entirely possible that the herd will stay there or that
the herd moves back to the grassland. However, it is only slightly possible that
the herd moves to the marches. It is only somewhat possible to deter poaching
if we have a patrol around since tracking and finding the herd is hard in the
mountains. The terrain with its many hiding spots also makes it entirely possible
for poachers to succeed even when we have a patrol nearby.

The rewards themselves can also be quantitative or qualitative in nature.
For example, we can easily express that we prefer states in which no animals
are poached, but only in the grassland do we have exact numbers of how many
animals would be saved by patrolling. ut

Modelling examples like these is difficult in MDP or π-MDP as it involves
different types of uncertainty. In this paper we advance the state of the art in
three important ways. Firstly, we adapt the Monte-Carlo Tree Search algorithm
used in e.g. UCT [14] and PROST [12] to the π-MDP setting. To achieve this,
we present in Section 3.1 a tractable way to sample possibility distributions.
The resulting algorithm is the first online planner for π-MDP, applicable to both
brave and cautious reasoning. Secondly, we propose a hybrid MDP framework
where state transitions can be described as either possibilistic or probabilistic
distributions. Such a hybrid MDP, which is a proper extension of both MDP
and π-MDP, allows a precise and elegant way of modelling problems such as the
ones expressed in Example 1. Thirdly, by combining the results from our first
contribution with classical MCTS we arrive at an MCTS algorithm that can be
used to solve hybrid MDP. We furthermore impose rational restrictions on how
qualitative and quantitative utilities of trajectories can be combined in order to
guide the search. The resulting machinery provides us with a way to solve hybrid
MDPs using efficient online anytime algorithms.

The remainder of the paper is organised as follows. Preliminaries are dis-
cussed in Section 2. We discuss how to adapt UCT to π-MDP in Section 3,
crucially depending on our method to efficiently sample possibilistic distribu-
tions. The hybrid MDP model is presented in Section 4, and we also discuss
an MCTS algorithm to solve such hybrid models. Related work is discussed in
Section 6 and we draw conclusions in Section 7.



2 Preliminaries

MDP: a probabilistic MDP model is defined by a tuple 〈S,A, T ,R, γ〉. We have
that S is a finite set of states and A is a finite set of actions. The transition
function T gives the probability distributions over states (st, st+1) ∈ S2 and an
action at ∈ A, such that T (st, at, st+1) = P (st+1 |st, at), i.e. the (stochastic)
uncertainty of reaching the state st+1 from state st by taking at. A reward func-
tion R associates the immediate reward value R(st, at, st+1) with transitioning
from state st to st+1 by using action at. A discounting factor 0 ≤ γ ≤ 1 is used
to discount rewards that can only potentially be obtained in the future (or, al-
ternatively, a finite horizon is assumed). A trajectory τ is a sequence of states
(s1, ..., sh), where we use Th to denote all trajectories of size h. A policy (δ) is a
sequence of decision rules δ : S → A indexed by t, i.e. δ(st) = at is the action to
execute at time t. The value, or quantitative utility, of a policy is given by:

v((δ), s0) = E

(
h−1∑
t=0

γt ·R(st, δt(st), st+1)

)
(1)

with h the horizon, E(·) the expected reward, and st+1 the stochastic outcome of
applying at in st. A policy applied in the initial state thus describes a trajectory
of size h. The optimal policy is the one that maximises v(·, s0), i.e. at each step t
it takes the best available action to maximise the sum of future rewards.

Finding these optimal policies is an intractable problem, so approaches have
been developed that can return “good enough” actions. One such an approach
for solving MDPs is the UCT algorithm [14], which combines Monte-Carlo Tree
Search (MCTS) with an upper confidence bound (UCB1) policy. MCTS is an
anytime algorithm in which a search tree is built by iteratively sampling the
decision space. During each iteration, the algorithm (a) selects an expandable
child node; (b) expands this node using an available action; (c) performs a roll-
out/simulation from the expanded node to a terminal node; and (d) backpropa-
gates the result of the simulation up to the root node to update the statistics for
future searches (see Figure 1a). The MCTS algorithm closely relates to Equa-
tion 1. The reward of a given trajectory is accumulated during the (c) roll-
out phase. The probability of the trajectory (implicitly assumed in Equation 1
through the expected value) is respected during the (a) node selection/(b) ex-
pansion/(c) rollout. Finally, the total reward from traversing a node/number of
times a node has been traversed, are updated during the (d) backpropagation.
This allows an approximation of the expected reward of a node to be computed.

