AgentSpeak™: AgentSpeak with
Probabilistic Planning

Yingke Chen*, Kim Bauters*, Weiru Liu*, Jun Hong*, Kevin McAreavey*, Lluis Godo*! and Carles Sierra*!
*Queen’s University Belfast (QUB), Belfast, United Kingdom
Email: {k.bauters, w.liu, j.hong, kevin.mcareavey } @qub.ac.uk
TIIIA, CSIC, Bellaterra, Spain
Email: {godo, sierra}@iiia.csic.es

Abstract—AgentSpeak is a logic-based programming lan-
guage, based on the Belief-Desire-Intention (BDI) paradigm,
suitable for building complex agent-based systems. To limit the
computational complexity, agents in AgentSpeak rely on a plan
library to reduce the planning problem to the much simpler
problem of plan selection. However, such a plan library is often
inadequate when an agent is situated in an uncertain environ-
ment. In this paper, we propose the AgentSpeak™ framework,
which extends AgentSpeak with a mechanism for probabilistic
planning. The beliefs of an AgentSpeak™t agent are represented
using epistemic states to allow an agent to reason about its
uncertain observations and the uncertain effects of its actions.
Each epistemic state consists of a POMDP, used to encode
the agent’s knowledge of the environment, and its associated
probability distribution (or belief state). In addition, the POMDP
is used to select the optimal actions for achieving a given goal,
even when facing uncertainty.

I. INTRODUCTION

Using the Belief-Desire-Intention (BDI) agent architec-
ture [1], we can develop complex systems by treating the
various system components as autonomous and interactive
agents [2]. The beliefs determine the desires that are achiev-
able, the desires are the goals an agent wants to achieve and the
intentions are those desires the agent is acting upon. A number
of successful agent-oriented programming languages have been
developed based on this architecture, such as AgentSpeak [3]
and CAN [4]. Notable BDI implementations include, for exam-
ple, JASON [5] and JADEX [6]. The benefits of the BDI model
in scalability, autonomy and intelligence have been illustrated
in various application domains such as control systems [2].
Key to the efficiency of BDI agents is the use of a set of
pre-defined plans, which simplify the planning problem to
an easier plan selection problem. However, obtaining a plan
library that can cope with every possible situation requires
adequate domain knowledge. This knowledge is not always
available, particularly when dealing with uncertain situations.
As such, when faced with uncertainty, an autonomous and
intelligent agent should resort to other forms of planning to
make rational decisions.

To illustrate the problems, consider the example shown in
Figure 1. A truck needs to collect materials from three different
factories, each producing a distinct type of material that may
or may not be available (i.e. the environment is stochastic).
The truck needs to collect all materials by visiting each factory
while limiting costs (e.g. fuel). The truck agent is uncertain as
to whether the material in a factory is ready to collect, but

it can use previous experience to estimate a degree of belief.
To further complicate the situation, the truck agent can only
infer its location by observing nearby signposts (e.g. the agent
is near a supermarket or a petrol station). Travelling between
factories may also fail (i.e. non-deterministic actions).

a
A

B S,
o

i

R
=4

The material collection scenario.

Fig. 1.

The large number of possibilities make a pre-defined plan
library infeasible, even in this small example. We address
these issues by combining AgentSpeak with Partially Observ-
able Markov Decision Processes (POMDPs). POMDPs are
a framework for probabilistic planning [7], and are often
used as a decision theory model for agent decision making.
Other frameworks, such as probabilistic graphplan [8], only
consider the uncertain effects of actions. Similarly, the partial
observability of the stochastic environment is not addressed by
approaches such as probabilistic Hierarchical Task Networks
(HTN) [9] and Markov Decision Processes (MDPs) [10]. As
such, POMDPs seem to offer an elegant solution to deal with
examples such as the one discussed above. In particular, when
optimal solutions are required (e.g. the truck wants to collect
as many materials subject to the fuel limit), POMDPs can
be used to compute these solutions. However, even though
efficient algorithms to compute the optimal policy (e.g., [11])
exist, POMDPs are still computationally intensive.

