Probabilistic Planning in AgentSpeak
using the POMDP framework

Kim Bauters', Kevin McAreavey!, Jun Hong!, Yingke Chen®, Weiru Liu',
Llufs Godo?!, and Carles Sierra®:!

! Queen’s University Belfast (QUB), Belfast, United Kingdom
2 TIIA, CSIC, Bellaterra, Spain

Abstract. AgentSpeak is a logic-based programming language, based
on the Belief-Desire-Intention paradigm, suitable for building complex
agent-based systems. To limit the computational complexity, agents in
AgentSpeak rely on a plan library to reduce the planning problem to the
much simpler problem of plan selection. However, such a plan library is
often inadequate when an agent is situated in an uncertain environment.
In this work, we propose the AgentSpeak™ framework, which extends
AgentSpeak with a mechanism for probabilistic planning. The beliefs of
an AgentSpeak™ agent are represented using epistemic states to allow
an agent to reason about its uncertain observations and the uncertain
effects of its actions. Each epistemic state consists of a POMDP, used
to encode the agent’s knowledge of the environment, and its associated
probability distribution (or belief state). In addition, the POMDP is used
to select the optimal actions for achieving a given goal, even when faced
with uncertainty.

1 Introduction

Using the Belief-Desire-Intention (BDI) agent architecture [20], we can develop
complex systems by treating the various system components as autonomous and
interactive agents [12]. The beliefs determine the desires that are achievable,
the desires are the goals an agent wants to achieve and the intentions are those
desires the agent is acting upon. A number of successful agent-oriented pro-
gramming languages have been developed based on this architecture, such as
AgentSpeak [19] and CAN [21]. Notable BDI implementations include, for ex-
ample, JASON [5] and JADEX [6]. The benefits of the BDI model in scalability,
autonomy and intelligence have been illustrated in various application domains
such as power engineering [15] and control systems [12]. Key to the efficiency of
BDI agents is the use of a set of pre-defined plans, which simplify the planning
problem to an easier plan selection problem. However, obtaining a plan library
that can cope with every possible situation requires adequate domain knowledge.
This knowledge is not always available, particularly when dealing with uncertain
situations. As such, when faced with uncertainty, an autonomous and intelligent
agent should resort to other forms of planning to make rational decisions.

To illustrate the problem, consider the example shown in Figure 1. A truck
needs to collect materials from three different factories, each producing a distinct
type of material that may or may not be available (i.e. the environment is
stochastic). The truck needs to collect all materials by visiting each factory
while limiting costs (e.g. fuel). The truck agent is uncertain as to whether the
material in a factory is ready to collect, but it can use previous experience to
estimate a degree of belief. To further complicate the situation, the truck agent
can only infer its location by observing nearby signposts (e.g. the agent is near
a supermarket or a petrol station). Travelling between factories may also fail
(i.e. non-deterministic actions).

'd Y
- ,
i T o

ad
A

L

\J
—"
-

B &

L "D

-

Fig. 1. The material collection scenario.

The large number of possibilities make a pre-defined plan library infeasible,
even in this small example. We address these issues by combining AgentSpeak
with Partially Observable Markov Decision Processes (POMDPs). POMDPs are
a framework for probabilistic planning [13], and are often used as a decision the-
ory model for agent decision making. Other frameworks, such as probabilistic
graphplan [4], only consider the uncertain effects of actions. Similarly, the partial
observability of the stochastic environment is not addressed by approaches such
as probabilistic Hierarchical Task Networks (HTN) [17] and Markov Decision
Processes (MDPs) [3]. As such, POMDPs seem to offer an elegant solution to
deal with examples such as the one discussed above. In particular, when optimal
solutions are required (e.g. the truck wants to collect as many materials as possi-
ble subject to the fuel limit), POMDPs can be used to compute these solutions.
However, even though efficient algorithms to compute the optimal policy exist
(e.g. [11]), POMDPs are still computationally expensive.

By integrating POMDPs into a BDI architecture, we retain the scalability
of the BDI architecture, while adding to it the ability to model uncertainty as
well as on-demand access to optimal actions (provided by the POMDP com-
ponent). The framework we propose is called AgentSpeak™. In this framework
we introduce the concept of epistemic states [14] to the BDI paradigm. These
epistemic states are used to model the beliefs of an agent about uncertain infor-

mation, along with information on how these beliefs evolve over time. To achieve
this, POMDPs are embedded into the agent’s epistemic states and are used to
represent some aspects of the agent’s domain knowledge. The optimal actions
generated by these POMDPs can be fed into the agent’s plan execution. There-
fore, alongside the traditional trigger-response mechanism based on pre-defined
plans in BDI, an AgentSpeak™ agent also has the ability to take optimal actions
when dealing with uncertain and partially observable environments.