The UCB1 policy [1] can considerably speed up MCTS by addressing the
exploration-exploitation trade-off during the child node selection. The action
to perform in each node is the one that maximises Xj + B

√
( logn)/nj) with

Xj ∈ [0, 1] the average future reward by taking action aj , B a bias parameter,

nj the number of times aj has been selected in this node, and n =
∑k
j=1 nj ,

i.e. the total number of times any of the available actions {a1, ..., ak} in this
node have been taken. Intuitively, the term on the left of the sum encourages
exploitation, while the term on the right encourages exploring less-visited paths.
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Fig. 1: (left) basic MCTS procedure with the 4 distinct phases in each iteration
(right) MDP and π-MDP differences, where transitions are either probabilities
or possibilities, rewards are over transitions, and preferences are over states

π-MDP: the π-MDP model [18,17] is the possibilistic counterpart of the MDP
model where the uncertainty is modelled as a qualitative possibility distribution.
It is defined as a tuple 〈S,A, Tπ,M,L〉. Here L is a possibility scale, i.e. a finite
and totally ordered set whose greatest element is 1L and whose least element is
0L. Typically, it is taken as L = {0, 1/k, 2/k, ..., k − 1/k, 1} for some k ∈ N+ and
it will be required to define the transition function. The possibility distribution
over S is a function π : S → L such that maxs π(s) = 1L, i.e. at least one state
is entirely possible. Whenever π(s) < π(s′) it implies that s′ is more plausible
than s. The transition function Tπ is defined over a pair of states (st, st+1) ∈ S2
and an action at ∈ A as Tπ(st, at, st+1) = π(st+1 | st, at), i.e. the possibility of
reaching st+1 conditioned on the current state st and the action at. This reflects
that the uncertainty of the effects of action at are due to a lack of information.
Furthermore, a function M : S → L models the qualitative utility, or preference,
of each state (see Figure 1b). The qualitative utility of a policy in π-MDP is
defined in the cautious setting as:

u∗((δ), s0)= min
τ∈Th

max {1−Π(τ |s0, (δ)),M(sh)} (2)

or, in the brave setting, as:

u∗((δ), s0)= max
τ∈Th

min {Π(τ |s0, (δ)),M(sh)} (3)

with Π(τ |s0, (δ)) = minh−1t=0

(
π(st+1 |st, δt(st))

)
, i.e. the possibility of the trajec-

tory τ = (s1, ..., sh). The brave setting evaluates a policy based on whether there
is at least one possible path that is good. The cautious setting, conversely, eval-
uates a policy based on how good all of the possible paths are (indeed, it selects



the worst path for its utility). The utility is based on the possibility/necessity
of the trajectory which starts from s0, and the preference of the final state sh
(assuming a finite horizon). Some algorithms have been proposed to compute the
solutions of π-MDP models for both decision criteria [17,3]. However, these ap-
proaches compute optimal solutions and are therefore only applicable to rather
small problem spaces, contrary to the online MCTS algorithm available for MDP.

3 Adapting UCT to π-MDP

We now develop a way to apply UCT, or MCTS in general, to π-MDP. As dis-
cussed in Section 2, MCTS builds a search tree by iteratively sampling the deci-
sion space. The concept of sampling plays an important role in the rollout phase,
but also in the selection and expansion phase due to the non-deterministic nature
of the underlying model. In the probabilistic setting, the law of large numbers
makes sampling straightforward. In the possibilistic setting, however, we do not
have a concept similar to the law of larger numbers. Still, the idea remains sim-
ilar. Through sampling, we want to select one of the effects of a given action in
a π-MDP model, in accordance with the possibility associated with the various
effects of that action. This idea is closely related to the idea of transforming
a possibility distribution into a probability distribution, where we can sample
directly from the latter. A compelling possibilistic-probabilistic transformation,
the DPY transformation, was first introduced by Kaufmann in French [10], and
later independently by Dubois and Prade [6] and Yager [22]. Not only has this
transformation been independently developed by other authors, both in the set-
ting of possibility theory [5,13] and Dempster-Shafer theory [20], but it also has
a large number of desirable properties (see [8]). In Section 3.1 we focus on how
we can use the DPY transformation to sample a possibility distribution, and how
we can do so in a tractable way. In Section 3.2 we look at some of the intricacies
of backpropagation and node selection in the π-MDP setting. Together, these
components will allow us to use an MCTS-style algorithm to solve π-MDP.

3.1 Possibilistic Sampling

As an initial step towards sampling a possibility distribution, we transform such
a distribution into an intermediate data structure with a tractable algorithm:

Definition 1. Let π be a possibility distribution over S. Let S0 be those states
with a strictly positive possibility, S0 = {s | π(s) > 0, s ∈ S}. Furthermore, we
rank order elements in S0 as π(s0) ≥ ... ≥ π(sk). Let Cπ then be the list of tuples
sorted in ascending order on i such that 〈i, pi〉 ∈ Cπ whenever π(si) > π(si+1)
with pi = π(si)− π(si+1) and, by default, π(sk+1) = 0.

The structure Cπ provides a compact representation of the DPY transformation
of a possibility distribution π to a basic belief assignment m.3 Indeed, the tuple

3 A basic belief assignment, or bba, is a function of the form m : 2S → [0, 1] satisfying
m(∅) = 0 and

∑
A∈2S m(A) = 1.