By integrating POMDPs into a BDI architecture, we retain
the scalability of the BDI architecture, while adding to it the
ability to model uncertainty and as well as on-demand access
to the optimal actions (provided by the POMDP component).
The framework we propose is called AgentSpeak™. In this
framework we introduce the concept of epistemic states [12]
to the BDI framework. These epistemic states are used to
model the beliefs of an agent about uncertain information,
along with information on how these beliefs evolve over time.
To achieve this, POMDPs are embedded into the agent’s

epistemic states and are used to represent some aspects of
the agent’s domain knowledge. When needed, the optimal
actions generated by these POMDPs can be fed into the agent’s
plan execution. Therefore, alongside the traditional trigger-
response mechanism based on pre-defined plans in BDI, an
AgentSpeak ™ agent also has the ability to deal with uncertainty
and to take optimal actions when dealing with an uncertain and
partially observable environment.

The remainder of the paper is organised as follows. Re-
lated work is discussed in Section II. Preliminary notions
on AgentSpeak and POMDPs are mentioned in Section III.
In Section IV we propose the AgentSpeak™ architecture which
integrates POMDPs into AgentSpeak. In Section V a scenario
described using AgentSpeak™ is discussed and in Section VI
we conclude the paper.

II. RELATED WORK

There have been several approaches to modelling uncer-
tainty in multi-agent systems. In [13] the degree of belief of a
BDI agent is quantified using Dempster-Shafer theory, while
in [14] a graded BDI approach is proposed that uses uncertain
beliefs (as probabilities) and graded preferences (as expected
utilities) to rank plans. However, the theoretical nature of
both works have so far precluded the development of any
practical implementations. In this paper, we instead propose an
extension based on a widely used agent-oriented programming
language. Our extension is based on epistemic states, similar
to [15] where the concept of an epistemic state is introduced
to model uncertain perceptions. Similar to their work, Boolean
belief atoms (e.g. propositional statements) can be derived
from epistemic states to support further reasoning. However,
the work in [15] only focuses on MDPs, i.e. it cannot be used in
the more natural setting of partially observable environments.

In [16] a theoretical comparison of POMDPs and the
BDI architecture identifies a correspondence between desires
and intentions on the one hand, and rewards and policies
on the other. In addition, the performance and scalability of
(PO)MDPs and the BDI architecture are compared in [17].
The authors of [17] conclude that while (PO)MDPs exhibit
better performance when the domain size is small, they do not
scale well since the state space grows exponentially. The BDI
architecture (which uses a pre-defined plan library), however,
has better scalability at the cost of optimality and can be
successfully used to plan over significantly larger state spaces.

There has also been some work in the literature on hy-
brid BDI-POMDP approaches. For example, in [18] an algo-
rithm was proposed to build AgentSpeak plans from optimal
POMDP policies. However, most characteristics of the original
BDI framework are not retained in such hybrid approaches.
In contrast, our proposed approach embeds POMDPs in the
traditional BDI agent framework. Normal BDI execution is
used by default, with the POMDP component allowing an
agent to generate new plans on-demand during execution.
Extending the BDI architecture with more elaborate planning
techniques has also been investigated in the literature. In [4],
the authors present a formal framework to integrate planning
into BDI, called CANPLAN. Similarly, in [19], the authors
integrate classical planning problems into the BDI interpreter
to allow an agent to respond to unforeseen scenarios. However,
neither approach considers the issues of uncertainty.

ITI. PRELIMINARIES
We start with some preliminaries on AgentSpeak and POMDP.

1) AgentSpeak: We first define how an agent program can
be written. We use S to denote a finite set of symbols for
predicates, actions, and constants, and)V to denote a set of
variables. Following convention, elements from S are written
using lowercase letters and elements from) using uppercase
letters. We use the standard first-order logic definition of a
term and we use t as a compact notation for ¢1,...,t,, i.e. a
vector of terms. We have [3]:

Definition 1. If b is a predicate symbol, and t are terms, then
b(t) is a belief atom. If b(t) and c(s) are belief atoms, then
b(t), =b(t), and b(t) A c(s) are beliefs.

Definition 2. If g(t) is a belief atom, then !g(t) and ?¢(t) are
goals with !g(t) an achievement goal and ?¢(t) a test goal.

Definition 3. If p(t) is a belief atom or goal, then +p(t) and
—p(t) are triggering events with + and — denoting the addition
and deletion of a belief/goal, respectively.

Definition 4. If a is an action symbol and t are terms, then
a(t) is an action.