The main contributions of this work are as follows. First, we extend the belief
base of a BDI agent with epistemic states consisting of POMDPs to allow an
agent to reason about both the partially observable stochastic environment and
the uncertain effects of its actions. Second, we present how the agent can delegate
POMDPs to find optimal action(s) when the agent is dynamically generating its
plans under uncertainty for achieving its goals. Finally, we demonstrate through
a scenario discussion how the proposed framework can be used to design agents
that are aware of the uncertainty in the environment and are able to react
accordingly.

The remainder of our work is organised as follows. Preliminary notions on
AgentSpeak and POMDPs are mentioned in Section 2. In Section 3 we pro-
pose the AgentSpeak™ architecture which integrates POMDPs into AgentSpeak.
A scenario is discussed in Section 4. Related work is discussed in Section 5 and
in Section 6 we conclude our work.

2 Preliminaries

We start with some preliminaries on AgentSpeak (see Section 2.1) and Partially
Observable Markov Decision Processes (POMDP) (see Section 2.2).

2.1 AgentSpeak

We first define how an agent program can be written. We use S to denote a
finite set of symbols for predicates, actions, and constants, and V to denote a
set of variables. Following convention in logic programming, elements from S
are written using lowercase letters and elements from V using uppercase letters.
We use the standard first-order logic definition of a term® and we use t as a
compact notation for ¢y, ...,t,, i.e. a vector of terms. We have [19]:

Definition 1. If b is a predicate symbol, and t are terms, then b(t) is a belief
atom. Ifb(t) and c(s) are belief atoms, then b(t), =b(t), and b(t)Ac(s) are beliefs.

Definition 2. If g(t) is a belief atom, then lg(t) and ?g(t) are goals with 'g(t)
an achievement goal and ?¢(t) a test goal.

Definition 3. If p(t) is a belief atom or goal, then +p(t) and —p(t) are trig-
gering events with + and — denoting the addition and deletion of a belief/goal,
respectively.

3 A variable is a term, a constant is a term, and from every n terms 1, s, ..., t, and
every n-ary predicate p a new term p(t1,t2,...,t,) can be created.

Definition 4. If a is an action symbol and t are terms, then a(t) is an action.

Definition 5. If e is a triggering event, hy,...,h., are beliefs and q1,...,qn
are goals or actions, then e : hy A ... A hy < q1,...,qn i a plan. We refer to
hi A ... A hy, as the context of the plan and to q1,...,q, as the plan body.

Following these definitions, we can now specify an agent by its belief base BB,
its plan library PLib and the action set Act. The belief base of an agent, BB,
which is treated as a set of belief atoms, contains the information that the agent
has about the environment. The plan library contains those plans that describe
how the agent can react to the environment, where plans are triggered by events.
Finally, the action set simply describes the primitive actions to which the agent
has access.

On the semantic level, the state of an AgentSpeak agent A can be described
by a tuple (BB, PLib, E, Act,), with E the event set, | the intention set and BB,
Plib and Act as before [19]. The event set and intention set are mainly relevant
during the execution of an agent. Intuitively, the event set contains those events
that the agent still has to deal with. When an agent reacts to one of these
new events e, it selects those plans that have e as the triggering event, i.e. the
relevant plans. We say that a plan is applicable when the context of the plan
evaluates to true according to the belief base of the agent. For a given event
e there may be many applicable plans, one of which is selected and added to
an intention. The intention set is a set of intentions that are currently being
executed concurrently, i.e. those desires that the agent has chosen to pursue.
Each intention is a stack of partially executed plans and is itself executed by
performing the actions in the body of each plan in the stack. The execution of
an intention may change the environment and/or the agent’s beliefs. Also, if the
execution of an intention results in the generation of new internal events (or
subgoals), then additional plans may be added to the stack.

2.2 POMDP

Partially Observable Markov Decision Processes (POMDPs) have gained popu-
larity as a computational model for solving probabilistic planning problems in a
partially observable and stochastic environment (see e.g. [13]). They are defined
as follows:

Definition 6. A POMDP M is a tuple M = (S, A, 2, R, T,0) where S, A,
and {2 are sets of states, actions, and observations, respectively. Furthermore,
R : S x A — Ris the reward function, T : S x A — A(S) is the transition
function and O : S x A — A(S2) is the observation function. Here, A(-) is the
space of probability distributions.