〈i, pi〉 marks that {s0, ..., si} is the α-cut of π with α = π(si). The value pi is the
probability mass associated with this α-cut in m on the subset A = {s0, ..., si}.
Example 2. Consider the following possibility distribution π:

π(s0) = 1 π(s1) = 0.7 π(s2) = 0.7

π(s3) = 0.3 π(s4) = 0.1 π(s5) = 0

We have Cπ = (〈0 , 0.3〉 , 〈2 , 0.4〉 , 〈3 , 0.2〉 , 〈4 , 0.1〉).
An algorithm to compute Cπ from π is given in Algorithm 1.
Given a compact representation Cπ, we can readily determine the probability
distribution associated with π:

Definition 2. Let π be a possibility distribution and Cπ as in Definition 1.
For every si ∈ S0 the probability of si is:

p(si) =
∑

〈j,pj〉∈Cπ
j≥i

pj/j+1

and p(s) = 0 for all s ∈ (S \ S0).

Of course, we only want to sample according to the associated probability dis-
tribution without explicitly computing the distribution. This can be achieved by
randomly selecting a 〈si, pi〉 ∈ Cπ according to probability masses P using the
principle of Probability Proportional to Size (PPS), followed by a random selec-
tion with a uniform probability 1/(i+ 1) of an element s ∈ {s0, ..., si}. This idea
is reflected in Algorithm 2.

Example 3. Consider π and Cπ from Example 2. Following Definition 2, we have
the probability distribution p such that:

p(s0) = 0.5033 . . . p(s1) = 0.2033 . . . p(s2) = 0.2033 . . .

p(s3) = 0.07 p(s4) = 0.02 p(s5) = 0

where e.g. p(s0) = 0.3/1 + 0.4/3 + 0.2/4 + 0.1/5 = 0.5033. In other words: assume
a PPS selection of 〈si, pi〉 ∈ Cπ has been made, followed by a random selection
with a uniform probability of sk ∈ {s0, ..., si}. In 50.33...% of the cases, this
procedure will return s0, i.e. k = 0.

We now prove that using the compact representation allows for tractable sam-
pling of a possibility distribution.

Proposition 1. Constructing Cπ for π a possibility distribution over S requires
an O(n log n) algorithm with n = |S|. Sampling of π based on Cπ can be done in
constant time.

Proof. Algorithm 1 requires the sorting of the possibility distribution π, with
O(n log n) time complexity, followed by an iteration over all the states in S0,
with O(n) time complexity. Hence, the algorithm is an algorithm with O(n log n)
time complexity. Sampling based on Algorithm 2 relies on a PPS selection and
a selection using a uniform distribution, both of which can be implemented with
O(1) time complexity [21]. ut



input : a possibility distribution π over S
result : a compact representation Cπ of the possibility distribution π

as given in Definition 1

initialise a list Cπ
sort π such that π(s0) ≥ π(s2) ≥ ... ≥ π(sn−1)
if π(sn−1) > 0 then π(sn)← 0
for i ∈ [0, k] with k = |S0| do

if π(si) > π(si+1) then
append 〈i, π(si+1)− π(si)〉 to Cπ

end
return Cπ

Algorithm 1: tractable construction of Cπ

input : a possibility distribution π over S and its compact transformation Cπ
result : a state s ∈ S

〈i, pi〉 ← PPS selection from Cπ given probability masses P = {pj | 〈j, pj〉 ∈ Cπ}
idx ← random selection from [1, i] using uniform probability 1/(i + 1)

return sidx
Algorithm 2: constant time sampling using Cπ

3.2 Backpropagation and Node Selection

With an efficient way of sampling a possibility distribution, only a few other
issues need to be resolved in order to apply a MCTS-style algorithm to π-MDP.
The first issue has to do with the information we keep track of, and which
we update during the backpropagation. Particularly, each node will need to
keep track of a tuple of the form 〈u∗, u∗〉 instead of a single quantitative re-
ward as in the MDP setting. Here, u∗ denotes the cautious qualitative utility
of that particular node onwards, while u∗ denotes the brave qualitative util-
ity. From Equation 2 and Equation 3 we know that we also have to keep track
of the possibility Π(τ | s0, (δ)) of the trajectory τ , i.e. we have to compute
minh−1t=0

(
π(st+1 |st, δt(st))

)
. This can be achieved during the selection, expan-

sion and rollout phase by keeping track of the minimum of the possibility of the
transition for each chance node we encounter.4 Further in accordance with Equa-
tion 2 and Equation 3, once a terminal state is encountered, or the horizon is
reached, the preference M(sh) for this state sh is determined. Based on the
values Π(τ | s0, (δ)) and M(sh), we can readily compute a tuple 〈u∗, u∗〉 with
u∗ = max(1−Π(τ |s0, (δ)),M(sh)) and u∗ = min(Π(τ |s0, (δ)),M(sh)). This in-
formation is then backpropagated where the tuple 〈ju∗, ju∗〉 of each node j is
updated to 〈min(u∗, ju∗),max(u∗, ju

∗)〉.