Definition 5. If e is a triggering event, hy, ..., h,, are beliefs
and ¢, ...,q, are goals or actions, then e : hy A ... A hy,
q1,---,qn is a plan. We refer to hy A ... A h,, as the context
of the plan and to q1,...,q, as the plan body.

On the semantic level, the state of an AgentSpeak agent A
can be described by a tuple (BB, PLib, E,A,I), with BB the
belief base (treated as a set of ground belief atoms), Plib the
plan library, E the event stack, A the action set and | the
intention stack [3]. Intuitively, when an agent reacts to a new
event e, it selects those plans that have e as the triggering
event. We say that a plan is applicable when the context of
the plan evaluates to true according to the belief base of the
agent. For a given event e there may be many applicable plans,
one of which is selected and added to the intention stack. The
intention stack is a stack of those plans that are currently being
executed, i.e. those desires that the agent has chosen to pursue.
Each intention is executed by performing the actions in the
plan body, which may in turn change the environment and/or
the agent’s beliefs. The execution of an intention may then
also generate new internal events (or subgoals).

2) POMDP: Partially Observable Markov Decision Pro-
cesses (POMDPs) have gained popularity as a computational
model for solving probabilistic planning problems in a par-
tially observable and stochastic environment (see e.g., [7]).
Definition 6. A POMDP M is a tuple M = (S, A, Q, R, T, O)
where S, A, and () are sets of states, actions, and observations,
respectively. Furthermore, R : S x A — R is the reward
function', T': S x A — A(S) is the transition function and
O: S5 xA— A(Q) is the observation function. Here, A(-) is
the space of probability distributions.

Instead of knowing the current state exactly, there is a proba-
bility distribution over the state space S, called the belief state®
b(S), with b(s) the probability that the current state is s. When
S is clear from the context, we simply write b instead of b(.5).

"When depending on the resulting state, it is defined as R : Sx Ax.S — R.
2Not to be confused with the belief base of an agent, which we see later.

In Definition 6, we have that the Markovian assumption is
encoded in the transition function since the new state depends
only on the previous state. Given the belief state b; at time ¢,
after performing action a and receiving observation o, the new
belief state b;;1 is obtained using the Bayesian rule:

bir1(s) = P(s | by, a,0)
Oo]s,a)- 3 esT(s] s a) b(S=5)

- P(o| b, a) M

where P(o | b;,a) is a normalisation factor obtained by
marginalising s out as follows:

P(0|bt,a):ZO(o|s,a)- ZT(S|8’,@)-bt(S=s’).

seS s'eS

The decision a at horizon ¢ takes into account both the instant
reward as well as all possible rewards in future decision
horizons (of the POMDP execution). Given a POMDP M,
its policy m : 8 — A is a function from the space of belief
states (denoted as ‘B) to the set of actions. The policy provides
the optimal action to perform for a given belief state at each
decision horizon, i.e. it is the action that should be performed
in the current belief state to maximise the expected reward.

Definition 7 (Optimal Policy). Given a POMDP M with the
initial belief state by, 7* is an optimal policy over the next H
decision horizons if it yields the highest cumulated expected
reward value V*:
H
Ve (b1) = 39" Rs, 7 (b)) - bu(s)

t=1

where b;(s) is updated according to equation (1) and v € (0, 1]
is a discounting factor to ensure that future rewards are lower.
Here 7*(b;) is the action determined by policy 7* and the
belief state b;.

A probabilistic planning problem is then defined as the
problem of finding the optimal actions for a given POMDP
M and an initial belief state b (where the optimal actions in
a POMDP setting are described using a policy).

IV. INTEGRATION OF AGENTSPEAK AND POMDPs

We now discuss how AgentSpeak and POMDP can be
integrated into a single framework. The resulting framework,
called AgentSpeak™, allows us to define agents that can
perform on-demand planning based on the POMDP to provide
optimal decisions in an uncertain environment. We start by
introducing the concept of epistemic states to model the
uncertain beliefs of an agent. We define an epistemic state
as containing both a POMDP M and a belief state b, where
the former encodes the agent’s domain knowledge about the
partially observable environment and the latter represents the
current uncertain information about the states modelled in M.

A. Epistemic States

Definition 8 (Epistemic states). Let M be a POMDP which
models the situated partially observable stochastic environ-
ment. By definition, M includes a set of states S. The epis-
temic state @ over the state space S is defined as ® = (b, M),
where b: S — [0, 1] is a probability distribution over S.