Instead of knowing the current state exactly, there is a probability distribution
over the state space S, called the belief state* b(S), with b(s) the probability that

4 Not to be confused with the belief base of an agent, which we see later.

the current state is s. When S is clear from the context, we simply write b instead
of b(S). In Definition 6, we have that the Markovian assumption is encoded in the
transition function since the new state depends only on the previous state. Given
the belief state b; at time ¢, after performing action a and receiving observation o,
the new belief state by is obtained using the Bayesian rule:

bt+1(s) = P(S ‘ bt7a70)

B Oo|s,a) > cgT(s|s,a) b(s)
N P(o| b, a) (1)

where P(o | b,a) is a normalisation factor obtained by marginalising s out as
follows:

P(o|bs,a) =Y Oo|s,a)- > T(s|s a) bis).

ses s’eS

The decision a at horizon ¢ takes into account both the instant reward as well
as all possible rewards in future decision horizons (of the POMDP execution).
Given a POMDP M, its policy 7 : 8 — A is a function from the space of belief
states (denoted as 9B) to the set of actions. The policy provides the optimal
action to perform for a given belief state at each decision horizon, i.e. it is the
action that should be performed in the current belief state to maximise the
expected reward.

Definition 7 (Optimal Policy). Given a POMDP M with the initial belief
state by, ™ is an optimal policy over the next H decision horizons if it yields
the highest cumulated expected reward value V*:

H

VA1) =Y 7" R(s, " (b)) - bi(s)

t=1

where by(s) is updated according to equation (1) and v € (0,1] is a discounting
factor to ensure that future rewards are lower. Here w*(b:) is the action deter-
mined by policy ™ and the belief state by.

A probabilistic planning problem is then defined as the problem of finding the
optimal actions for a given POMDP M and an initial belief state b (where the
optimal actions in a POMDP setting are described using a policy 7).

3 Integration of AgentSpeak and POMDPs

We now discuss how AgentSpeak and POMDP can be integrated into a single
framework. The resulting framework, called AgentSpeak™, allows us to define
agents that can perform on-demand planning based on the POMDP to provide
optimal decisions in an uncertain environment. We start by introducing the con-
cept of epistemic states to model the uncertain beliefs of an agent. We define an

epistemic state in Section 3.1 as containing both a POMDP M and a belief state
b, where the former encodes the agent’s domain knowledge about the partially
observable environment and the latter represents the current uncertain informa-
tion about the states modelled in M. The basic concepts needed for probabilistic
planning are introduced in Section 3.2, where we show how a new construct be-
having as an action in AgentSpeak allows for the desired on-demand planning.
Our new framework, AgentSpeak+ in then introduced in Section 3.3, where it
combines both aforementioned ideas with classical AgentSpeak.

3.1 Epistemic States

Normally, a belief base only contains belief atoms with Boolean values. Such
an approach is insufficient to reason over the uncertain beliefs of the agent.
To overcome this, we extend the the idea of a belief base into the concept of an
epistemic state.

Definition 8 (Epistemic states). Let M be a POMDP which models the situ-
ated partially observable stochastic environment. By definition, M includes a set
of states S. The epistemic state @ over the state space S is defined as & = (b, M),
where b: S — [0,1] is a probability distribution over S.

The POMDP M defined in the epistemic state ¢ represents the knowledge
about the uncertain environment. The observations {2 and state space S in M
are subject to the agent A’s belief base. The action set A of the POMDP can
contain both primitive actions in agent A’s action set Act and compound actions
which correspond to goals achievable by executing existing plans. Compound
actions, which are plans in BDI, can have various outcomes. However, they can
be transformed into primitive actions over which POMDP can reason using a
translation such as the one proposed in [9]. Indeed, the work in [9] suggests
an approach to summarise sceptical results of compound actions as primitive
actions. The belief state b quantitatively denotes the degree of certainty about
the partial state space as the initial condition for M.

Ezample 1. Let & = (b, M) be an epistemic state. The state space S in M
is {LocA, LocB}, i.e. two possible locations, where we want to be in LocB (as
indicated by the reward function). The current belief state is given by b(LocA) =
0.6 and b(LocB) = 0.4, which will change based on the actions performed by
the agent (e.g. probably in LocB if you move from LocA) and its observations
(e.g. probably in LocA when you see a supermarket). The POMDP M encoding
the relevant knowledge is graphically illustrated in Figure 2.