4 To deal with uncertainty in MCTS, a dual-layered approach is used in the search
tree. A decision node, or state, allows us to choose which action to perform. A chance
node, or action, has a number of stochastic effects which are outside our control.



The second issue is how to select the best node to expand during the selection
phase. As it turns out, we can readily apply UCB1 for this, even in the possi-
bilistic setting. However, we do have to decide for each search whether we are
pursuing a cautious or brave search. For a brave search, we use ju

∗ instead of Xj .
For a cautious search, we instead use ju∗. When the computational budget is
reached, an action is selected for which its node is a direct child of the root and
there does not exist another such node with a higher quantitative utility ju

∗

(resp. ju∗). An MCTS algorithm to solve π-MDP is given in Algorithm 3.5

Note that while a possibility-probability transformation is used for the pur-
pose of sampling a possibility distribution, the induced probability distribution
is not used at any other stage. Indeed, during selection/expansion/rollout it is
the possibility of the trajectory that is computed. This possibility is combined
with the preference of the terminal state to determine the brave and cautious
qualitative utility of the trajectory. Similarly, backpropagation only takes these
qualitative utilities into account when updating the node information, and it
are these qualitative utilities that guide the choice of the best node to expand
during the selection phase. This ensures that no unnecessary transformation bias
is introduced.

input : a π-MDP model, Caπ for every π describing the outcome of an action a,
and root state s0

result : the next best action a′ to execute

create root node n with state s0
while within computational budget do

Π(τ) ← 1
while n has untried actions and n′ has children do

a ← select(n′)
/* select next state by sampling Caπ */

n′ ← sample(n, a, Caπ)
Π(τ) ← min(Π(τ), π(n′ |n, a))
n ← n′

end
if n′ has untried actions then

a ← select an untried action
n′′ ← sample(n′, a, Caπ) /* expand node */

end
/* rollout by sampling from Cπ as needed */

nend ← rollout(n′′)
backpropagate (nend, max(Π(τ),M(nend)))

end
return best action(n0)

Algorithm 3: MCTS algorithm for brave π-MDP

5 An implementation of the algorithm proposed in Algorithm 3 is also available online,
at https://github.com/kimbauters/sparsepi .



Proposition 2. The failure probability at the root, i.e. the probability of se-
lecting a sub-optimal action, converges to 0 as the number of samples grows to
infinity for MCTS applied to π-MDP.

Proof. (sketch for u∗(·, s0)) Assume h = 1, i.e. a search tree with only one level
of alternating action and state nodes. We have that the value associated with
each action ai is given by the maximum of the qualitative utility of each outcome
of ai. This utility is in turn given by the minimum of the possibility degree of
the trajectory – which corresponds with the possibility of the outcome – and the
preference of the final state. Since the qualitative brave utility associated with an
action never decreases through repeated sampling, and since repeated sampling
will explore all branches as the number of samples grows to infinity, we know that
the qualitative utility of the returned action will never decrease after additional
samples and that it converges in the limit to the optimal action. Indeed, since
we are assuming a finite horizon and since the number of actions/states is finite,
we know that the size of the tree is bounded. For h > 1 the only difference is the
increased size of the trajectory. However, since the possibility Π(τ |s0, (δ)) of the
trajectory τ as calculated in the algorithm is the same as the one in Equation 3,
the results readily hold as well for h > 1. ut

Initial experimental results confirm the benefit of the online planner for
π-MDP. We first consider a problem space where |S| = 210, |A| = 11, and as-
sume a 50 iteration budget for the online planner. Both the online planner and
the offline planner are used to solve the same problem 100 times, where the
offline planner first needs to compute its optimal policy but can then repeat-
edly use that to quickly solve the problems. The online (offline) planner took on
average 34.49ms (9.48ms) to find a solution with an average qualitative utility
of 0.602 (0.792). In small scale examples like these, the offline planner bene-
fits from being able to apply its policy near-instantaneously once computed to
navigate the problem space. When increasing the state space to |S| = 212 the
online (offline) planner took on average 37.44ms (169.96ms) to find a solution
with an average qualitative utility of 0.632 (0.762). When |S| = 215 the online
(offline) planner took on average 37.18ms (9961.50ms) to find a solution with
an average qualitative utility of 0.658 (0.742). Although clearly these are not
conclusive experiments, they already provide indications that the online planner
better qualifies to navigate the increasingly large search space, although this
comes at the cost of a reduced utility due to the search space not being fully
explored. A more comprehensive experimental evaluation falls beyond the scope
of this paper, yet is planned for future work.