Example 1. Let ® = (b, M) be an epistemic state. The state
space S in M is {locA, locB}, i.e. two possible locations.
The current belief state is given by b(locA) = 0.6 and
b(locB) = 0.4, which will change based on the actions
performed by the agent (e.g. probably in locB if you move
from locA) and its observations (e.g. probably in locA when
you see a supermarket). The POMDP M encoding the relevant
knowledge is graphically illustrated in Figure 2.

R(s,a)
locA locB

mouve_stop| move stop
10 -20) -20 10

T(s"" | &', move)

0.8 0.3
0.2 0.7

locA| 0.2 0.7
locB| 0.8 0.3

O(o""| ', move) sm
ps

Fig. 2. Graphical representation of the POMDP M. We have that S = {locA,
locB}, © = {(s)uper(m)arket, (p)etrol (s)tation} and A = {move, stop}.
The transition, observation and reward functions are shown as tables.

Each epistemic state contains all knowledge needed to
plan over and reason about a well-defined subset of the
environment. Given that each epistemic state has an optimal
policy, this optimal policy intuitively encodes a subplan for this
subset of the environment. Throughout the paper, we assume
that a corresponding symbol @ is available on the syntactic
level as well, i.e. on the level of an AgentSpeak agent we are
able to refer to a specific epistemic state. An executed action
and a newly obtained observation are together taken as new
input to revise the epistemic state using the belief updating
process in Equation (1), where revision is defined as:
Definition 9 (Epistemic state revision). Let ® = (b, M) be an
epistemic state and I = (a, 0) an input with a € A an action
and o € () an observation. The revision of ® by I, denoted
as ® o I, is defined as ® o I = (b', M) with o a revision
operator. Particularly, o is given by Equation (1). The result of
revision is a new epistemic state, where the new belief state &’
is determined based on the old belief state b and the input I.

Example 2 (Example 1 cont’d). Let ® = (b, M) be the
epistemic state from Example 1 with the belief state b. After
performing action move, and receiving a new observation ps,
the revised probability distribution over possible locations is
b (locA) = 0.16 and ¥’ (locB) = 0.84.

It is important to note that revision will only revise the
belief state, while keeping the corresponding POMDP un-
changed (i.e. revision does not alter the domain knowledge
of the agent in this case). When there are a sequence of inputs
I,...,I, the epistemic state is simply revised iteratively.
Furthermore, we assume that an agent can have multiple
epistemic states, each dealing with a localised and isolated
part of the beliefs of the agent. For example, the availability
of material at each factory is independent of the colour of the
traffic light. Localised epistemic states allow an agent to revise
a corresponding epistemic state given a new input without
affecting other epistemic states®. This reflects, to some extent,
the notion of minimal change principle in belief revision.

3For simplicity, we restrict ourselves in this paper to the case where each
input is relevant to only one epistemic state.

We will also allow the belief state (i.e. the beliefs main-
tained by a POMDP) to be extracted from the agent’s belief
base (i.e. the component of an AgentSpeak agent where beliefs
are stored). This is useful for designing an AgentSpeak ™ agent,
as it allows the automatic extraction of the belief state of the
POMDP from the AgentSpeak™ program.

Definition 10 (Correlated belief atoms). Two belief atoms
h(z,m, M) and h(z', m’', M) are said to be correlated if = and
z' are two states of variable X ; (which is one of the variables
in the joint state space S) defined in the POMDP M, where
m and m’ are their corresponding probability values.

Definition 11 (Extraction). Let {h(z;,m;, M) |i € 1,... k}
be a set of exhaustively correlated belief atoms for variable
X. The belief state b(x;) = m; can be directly derived from

this set iff % m; =1 and X; = {z1,..., 24}

When the state space S of a POMDP M has a set of

variables {X7,...,X,}, then the belief state b(S) is the
joint probability distribution obtained from b(X;). When the
belief state cannot be extracted from an agent’s initial beliefs
we assume a default probability distribution, i.e. a uniform
distribution, for the belief state. Finally, whenever an epistemic
state is initiated or revised the belief base of the agent will be
updated accordingly using the corresponding triggering events
—h(x;, mi, M) and +h(z;, m}, M) in AgentSpeak.
Example 3 (Example 2 cont’d). The belief state b can
be modelled as the belief atoms location(locA, 0.6, M)
and location(locB,0.4, M). The revised belief
state b’ is represented as location(locA,0.08, M) and
location(locB, 0.92, M).