Each epistemic state contains all knowledge needed to plan over and reason about
a well-defined subset of the environment. Given that each epistemic state has an
optimal policy, this optimal policy intuitively encodes a subplan for this subset of
the environment. Throughout this work, we assume that a corresponding symbol
@ is available on the syntactic level as well, i.e. on the level of an AgentSpeak
agent we are able to refer to a specific epistemic state. An executed action and

R(s,a)
locA locB

move stop| move stop
10 -20| -20 10

T(s"" | s, move)

Fig. 2. Graphical representation of the POMDP M. We have that S = {LocA, LocB},
2 = {(s)uper(m)arket, (p)etrol (s)tation} and A = {move, stop}. The transition, obser-
vation and reward functions are shown as tables.

a newly obtained observation are together taken as new input to revise the
epistemic state using the belief updating process in Equation (1), where revision
is defined as:

Definition 9 (Epistemic state revision). Let & = (b, M) be an epistemic
state and I = {a,0) an input with a € A an action and o € 2 an observation.
The revision of @ by I, denoted as ® o I, is defined as:

Pol=(b,M)

with o a revision operator. Particularly, o is given by equation (1). The result
of revision is a new epistemic state, where the new belief state V' is determined
based on the old belief state b and the input I.

Ezample 2 (Example 1 continued). Let @ = (b, M) be the epistemic state from
Example 1 with the belief state b. After performing action move, and receiving
a new observation ps, the revised probability distribution over possible locations

is b'(LocA) = 0.16 and ¥’ (LocB) = 0.84.

It is important to note that revision will only revise the belief state, while
keeping the corresponding POMDP unchanged (i.e. revision does not alter the
domain knowledge of the agent in this case). When there is a sequence of in-
puts I1,..., I, the epistemic state is simply revised iteratively. Furthermore, we
assume that an agent can have multiple epistemic states, each dealing with a
localised and isolated part of the beliefs of the agent. For example, the availabil-
ity of material at each factory is independent of the colour of the traffic light.
Localised epistemic states allow an agent to revise a corresponding epistemic
state given a new input without affecting other epistemic states®. This reflects,
to some extent, the notion of minimal change principle in belief revision.

We will also allow the belief state (i.e. the beliefs maintained by a POMDP)
to be extracted from the agent’s belief base (i.e. the component of an AgentSpeak

5 For simplicity, we restrict ourselves in this work to the case where each input is
relevant to only one epistemic state.

agent where beliefs are stored). This is useful for designing an AgentSpeak™
agent, as it allows the automatic extraction of the belief state of the POMDP
from the AgentSpeak™ program. To simplify the explanation, we will explicitly
add the POMDP as a parameter to the belief atoms to make explicit to which
POMDP the belief atom is associated.

Definition 10 (Correlated belief atoms). Two belief atoms h(x,m, M) and

h(z',m’', M) are said to be correlated if x and x’ are two states of variable X

(which is one of the variables in the joint state space S) defined in the POMDP M,
where m and m’ are their corresponding probability values.

Definition 11 (Extraction). Let {h(z;,m;,M) | i € 1,...,k} be a set of
exhaustively correlated belief atoms for variable X;. The belief state b(x;) = m;
can be directly derived from this set iff 25:1 m; =1 and X; = {z1,..., x5}

Here, a set of exhaustively correlated belief atoms implies that no other belief
atoms in the agent belief base are correlated to any of the belief atoms in this set.

When the state space S of a POMDP M has a set of variables {X7,..., X,},
then the belief state b(.S) is the joint probability distribution obtained from b(X}).
When the belief state cannot be extracted from an agent’s initial beliefs we as-
sume a default probability distribution, i.e. a uniform distribution, for the belief
state. Finally, whenever an epistemic state is initiated or revised the belief base of
the agent will be updated accordingly using the corresponding triggering events
—h(x;, m;, M) and +h(z;, m;, M) in AgentSpeak.

We can also derive ordinary beliefs from the belief state:

Definition 12 (Derivation). Let & = (b, M) be an epistemic state containing
a probability distribution over S. The belief atom of @, denoted as Bel(P), is

derived as ()
sqi, when P(S =35;)>9§
Bel(®) = { T, otherwise

Here § is a pre-defined threshold for accepting that s; represents the real world
concerning S. Notation T is a special constant representing an agent’s ignorance,
i.e. an agent is not certain about the state of variable S.

Ezample 3 (Example 2 continued). The belief state b can be modelled as the be-
lief atoms location(LocA, 0.6, M) and location(LocB, 0.4, M). The revised belief
state b’ is represented as location(LocA, 0.16, M) and location(LocB, 0.84, M).

3.2 Probabilistic Planning

Now that we have defined an epistemic state (which can deal with uncertainty)
and how to revise it, we look at how probabilistic planning can be integrated into
AgentSpeak. The POMDPs we use in the epistemic state allow us to decide the
optimal action at each decision horizon by taking into account the immediate
expected reward and the future rewards. However, simply computing the optimal

plan at each step would severely hamper the reactiveness of the AgentSpeak
agent due to the computational cost. Instead, we introduce a new action to
AgentSpeak, ProbPlan, which can be used in AgentSpeak plans to explicitly
compute the optimal action to achieve a goal for a given epistemic state M. This
enables the agent to react optimally when needed, e.g. for when performing the
wrong action likely carries a high penalty. When optimality is not required or
when reactiveness is of primary importance, the agent can instead rely on the
abstractness and high performance of the normal BDI plan selection strategy.