4 Hybrid MDPs

As shown in Example 1, real-life problems can have different types of uncertainty
that we cannot accurately express using only a single kind of representation. In-
deed, possibility theory is not good at modelling uncertainty due to underlying
stochastic processes, while probability theory is not well-suited for modelling



uncertainty due to a lack of information.6 Other theories of uncertainty, such
as Dempster-Shafer theory [19], are a proper extension of both possibility and
probability theory. However, due to their computational complexity, they lend
themselves poorly to the use in online anytime algorithms such as MCTS. Algo-
rithms such as MCTS rely on the repeated exploration of different trajectories,
which is made feasible by the tractability of the underlying phases (see Fig-
ure 1a). Therefore, we instead present a model in which uncertainty can be
explicitly expressed as either a possibility or probability.

In the hybrid MDP model the actions are partitioned into those with prob-
abilistic and a possibilistic effects, so that each action can be described using
the most appropriate representation. In particular, the transition function asso-
ciates with every action a either a possibilistic, or a probabilistic distribution.
Furthermore, we also keep track of a total reward and preference function, which
allows us to derive either a qualitative or quantitative utility as needed.

Definition 3. A hybrid MDP is defined as a tuple 〈S,A, T ,R,M, γ,L〉 such that
(i) S is a finite set of states; (ii) A is the set of actions, with A = AP ∪Aπ, where
AP is the set of actions with probabilistic effects and Aπ the set of actions with
possibilistic effects; (iii) T is the transition function, where T (st, at, st+1) is the
conditional probability (resp. possibility) of reaching the state st+1 by performing
action at at state st if at ∈ AP (resp. if at ∈ Aπ); (iv) R and M are totally
specified reward and preference functions over S; (v) γ is a discounting factor
such that 0 ≤ γ ≤ 1; and (vi) L is a possibility scale.

Example 4. Looking back at Example 1, the hybrid MDP model allows us to de-
scribe, on the one hand, the effect of patrolling an area on herd movement for the
grassland area as a probabilistic transition and, on the other hand, for the moun-
tain area as a possibilistic transition. We have the action patrol grassland with
herd grassland as precondition and the three probabilistic effects ¬poaching ,
herd mountain, and herd marsh with resp. probability 0.82, 0.11, and 0.07.
We also have the action patrol mountain with herd mountain as precondition
and the four possibilistic effects herd mountain, herd grassland , ¬poaching , and
herd marsh with resp. possibilities 1, 1, 0.4, and 0.2. Rewards and preferences are
fully specified for all state transitions and states, allowing us to express e.g. that
preventing a herd from being poached in the grassland is a preferred state, and
it results in a reward r (e.g. based on the number of saved animals). In other
words, assuming an original state s, an action a, and a state s′ where animals
are saved, we can have M(s′) = 1 and R(s, a, s′) = 15.

A policy in the hybrid MDP setting is defined in the same way as for MDP
and π-MDP. However, unlike in MDP or π-MDP, the value of a policy in a
hybrid MDP is not given by a single value but by a tuple consisting of both a
reward and (brave/cautious) qualitative utility. We have:

6 A common approach in probability theory to try to overcome this problem is to use
subjective probabilities. However, in the more general POMDP/MOMDP settings
this creates difficulties in its own right as subjective probabilities from the transitions
are then combined with objective probabilities from the observation function.



Definition 4. The utility w of a policy (δ) in a hybrid MDP model is given by:

w((δ), s0) =

{
〈v((δ), s0), u∗((δ), s0)〉 cautious setting

〈v((δ), s0), u∗((δ), s0)〉 brave setting

with v((δ), s0), and u∗((δ), s0) and u∗((δ), s0), computed over respectively the
MDP and π-MDP induced by the hybrid MDP, as explained next.

An optimal policy for a hybrid MDP is defined in Section 5. Notice that, since
we are using both u(·) and v(·) in the policy, the computation of a qualita-
tive/quantitative reward requires an MDP/π-MDP. We thus need an efficient
way of deriving the MDP and π-MDP that underlie a hybrid MDP. Obtaining
the MDP 〈S,A, T ∗, R, γ〉 is straightforward. Indeed, S, A, R, and γ are as spec-
ified in the hybrid MDP. For those actions a ∈ Aπ that are possibilistic, we
discussed in Section 3.1 how we can use the DPY transformation to transform a
possibility distribution π(·) = T (st, a, ·), with a ∈ Aπ, into a probability distri-
bution p∗(·) = yager(T (st, a, ·)). As before, we do not need to explicitly compute
the associated probability distribution, as we can have the MCTS algorithm in-
directly rely on probabilities through the sampling process. This time around,
and contrary to Section 3, the probabilistic sampling of a possibility distribution
is taken into account (indirectly, as part of the sampling process) and used to
determine the probability of the trajectory.