B. Probabilistic Planning

Now that we have defined an epistemic state (which can
deal with uncertainty) and how to revise it, we look at
how probabilistic planning can be integrated into AgentSpeak.
The POMDPs we use in the epistemic state allow us to decide
the optimal action at each decision horizon by taking into
account the immediate expected reward and the future rewards.
However, simply computing the optimal plan at each step
would severely hamper the reactiveness of the AgentSpeak
agent due to the computational cost. Instead, we introduce a
new action to AgentSpeak, ProbPlan, which can be used in
AgentSpeak plans to explicitly compute the optimal action to
achieve a goal for a given epistemic state M. This enables
the agent to react optimally when needed, e.g. for when per-
forming the wrong action likely carries a high penalty. When
optimality is not required or when reactiveness is of primary
importance, the agent can instead rely on the abstractness and
high performance of the normal BDI plan selection strategy.

Definition 12 (Probabilistic planning action). Let ProbPlan
be an ordinary AgentSpeak action symbol and ® = (b, M)
an epistemic state. We say that ProbPlan(®, H) is a prob-
abilistic planning action, with H the number of steps and
corresponding rewards we should consider (i.e. H is the
horizon). The effect of executing ProbPlan(®, H) is that the
probabilistic planning problem defined by a POMDP M with
initial belief state b and horizon H is solved, after which the
optimal action a,; € A is executed.

Importantly, the action set A defined in a POMDP can
contain both primitive actions and compound actions (i.e.

subgoals), each representing different levels of planning granu-
larity. In the latter case, a pre-defined plan in AgentSpeak will
be triggered to pursue the goal corresponding to the optimal
action a;. This allows the optimal plan to be as specific as
possible (to reach the goal without taking excess steps) while
being as abstract as possible (to fully take effect of the domain
knowledge encoded in the set of pre-defined plans). The effects
of these compound actions can be computed either cautiously
(i.e. only considering effects shared by all relevant plans) or
bravely, which allows us to balance optimality and reactiveness
for the given problem. In addition, it should be noted that
while the result of ProbPlan(®, H) is an optimal action at
the time of computation, there is no guarantee that this action
will still be optimal during execution. Indeed, the optimal
action/subgoal is not (by default) immediately executed and
may be intertwined with the execution of other subgoals
which alter the environment. The benefit of not enforcing this
optimality but rather trying to be optimal is that we retain the
reactiveness of BDI and are able to fully use the knowledge
already encoded by the system developer in the subgoals.

For the running example, we consider a POMDP with
the state space {O, A, B,C}, i.e. the origin location O and
three factories A, B and C. In addition, there is an action set
consisting of 9 subgoals: 3 subgoals to go from the origin to
a factory; and 6 subgoals to go from one factory to another.
In all cases, the subgoals consist of both going to the location
as well as collecting the corresponding material. For example,
we will use goOBcollect to denote the subgoal to move from
the origin to factory B in order to collect material B.

Definition 13 (Probabilistic planning plan). A plan pl is called
a probabilistic planning plan if it contains at least one proba-
bilistic planning action ProbPlan in the plan body.

Due to the fact that each probabilistic planning problem
defined on M always has a (not necessarily unique) optimal
action, a probabilistic planning plan does not introduce infinite
recursion. Furthermore, an optimisation can be applied to
reduce the computational cost. Indeed, whenever the first
optimal action is decided, a complete optimal policy over H
decision horizons has already been constructed as part of the
probabilistic planning problem. Before deliberating over the
next action, the epistemic state will be revised with the current
action and the new observation as defined in Definition 9.
Given the revised epistemic state, the next optimal action can
then be decided instantly based on the optimal policy that is
already constructed without requiring extra computation.

Example 4. Consider the truck agent A; from the running
example where @ is the relevant epistemic state. We have:

Pl: +!collectMaterial : true < ProbPlan(®, 3);
ProbPlan(®, 2);
ProbPlan(®, 1).

: true ¢ moveOtoSl; !waitSltoB; moveSltoB;

senselLocation; !load(b) .