Definition 13 (Probabilistic planning action). Let ProbPlan be an ordi-
nary AgentSpeak action symbol and & = (b, M) an epistemic state. We say that
ProbPlan(®, H) is a probabilistic planning action, with H the number of steps
and corresponding rewards we should consider (i.e. H is the horizon). The effect
of executing ProbPlan(®, H) is that the probabilistic planning problem defined by
a POMDP M with initial belief state b and horizon H is solved, after which the
optimal action a; € A is executed.

Importantly, the action set A defined in a POMDP can contain both prim-
itive actions and compound actions (i.e. subgoals), each representing different
levels of planning granularity. In the latter case, a pre-defined plan in AgentS-
peak will be triggered to pursue the goal corresponding to the optimal action
a;. This allows the optimal plan to be as specific as possible (to reach the goal
without taking excess steps) while being as abstract as possible (to fully take
effect of the domain knowledge encoded in the set of pre-defined plans). The ef-
fects of these compound actions can be computed either sceptically (i.e. only
considering effects shared by all relevant plans) or credulously, which allows us
to balance optimality and reactiveness for the given problem. In the first case,
we guarantee the outcome of those effects that we want to bring about, but we
leave it up to the AgentSpeak reasoning system to select the best plan at time
of execution (i.e. we are not interested in the side-effects). In the latter case,
we apply a “best effort” strategy, where we lose some optimality but gain re-
activeness. In addition, it should be noted that while the result of ProbPlan(®,
H) is an optimal action at the time of computation, there is no guarantee that
this action will still be optimal during execution. Indeed, the optimal action/-
subgoal is not (by default) immediately executed and may be intertwined with
the execution of other subgoals which alter the environment. The benefit of not
enforcing this optimality but rather trying to be optimal is that we retain the
reactiveness of BDI and are able to fully use the knowledge already encoded by
the system developer in the subgoals.

For the running example, we consider a POMDP with the state space de-
fined as {O, A, B, C'}, i.e. the origin location O and three factories A, B and C.
In addition, there is an action set consisting of 9 subgoals: 3 subgoals to go from
the origin to a factory; and 6 subgoals to go from one factory to another. In all
cases, the subgoals consist of both going to the location as well as collecting
the corresponding material. For example, we will use goOBcollect to denote the
subgoal to move from the origin to factory B in order to collect material B.

Definition 14 (Probabilistic planning plan). A plan pl is called a prob-
abilistic planning plan if it contains at least one probabilistic planning action
ProbPlan in the plan body.

Similar to Definition 13, a probabilistic planning plan is still a normal AgentS-
peak plan. Due to the fact that each probabilistic planning problem defined on
M always has a (not necessarily unique) optimal action, a probabilistic plan-
ning plan does not introduce infinite recursion. Furthermore, an optimisation
can be applied to reduce the computational cost. Indeed, whenever the first op-
timal action is decided, a complete optimal policy over H decision horizons has
already been constructed as part of the probabilistic planning problem. Before
deliberating over the next action, the epistemic state will be revised with the
current action and the new observation as defined in Definition 9. Given the
revised epistemic state, the next optimal action can then be decided instantly
based on the optimal policy that is already constructed without requiring extra
computation.

Ezxample 4. Consider the truck agent A; from the running example where @ is
the relevant epistemic state. We have:

P1: +!'collectMaterial : true < ProbPlan(®, 3);
ProbPlan(®, 2);
ProbPlan(®, 1).
P2: +!'go0Acollect : true < moveOtoS1l; !waitS1toA; moveSitoA;
senselocation; !load(a).

The first plan describes how the truck agent can collect all the materials, i.e. how
it can achieve its goal !collectMaterial. Due to some hard constraint (e.g. we only
have limited fuel) we rely on the POMDP planning to plan ahead and figure out
the best course of action. Since the abstract level considered by the POMDP in
the epistemic state @ can move from one factory to another in a single step, we
consider a decision horizon of 3. The result of ProbPlan(®, 3) can for example be
the subgoal goOAcollect, i.e. given all the information available to POMDP at
the moment, the optimal action is to first visit factory A. During the execution of
this subgoal new observations will be collected (e.g. through senseLocation) and
will be taken into account when deliberating over ProbPlan(®, 2) by (implicitly)
using the revised epistemic state to find the optimal action/subgoal to collect
the remaining two materials.