While deriving the MDP that underlies a hybrid MDP is straightforward, it
is more complicated to derive the underlying π-MDP 〈S,A, T ∗∗,M,L〉. A sim-
plifying factor – as in the MDP case – is that S, A, M , and L are as specified in
the hybrid MDP model. Hence, the derivation of the underlying π-MDP only re-
quires a transformation of the probability distributions used in the hybrid MDP
model into possibility distributions. Many such transformations exist, applying
to either objective or subjective probability distributions. Since we assume in
the hybrid MDP model that subjective information is best represented using a
possibility distribution, we can conversely assume that we are dealing with an
objective probability distribution. As such, the transformation of a probability
distribution into a possibility distribution should be based on preserving as much
information as possible. One such a transformation [9] is defined as follows. Given
a probability distribution p such that p(s0) ≥ p(s1) ≥ . . . ≥ p(sk) we have that
the associated possibility distribution π is defined as π(sj) =

∑
i=j,...,k P (si).

Furthermore, for equiprobable elements it is enforced that the corresponding
elements are also equipossible [9]. Computing the associated possibility distri-
bution can be done using an O(n log n) time complexity algorithm and lookups
require O(log n). As a final step, all results are rounded up to the nearest ele-
ment in L. In conclusion, for those actions a ∈ AP that are probabilistic, we
transform the probability distribution p(·) = T (st, a, ·), with a ∈ AP , into a
possibility distribution π∗∗(·) = dubois(T (st, a, ·)) by using the transformation
outlined in this paragraph.



Example 5. Consider the probability distribution p such that

p(s0) = 0.7 p(s1) = 0.1 p(s2) = 0.1

p(s3) = 0.07 p(s4) = 0.03 p(s5) = 0

Assuming L = {0/k, 1/k, ..., k/k} with k = 20 we have the the resulting π:

π(s0) = 20/20 π(s1) = 6/20 π(s2) = 6/20

π(s3) = 2/20 π(s4) = 1/20 π(s5) = 0/20

where π is the possibility distribution associated with p.

We can now treat a hybrid MDP as a π-MDP in a similar way as we treated a hy-
brid MDP as an MDP. The induced possibility distribution is used to determine
the possibility of the trajectory, and the the (qualitative) reward is obtained by
ignoring the reward values and only relying on preference values. Importantly,
it should be noted that the transformation to a possibility distribution is only
used to compute the possibility Π(τ | s0, (δ)) of the trajectory τ , and not for
sampling purposes. This is because, in general, transforming a probability dis-
tribution into a possibilistic one and back to a probability distribution does not
result in the same distribution, thus introducing an avoidable bias.

5 Solving hybrid MDPs

We show in this section that an online anytime MCTS-style algorithm can be
used to solve hybrid MDPs. In particular, we show that the main difficulty lies in
the selection phase. Indeed, in the selection phase we need to select the next best
node to expand based on the utility of a hybrid MDP, which is a tuple composed
of a quantitative and qualitative utility. However, selection strategies – such
as UCB1 – require a single value to assess the value of a node. We thus need
methods that enforce commensurability and allow us to combine both utility
values into a single value w↓. This ties in with Definition 4, where we so far have
not defined what an optimal policy is in the hybrid MDP setting. To be able to
define an optimal policy, and to define w↓, we propose a number of rationality
postulates. These postulates are used to motivate reasonable methods to ensure
commensurability. Still, as we will see, some degree of freedom remains. This is
to be expected given that the meaning of the qualitative utilities, and especially
their inter-relation with quantitative utilities, is domain-dependent.

To simplify the description of the postulates, we assume a straightforward
transformation of the quantitative utilities to map them onto the interval [0, 1].
The maximum reward, or quantitative utility, is given by maxv v((δ), s0) with (δ)
the optimal policy. In a similar way, we can define the worst reward. The trans-
formation then consists of rescaling all rewards accordingly onto [0, 1] where
a value of 1 (resp. 0) denotes the most (resp. least) preferred outcome. Notice
that while this transformation may appear to give the quantitative utilities a



qualitative interpretation, it does not allow us to directly compare quantitative
and qualitative utilities (e.g. they still have different neutral elements7).

We can now introduce the postulates that motivate the characteristics of w↓.

P1: Let w(a) = 〈1, 1〉, then a is the most preferred action,
i.e. 6 ∃a′ · w↓(a′) > w↓(a).

When an action has the highest possible value and is qualitatively valued
higher than others, then it must be the most preferred action.

P2: Let w(a) = 〈0, 0〉, then a is the least preferred action,
i.e. 6 ∃a′ · w↓(a′) < w↓(a).

When an action has the lowest possible value and is qualitatively valued
lower than others, then it must be the least preferred action.

Postulates P1-P2 are the base cases with a clear consensus among both utilities.
The next two postulates identify the monotonicity w.r.t. a single value change:

P3: Let w(a) = 〈v, u〉 and w(a′) = 〈v′, u′〉 with v = v′ and u > u′, then
w↓(a) > w↓(a

′).

P4: Let w(a) = 〈v, u〉 and w(a′) = 〈v′, u′〉 with u = u′ and v > v′, then
w↓(a) > w↓(a

′).

When the qualitative (resp. quantitative) utilities of two actions are the
same, the action with the highest quantitative (resp. qualitative) utility must
be the preferred one.