P2: +!goOBcollect

The first plan describes how the truck agent can collect all the
materials, i.e. how it can achieve its goal !collectMaterial. Due
to some hard constraint (e.g. we only have limited fuel) we
rely on the POMDP planning to plan ahead and figure out the
best course of action. Since the abstract level considered by the
POMDRP in the epistemic state ¢ can move from one factory
to another in a single step, we consider a decision horizon

epistemic states

|
|

} — POMDPs

|

Fig. 3. The revised reasoning cycle for an AgentSpeak™ agent.

of 3. The result of ProbPlan(®, 3) can for example be the
subgoal goOAcollect, i.e. given all the information available
to POMDP at the moment, the optimal action is to first visit
factory A. During the execution of this subgoal new observa-
tions will be collected (e.g. through senselLocation)and will
be taken into account when deliberating over ProbPlan(®, 2)
by (implicitly) using the revised epistemic state to find the
optimal action/subgoal to collect the remaining two materials.

C. AgentSpeak™

We are now ready to define our AgentSpeak™t framework:
Definition 14 (AgentSpeak™ agent). An AgentSpeak™ agent
At is defined as a tuple (BB', EpS,PLib", E, A, 1), where
the belief base BB™ now contains belief atoms with an as-
sociated probability value, EpS is a set of epistemic states, the
plan library PLib" contains an additional set of probabilistic
planning plans, and E, A and | are as before.

Normally, in AgentSpeak, the context of a plan consists
of classical belief atoms. However, in AgentSpeak™ the belief
base contains uncertain belief atoms, i.e. we need a way to
determine if a given context is sufficiently plausible.
Definition 15 (Belief entailment). Let {h(x;,m;, M) | i €
1,...,k} be a set of exhaustively correlated belief atoms in
an agent belief base. The belief atom h'(z;) is entailed by the
agent’s belief base BB iff there exists h(x;, m;, M) € BB such
that m; > 0 with 0 < d > 1. The value § is context-dependent,
and reflects the degree of uncertainty we are willing to tolerate.

Example 5 (Example 3 cont’d). The revised belief base
contains the belief atoms location(locA,0.08, M) and
location(locB,0.92, M). Given a threshold 0., = 0.9, only
the belief atom location(locB) is entailed.

Notice that we can straightforwardly represent classical
belief atoms by associating a probability of 1 with them. Veri-
fying if a context is entailed, i.e. a conjunction of belief literals,
is done classically based on the entailed belief atoms. As such,
we recover classical AgentSpeak entailment of contexts if we
enforce that belief entailment is only possible when § = 1.
The revised reasoning cycle of AgentSpeak™t agent is shown
in Figure 3. The agent now contains a set of epistemic states,
each of which includes a POMDP. A new input can either
revise the belief state of a POMDP or be inserted into the
agent’s belief base BB (i.e. this happens when the input is
not related to any of the agent’s epistemic states). As needed,
during plan execution, the agent can furthermore rely on the
POMDP to compute the optimal next step through the use of a

probabilistic planning action. Whenever the selected plan (i.e.
the one that has been committed as an intention) contains a
probabilistic planning action, the corresponding POMDP will
be called instead of (directly) relying on the plan library.

V. SCENARIO DISCUSSION

We now show how the scenario from the introduction
can be expressed using the AgentSpeak™ framework.* Even
though a prototype implementation has been developed, due to
space restrictions we do not evaluate the performance of our
implementation against, e.g. a pure POMDP implementation,
and instead leave this for future work. Instead, we restrict
ourselves to the material collection scenario (which relies
heavily on optimal planning) in order to illustrate the benefits
offered by AgentSpeak™ over AgentSpeak.

We recall that the goal of our truck agent A; is to collect
the materials A, B and C from resp. factories A, B and C.
We consider a single epistemic state ® where the POMDP
M has an action set of 9 subgoals, as discussed earlier in
the paper. Each state in the POMDP M contains information
about whether a factory has material available (denoted as
FA, FB and FC), whether our agent has already collected
the material (denoted as MA, MB and MC) and the location
of the agent. For example, the state s = {MA locA, FA, FB}
indicates that the agent has collected material A, is currently
in factory A and that material is available from factories A and
B. We define M in a graphical way to further decompose the
state space (e.g. whether one type of material is available at one
factory is independent from the other factories). A Dynamic
Influence Diagram (DID) [20] D is obtained for efficient
computation (shown in Figure 4). In particular, we decompose
the entire state space into a set of chance nodes for FA,
FB, FC, MA, MB, MC, and Loc. Correspondingly, belief
atoms in our agent A; describe the availability (has(X)), the
loaded materials (loaded(X)) and the location of the agent
((at(X)) for material/factory X € {a,b,c}. As discussed at
the end of Section IV-A, a revision to the epistemic state is
triggered when a belief atom is added/removed and possible
additions/deletions of belief atoms are triggered when the
epistemic state is revised.