3.3 AgentSpeak+
We are now ready to define our AgentSpeak™ framework:

Definition 15 (AgentSpeak™ agent). An AgentSpeakt agent At is defined
as a tuple <BB+, EpS, PLib™, E, Act, 1), where the belief base BBT now contains
belief atoms with an associated probability value, EpS is a set of epistemic states,
the plan library PLib™ contains an additional set of probabilistic planning plans,
and E, Act and | are as before.

AgentSpeak+ Agent

| |
| |
| epistemic states |
| | Probabilistic planning action |
I POMDPs | [I
. | |
Luts» l T context |
| |
| .
, ™ Belief Base |
|
external | |
events | Applicable |
—_—
] Event Set @ PP |
g Plans |
| |
| q |
| Plan Library |
I mmmm s |
: : Planning plans | A :
____________ 1
: Intention |- |
|
| |
| |

Fig. 3. The revised reasoning cycle for an AgentSpeak™ agent.

Normally, in AgentSpeak, the context of a plan consists of classical belief
atoms. However, in AgentSpeak ™ the belief base contains uncertain belief atoms,
i.e. we need a way to determine if a given context is sufficiently plausible.

Definition 16 (Belief entailment). Let {h(z;,m;, M) |i € 1,...,k} be a set
of exhaustively correlated belief atoms in an agent belief base. The belief atom
B (x;) is entailed by the agent’s belief base BB iff there exists h(xz;,m;, M) € BB
such that m; > 6§ with 0 < 6 < 1. The value § is context-dependent, and reflects
the degree of uncertainty we are willing to tolerate.

Ezample 5 (Example 3 continued). The revised belief base contains the belief
atoms location(LocA,0.16, M) and location(LocB, 0.84, M). Given a threshold
Oloc = 0.8, only the belief atom location(LocB) is entailed.

Notice that we can straightforwardly represent classical belief atoms by as-
sociating a probability of 1 with them. Verifying if a context is entailed, i.e. a
conjunction of belief literals, is done classically based on the entailed belief atoms.
As such, we recover classical AgentSpeak entailment of contexts if we enforce
that belief entailment is only possible when § = 1. The revised reasoning cycle
of AgentSpeak™ agent is shown in Figure 3. The agent now contains a set of
epistemic states, each of which includes a POMDP. A new input can either re-
vise the belief state of a POMDP or be inserted into the agent’s belief base BB
(i.e. this happens when the input is not related to any of the agent’s epistemic
states). As needed, during plan execution, the agent can furthermore rely on the
POMDP to compute the optimal next step through the use of a probabilistic
planning action. Whenever the selected plan (i.e. the one that has been commit-
ted as an intention) contains a probabilistic planning action, the corresponding
POMDP will be called instead of (directly) relying on the plan library.

Proposition 1 (Proper extension). An AgentSpeak™ agent AT is a proper
extension of a classical AgentSpeak agent A.

Proof. An AgentSpeak™ agent At extends a classical AgentSpeak agent A in
three aspects. Firstly, an AgentSpeak™ belief base BB' extends an AgentSpeak
belief base BB by associating a probability value with each belief atom. Sec-
ondly, an AgentSpeak™ agent includes a set of epistemic states EpS. Finally, an
AgentSpeak™ plan library PLib"™ extends an AgentSpeak plan library PLib by
allowing probabilistic planning plans. If all belief atoms in BB have a probabil-
ity value of 1, if EpS is empty and if PLib™ has no probabilistic planning plans,
then the AgentSpeak™ agent AT reduces to a classical AgentSpeak agent. a

Proposition 2 (Termination). Let PLib" be a non-recursive AgentSpeak™
plan library and e an event. If there is a relevant plan for e in PLib™ then
either all steps in the plan body will be executed or the plan will fail in a finite
number of steps.

Proof. If no applicable plan for e exists in PLib™, then the execution fails imme-
diately. Otherwise, an applicable plan is selected to deal with e and its plan body
is executed. If the applicable plan for e in PLib™ is a classical AgentSpeak plan
then the plan body is a finite sequence of (non-recursive) actions/goals. When
an action is encountered it is executed immediately. If a goal is encountered, it
is either a test goal, which can be executed immediately by querying the belief
base of the agent, or it is an achievement goal. If it is an achievement goal, the
same line of reasoning we used so far applies for classical AgentSpeak plans.
In addition, because we have that PLib™ is a non-recursive plan library, we know
that after a finite number of subgoals (since the plan library is finite) we will
have a subgoal for which the plan only contains actions and/or test goals.