Commensurability of the qualitative and quantitative utility is the most dif-
ficult when there is a level of disagreement, e.g. a high reward obtained in a
disliked state. Dissension between the utilities reaches its maximum when they
take on their neutral elements, or the neutral elements of the other utility. In such
cases, the exact interpretation of the dissension is dependent on whether we are
using brave/cautious reasoning for the qualitative utility:

P5: (brave reasoning, u∗) When w(a) = 〈0, 1〉, then we are ignorant (eq. have
a weak conflict) about a. When w(a) = 〈1, 0〉, then we have a (strong)
conflict about a.

P5′: (cautious reasoning, u∗) When w(a) = 〈1, 0〉, then we are ignorant (eq. have
a weak conflict) about a. When w(a) = 〈0, 1〉, then we have a (strong)
conflict about a.

Ignorance, or the situation with weak conflict, reflects that the values are
their own neutral elements and thus convey no real information. Strong
conflict suggests that the utilities disagree with each other by taking on the
strongest (opposing) values in their scale. In the cautious setting, these
notions are flipped around.

7 We use the terminology of a neutral elements loosely here to indicate that a reward
of 0, and a preference of 1, are the defaults. Indeed, when rewards (resp. preferences)
are omitted these are the values MDPs (resp. π-MDPs) default to.



Interestingly, postulates P1-P5 tell us nothing about how to relate two actions
a, a′ for which w(a) = 〈0, 1〉 and w(a′) = 〈1, 0〉 (i.e. when there is a discord
between the utility measures), which is the degree of freedom we have. Simple
behaviour can be obtained by e.g. defining w↓(a) = un · v with w(a) = 〈v, u〉.
Here, n is a parameter indicating the strength of the qualitative utility over the
quantitative utility with values of n > 1 placing a higher importance on the
qualitative utility. An implicit effect of a formula of this form is that it equates
ignorance with conflict. Since we are using a product, we are also stressing the
weakest component. However, simple methods like these fail to satisfy a final
desirable postulate:

P6: A hybrid MDP is a proper extension of both an MDP and a π-MDP.

When the hybrid MDP only models probabilistic (resp. possibilistic) infor-
mation, the result of solving the hybrid MDP should be identical to solving
the identical MDP (resp. π-MDP).

Postulates P1-P6 suggest a lexicographic ordering, based on whether we
are dealing with brave or cautious qualitative reasoning, and on whether or not
qualitative information takes priority over quantitative information.

Definition 5 (lexicographic ordering). Let w(a)=〈v, u〉 and w(a′)=〈v′, u′〉.
For a probabilistic lexicographic ordering, we have that w(a) ≥p w(a′) iff v > v′,
or v = v′ and u ≥ u′. For a possibilistic lexicographic ordering, we instead have
w(a) ≥π w(a′) iff u > u′, or u = u′ and v ≥ v′.

Definition 6 (optimal policy). Let w↓ be a function agreeing with Defini-
tion 5, i.e. such that w↓(a) ≥ w↓(a′) iff w(a) ≥ w(a′), where the last ordering is
either ≥p or ≥π. Then the optimal policy in a hybrid MDP induced by w↓ is the
one that maximises w↓(w(·, s0)).

As previously mentioned, the best choice for w↓ is application-specific and de-
pends on the domain, and on the probability-to-possibility transformation used.

Proposition 3. Let w↓ be a probabilistic or possibilistic lexicographic ordering.
We then have that w↓ satisfies postulates P1-P6.

Proof. It readily follows that postulates P1 and P2 are satisfied. Indeed, no ac-
tion will be less preferred than an action a such that w(a) = 〈0, 0〉, or more
preferred than an action a′ such that w(a′) = 〈1, 1〉 since v, u ∈ [0, 1] for
w(·) = 〈v, u〉. Postulates P3 and P4 are satisfied directly by the choice of
the lexicographic ordering. For a probabilistic lexicographic ordering we get,
by definition, that w(a) ≥p w(a′) if v > v′ which agrees with P4. Equivalently,
a possibilistic lexicographic ordering agrees with P3. Postulates P5 and P5’ do
not impose any constraints but follow directly from the underlying theories of
uncertainty. Postulate P6 holds since an MDP (resp. π-MDP) represented as a
hybrid MDP can assign the neutral element for preference (resp. reward) to the
action. Hence, for an MDP with a probabilistic lexicographic ordering, we get for
all actions a that w(a) = 〈1, u〉. Hence w(a) > w(a′) if and only if u > u′. The
same line of reasoning applies for a π-MDP with a possibilistic lexicographic. ut