____________ ,
—~ state | I

L LN state |
(FA) —~ | (FA) — space |
| N(r8) P I N(F8) —
- N/(¢c) | Transition = (rc) !
V(wn) | function | NI (a) o S | eee N
ot (va) —~ (ma)
I N—(ms8) — — —
! — ‘»1(\ ! C)
' i o
I -
L@
1 N |
I]

Observation
function

Horizon t+1

Horizon t I

Fig. 4. Graphical representation of POMDP M,. Here, the entire state
space is decomposed into a set of chance nodes. Some causality links for the
transition function are omitted for simplicity.

4The framework has been implemented by extending Jason [5], an open-
source implementation of AgentSpeak. Epistemic states are defined using Java
(by extending the Jason interpreter functions) and the corresponding POMDP
is constructed using Hugin [20]. During execution, the required POMDP
is called through the Hugin API by the Jason interpreter and returns the
recommended optimal decision(s).

The plan library for our AgentSpeak ™ agent A, contains many
plans, including:

(P3) +!start : true < !callFactories, !collectMaterial.

(P4) +!callFactories : true < !check(a), !check(b),
!check(c) .

(P5a) +check(X) : not loaded(X) < call(X).

(P5b) +check(X) : loaded(X) .

(P6a) +!waitSltoB : not slgreen <¢— senseSignal; !waitS1toB.

(P6b) +!waitSltoB : slgreen.

(P7) +!load(X) : at(X) < pay(X); getMaterial (X),
!callFactories.

Whenever the agent is activated, the event start is trig-
gered. The plan (P3) deals with this event by calling the
factories to check if they have material available (using the
domain knowledge encoded in (P5) to only call when material
is not yet loaded) and then proceed with collecting those
materials. Material collection was previously described in (P1)
from Example 4 where it involves a probabilistic planning
action, using the POMDP to find the optimal plan to execute.
Such a plan can be as described in (P2) from the same
example. The plan body of (P2) consists of moving the agent
to the signal, applying the domain knowledge in (P6) to
determine when it is safe to pass the signal, and then proceed to
factory B. Once the agent has completed this action it checks
whether it has successfully reached B. Once the location is
sensed, and the agent is at the required factory, it proceeds
to plan (P7) to load the required material. First, e.g. the
factory is paid, then the material is loaded and finally the
domain knowledge is applied to call those factories from which
it still needs to collect material. Importantly, the results of
these subgoals (such as moving, loading and calling factories)
modify the agent’s beliefs and thus also modify the relevant
epistemic state. These new beliefs (and uncertainties) are then
taken into account in (P1) in order to determine the optimal
subgoal for collecting the remaining materials.

This example highlights a number of key benefits of-
fered by the AgentSpeak™ framework. Compared to classical
AgentSpeak, we are able to deal with uncertain information.
Furthermore, our AgentSpeak™ agent is not fully specified in
the design phase; it resorts to probabilistic planning to deal
with crucial parts of its execution (e.g. determining the order
in which to visit the factories). Compared to a pure POMDP
implementation, the AgentSpeak™ framework considerably re-
duces the overall complexity by relying on domain knowledge
encoded on the level of a BDI agent. As such, irrelevant actions
such as determining which factories to call and how long to
wait at a signal, are omitted from the POMDP dealing with
the availability of materials. Furthermore, since planning only
happens on-demand, the agent can rely on the simpler plan
selection to ensuring maximum reactiveness for most of the
subgoals (e.g. when truck agents also have to achieve goals
where uncertainty is absent and/or optimality is not required).