If the applicable plan, or any plans of its subgoals is a probabilistic planning
plan then the plan body may also include probabilistic planning actions. By def-
inition, a POMDP used by any probabilistic planning action will always return
an optimal policy representing a single action/goal to execute. As before, the
resulting action or goal will either succeed or fail in a finite number of steps. O

4 Scenario Discussion

We now show how the scenario from the introduction can be expressed using the
AgentSpeak™ framework. Since the material collection scenario relies heavily on
optimal planning, the scenario serves as a good example to illustrate the benefits
offered by AgentSpeak™ over classical AgentSpeak. We stress though that the
purpose of this discussion is not to present an actual implementation, but rather
to motivate the merits of the proposed framework to warrant future work on
a fully implemented system. As a basis for this future work, we briefly discuss
a prototype system at the end of this section which we designed to verify the
feasibility of our approach.

4.1 Case Study

We recall that the goal of our truck agent A; is to collect materials from factories
A, B and C. Then, as discussed in Section 3.2, we consider a single epistemic
state @ where its POMDP M has an action set with 9 subgoals. Each state
in the POMDP M contains information about whether a factory has available
materials (denoted as FA, FB and FC), whether our agent has already collected
materials from a factory (denoted as MA, MB and MC) as well as the current
location of the agent (denoted as LocA, LocB and LocC). For example, the state
s = {MA| LocA, FA, FB} indicates that the agent has collected material from fac-
tory A, is currently at factory A and that material is still available from factories
A and B. We define M in a graphical way to further decompose the state space
(i.e. whether material is available at one factory is independent from whether
material is available at another). A Dynamic Influence Diagram [1] D is obtained
for efficient computation (shown in Figure 4). In particular, we decompose the
entire state space into a set of chance nodes representing FA, FB, FC, MA, MB
and MC while LocA, LocB and LocC are represented by a single chance node
Loc. Correspondingly, belief atoms in our agent A; describe the availability of
materials (denoted has(X)), where materials have been loaded from previously
(denoted loaded(X)) and the current location of the agent (denoted at(X)) for
factories X € {a,b,c}. As discussed at the end of Section 3.1, a revision of the
epistemic state is triggered when a belief atom is added/removed and possi-
ble additions/deletions of belief atoms are triggered when the epistemic state is
revised.

———————————— l ———————————n,
state ! | state |

! [
@ ot | ()

|
|
|
| |
: : Transition I : @ :
| | function cee

see
O
| | |
| |
| |
| |
| |
| |
| |
| |

: Reward
| function

Observation
function

Horizon t | Horizon t+1

Fig. 4. Graphical representation of POMDP M. Here, the entire state space is de-
composed into a set of chance nodes. Some causality links for the transition function
are omitted for simplicity.

The plan library for our AgentSpeak™ agent A, contains many plans, including:

(P3) +!start : true < !'callFactories, !collectMaterial.
(P4) +!callFactories : true < !check(a), !check(b),
'check(c).

(P5a) +check(X) : not loaded(X) < call(X).

(P5b) +check(X) : loaded(X).

(P6a) +!waitS1toB : not slgreen < senseSignal; !waitS1toB.

(P6b) +!waitS1toB : sigreen.

(P7) +!1load(X) : at(X) < pay(X); getMaterial(X),
lcallFactories.

We can describe this agent in more detail. When the agent is initialised, the
start event is generated. The plan (P3) reacts to this event using plan (P4), along
with plan (P5a) or (P5b), by calling each factory to check if material is available
(i.e. it only calls those factories from which material has not been previously
loaded). The agent then proceeds with plan (P3) by attempting to collect the
available materials. The material collection procedure itself was previously de-
scribed by the probabilistic planning plan (P1) from Example 4, which involves
a probabilistic planning action using a POMDP to find the optimal plan to exe-
cute. A predefined executable plan for moving from the origin location to factory
A was described by plan (P2) from the same example. With an equivalent plan
for moving to factory B, the plan body would consist of moving the agent to the
signal, generating a subgoal relevant to plans (P6a) and (P6b) (i.e. to determine
when it is safe to pass the signal), and then proceeding to factory B. Once the
agent has completed this action it will check whether it has successfully reached
factory B. When the location is sensed, and the agent is at the desired factory, it
proceeds by executing plan (P7) to load the required material. First the factory
is paid, then the material is loaded and, finally, plan (P4) is again executed to call
the remaining factories from which material has not been collected. Importantly,
the effect of these subgoals (such as moving, loading and calling factories) modify
the agent’s beliefs and thus also modify the relevant epistemic state. These new
beliefs (and uncertainties) are then taken into account by plan (P1) in order to
determine the optimal subgoal for collecting the remaining materials.