In the MCTS algorithm, w is used during node selection to merge the qualita-
tive and qualitative utility of the node into a single value to be used by e.g. UCB1.
The other three phases in the MCTS algorithm, expansion, rollout, and back-
propagation, also need to be altered slightly. During expansion/rollout, both the
probability and possibility of a trajectory needs to be computed. To compute the
probability of the trajectory we can rely on sampling, which is available for both
probabilistic and possibilistic transitions given the results in Section 3.1. To ob-
tain the possibility of a trajectory, specifically when encountering a probabilistic
transition during the expansion/rollout phase, the associated possibility of the
trajectory is computed as discussed in the previous section. Throughout the ex-
pansion/rollout we also need to keep track of the rewards and preferences. Both
are readily available since the reward and preference functions are total. Once
a terminal node is reached, given the possibility/probability of the trajectory as
well as the rewards/preferences, the qualitative/quantitative utility is calculated.
The backpropagation phase then simply combines the backpropagation of both
the MDP and π-MDP approaches to update both the qualitative/quantitative
utility for each node along the trajectory.

6 Related Work and Future Work

One of the first people to discuss possibilistic MDP is Sabbadin [18,17]. In those
works, the author introduces the π-MDP model in which either an optimistic
or pessimistic form of reasoning can be used. Applying the optimistic approach
might lead to unsatisfactory states, whereas the pessimistic version offers some
guarantee that this will not happen. However, as discussed later by Drougard et
al. [3], for problems where there is no risk of being blocked in an unsatisfactory
state the optimistic version is generally preferred. Furthermore, optimality of
an algorithm is easier to prove in the optimistic version. Our implementation
of π-MDP demonstrates similar behaviour, where a brave version has a high
chance of getting trapped in deadlock states, while the cautious version very
often reaches its goals notwithstanding.

Another significant contribution in [17] is that the author also introduced
the π-POMDP model, and shows that a finite translation of a π-POMDP to a
π-MDP exists. This is unlike the probabilistic setting where no finite translation
exists between a POMDP and an MDP, and it allows algorithms used to solve a
π-MDP to be used without modifications to also solve π-POMDP. In practice,
however, the exponential size of the π-POMDP makes it infeasible to find so-
lutions in a reasonable amount of time for anything but the smallest problems.
These problems were addressed in [3], and later in [4], where the authors present
the π-MOMDP framework. In this new framework only a subset of the states
are partially observable. This significantly reduces the belief space, allowing for
optimal algorithms to be applicable in practice. One such algorithm was pre-
sented in [4] based on using a factored representation of the original problem.
In future work we intend to explore whether the online algorithm presented in
the current paper can similarly be applied to π-MOMDP and π-POMDP.



The work in [11] is one of the earliest works to discuss how sampling tech-
niques can be used to solve MDPs. The strength of such techniques lies in their
ability to find near-optimal solutions in only a fraction of the time of other ap-
proaches. However, only after the seminal work by Kocsis and Szepesvári [14]
were sampling-based planning taken seriously in the community. The main im-
provement proposed in [14] is to employ a multi-bandit approach, as described
by the UCB1 procedure [1], to offer an effective balance between exploration
and exploitation. This allows to considerably speed up the search process as the
most promising part of the tree is more quickly and more profoundly explored.
Not long after, the term Monte-Carlo Tree Search was coined to describe these
sampling-based approaches to planning.

The problem of how to transform a probability distribution into a possi-
bility distribution, and vice versa, has been addressed in a large body of pa-
pers (e.g. [22,5,20,13,8,9]). Most generally, a possibility distribution is seen as a
(very large) family of probability distributions. The problem therefore boils down
to choosing, and motivating, one probability distribution. Intrinsically, such a
choice is based on extra information that is external to the possibility distribu-
tion. Transforming a probability distribution to a possibility distribution always
implies some loss of information, leading to a range of different transformations
based on different consistency principles. A concise overview of these and other
issues related with both directions of the transformation is given in [7]. How
the use of different transformations than the one used in this paper affects the
results in a hybrid MDP setting is a topic of interest for future work.

7 Conclusions

This paper introduced a novel approximate way for solving possibilistic MDP
(π-MDP) models, based on the established Monte-Carlo Tree Search (MCTS) al-
gorithms for solving MDPs. We found that the applicability of MCTS for solving
π-MDP depends on the ability to quickly sample possibility distributions. By in-
troducing a new compact data structure that represents the DPY transformation
of a possibility distribution into a probability distribution, we showed that con-
stant time sampling is indeed feasible. Furthermore, we proposed a hybrid MDP
model in which we can encode both probabilistic, as well as possibilistic transi-
tions. This allows us to express different facets of uncertainty in the hybrid MDP
model. In addition, we showed how a modified version of MCTS can also be ap-
plied to solve hybrid MDP models. A central component of this modification
is the need to relate the qualitative and quantitative utility. We showed that,
while the exact procedure to combine these utilities is application-dependent,
such procedures should adhere to a number of rationality postulates. In partic-
ular, the postulates enforce that any algorithm to solve a hybrid MDP can also
be used to solve either a π-MDP and MDP. Finally, algorithms and computa-
tional complexity results of all the main components are presented throughout
the paper to highlight the applicability of our approach.
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