VI. CONCLUSIONS

In this paper we proposed the AgentSpeak™ in which
we extend the belief base of an agent by allowing it to be
represented by one or more epistemic states. An essential part
of each epistemic state is a POMDP, which allows us to model
the domain knowledge of the partially observable environment
and from which we can compute optimal actions when needed.
In addition,this allows us to deal in a straightforward way with

uncertain information in the environment. To keep the compu-
tational complexity low, AgentSpeak™ extends AgentSpeak,
which is an agent-programming language based on the BDI
paradigm where planning is reduced to the simple task of plan
selection. By adding actions to perform on-demand planning,
the resulting AgentSpeak™ can both offer good responsiveness
while at the same time providing the option for near-optimal
planning when needed through the POMDP component. For
future work, we plan a full evaluation of our approach, both
compared to classical BDI implementations and pure POMDP
implementations. We furthermore plan an extension where
knowledge from other agents (which are only trusted to some
degree) can be employed to improve the domain knowledge
currently encoded in the POMDP component.

REFERENCES

[11 A. S. Rao and M. P. Georgeff, “An abstract architecture for rational
agents,” in Proc. of KR’92, 1992, pp. 439-449.

[2] N. R. Jennings and S. Bussmann, “Agent-based control systems,” IEEE
Control Systems Magazine, vol. 23, pp. 61-74, 2003.

[3] A.S.Rao, “Agentspeak(l): BDI agents speak out in a logical computable
language,” in Proc. of MAAMAW’96, 1996, pp. 42-55.

[4] S. Sardina and L. Padgham, “A BDI agent programming language with
failure handling, declarative goals, and planning,” AAMAS, vol. 23,
no. 1, pp. 18-70, 2011.

[5S1 R. H. Bordini, J. F. Hiibner, and M. Wooldridge, Programming Multi-
agent Systems in AgentSpeak using Jason. Wiley-Interscience, 2007.

[6] L. Braubach, W. Lamersdorf, and A. Pokahr, “JADEX: Implementing
a BDI-infrastructure for JADE agents,” EXPdin search of innovation,
vol. 3, no. 3, pp. 76-85, 2003.

[71 L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” A, vol. 101, no. 1,
pp- 99-134, 1998.

[8] A.L.Blum andJ. C. Langford, “Probabilistic planning in the graphplan
framework,” in Recent Advances in Al Planning. Springer Berlin
Heidelberg, 2000, pp. 319-332.

[9] F. Meneguzzi, Y. Tang, K. Sycara, and S. Parsons, “On representing
planning domains under uncertainty,” in Proc. of ITA’10, 2010.

[10] R. Bellman, “A markovian decision process,” Indiana University Math-
ematics Journal, vol. 6, pp. 679—-684, 1957.

[11] E. A. Hansen, “Solving POMDPs by searching in policy space,” in
Proc. of UAI’98, 1998, pp. 211-219.

[12] J. Ma and W. Liu, “A framework for managing uncertain inputs: An
axiomization of rewarding,” IJAR, vol. 52, no. 7, pp. 917-934, 2011.

[13] S. Parsons and P. Giorgini, “On using degrees of belief in BDI agents,”
in Proc. of IPMU’98, 1998.

[14] A. Casali, L. Godo, and C. Sierra, “A graded BDI agent model to
represent and reason about preferences,” Al, vol. 175, no. 7-8, pp. 1468—
1478, 2011.

[15] Y. Chen, J. Hong, W. Liu, L. Godo, CarlesSierra, and M. Loughlin,
“Incorporating PGMs into a BDI architecture,” in Proc. of PRIMA’13,
2013, pp. 54-69.

[16] M. Schut, M. Wooldridge, and S. Parsons, “On partially observable
MDPs and BDI models,” in Proc. of UKMAS’02, 2002, pp. 243-260.

[17] G. L. Simari and S. D. Parsons, “On approximating the best decision
for an autonomous agent,” in Proc. of GTDT’ 04, 2004.

[18] D. R. Pereira, L. V. Gongalves, G. P. Dimuro, and A. C. R. Costa,
“Constructing BDI plans from optimal POMDP policies, with an
application to agentspeak programming,” in Proc. of CLI’08, 2008, pp.
240-249.

[19] F Meneguzzi and M. Luck, “Declarative planning in procedural agent
architectures,” Expert Systems with Applications, vol. 40, no. 16, pp.
6508-6520, 2013.

[20] S. K. Andersen, K. G. Olesen, F. V. Jensen, and FrankJensen, “HUGIN

- a shell for building bayesian belief universes for expertsystems,” in
Proc. of IJCAI’89, 1989, pp. 1080-1085.