In addition to a POMDP M, the initial belief state b, associated with M, is
also part of an epistemic state. In the preparation stage (relevant to plan (P4)),
A; defines correlated belief atoms for each variable in the POMDP’s state space,
such as FA and FB, and these correlated belief atoms are added to the agent’s
belief base BB. For each variable, such as FA, the corresponding belief state b(FA)
can be defined. When this is completed for all variables, a joint belief state b(S)
is derived. For example, the action query(FA) estimates the material availability
at factory A and belief atoms, such as available(FA, 0.8) and available(FA, 0.2),
express our certainty that the material is available at factory A. The beliefs
about other factories, the initially loaded material and the starting location of
the agent can be obtained in a similar manner. The belief state by itself can be
extracted from the relevant belief atoms according to Definition 11.

This example highlights a number of key benefits offered by the AgentSpeak ™
framework. Compared to classical AgentSpeak, we are able to deal with uncertain
information. Furthermore, our AgentSpeak™ agent is not fully specified in the

design phase; it resorts to probabilistic planning to deal with crucial parts of its
execution (e.g. determining the order in which to visit the factories). Compared
to a pure POMDP implementation, the AgentSpeak™ framework considerably
reduces the overall complexity by relying on domain knowledge encoded on the
level of a BDI agent. As such, irrelevant actions such as determining which fac-
tories to call and how long to wait at a signal, are omitted from the POMDP
dealing with the availability of materials. Furthermore, since planning only hap-
pens on-demand, the agent can rely on the simpler plan selection process to
ensure maximum reactiveness for most of the subgoals (e.g. when agents also
need to achieve goals where uncertainty is absent and/or optimality is not re-
quired).

4.2 Implementation Considerations

A prototype implementation of this framework has been developed® that ex-
tends Jason [5], an open-source implementation of AgentSpeak, with Hugin [1],
a proprietary tool for constructing and evaluating Bayesian networks. Equiv-
alent open source alternatives to Hugin include SMILE [10] and its Java API
JSMILE. In addition to this, the implementation uses the flexibility of the Ja-
son system to develop parts of the system in Java. The epistemic states, their
revision, extraction and derivation have all been defined on the level of Java.
As such, the actual agent description in Jason can be mostly agnostic as to
the underlying complexity; beliefs are automatically revised and converted into
Boolean beliefs as needed, and the only exposure the agent has to the underly-
ing system is through the ProbPlan concept. Whenever such a ProbPlan action
is called, the required POMDP is called through the Hugin API by the Jason
interpreter and returns the recommended optimal decision(s). While this pro-
totype proved promising, it suffered from its overall complexity. For example,
keeping the beliefs consistent across all three systems is challenging and time-
consuming to develop. Still, these tools find optimal solutions for POMDP which
can be very time-consuming for even small problems. As a result, the prototype
was often considerably slower than plain AgentSpeak. The recent emergency of
very capable anytime planning algorithms for POMDP (e.g. [23]) is promising
and would be the tools of choice for future implementations. Indeed, by using
anytime algorithms an agent could further balance between having reactive be-
haviour, having quick deliberative behaviour or exhibiting behaviour where the
agent can wait if it need not act quickly until an optimal solution is found. Such
an algorithm could also be integrated in the Java framework, avoiding the need
for expensive API calls to an external tool. Finally, we note that a full evaluation
of any implementation would require a problem setting considerably larger than
the material collection scenario. Indeed, our framework is developed in such a
way that planning happens on demand. In realistic scenarios, however, a large
part of the environment can be explored without the need for (near-)optimal
actions, i.e. we can rely on simple plan selection rather than planning based on

5 By the author Yingke Chen.

POMDPs. For these reasons, the development of a full implementation, as well
as its thorough evaluation, is left for future work.

5 Related Work

There have been several approaches to modelling uncertainty in multi-agent
systems. In [7] a graded BDI approach is proposed that uses uncertain beliefs
(as probabilities) and graded preferences (as expected utilities) to rank plans.
However, the theoretical nature of this work has so far precluded the development
of any practical implementations. In this work, we instead propose an extension
based on a widely used agent-oriented programming language. Our work is based
on epistemic states, similar to [8], where the concept of an epistemic state is
introduced to model uncertain perceptions. Similar to their work, Boolean belief
atoms (e.g. propositional statements) can be derived from epistemic states to
support further reasoning. Still, the work in [8] only focuses on MDPs, i.e. it
cannot be used in the more natural setting of partially observable environments.
A similar approach has been used in [2] where the authors model different forms
of uncertainty as distinct epistemic states. This allows a single agent to reason
about different forms of uncertainty in a uniform way. However, the work’s main
focus is on the representation of the beliefs and their commensurability and does
not provide first-principles planning under uncertainty, nor do they exploit any
of the facets of the decision theoretical model (e.g. rewards or penalties).
Autonomous agents have to make rational decisions to pursue their goals
(i.e. selecting appropriate plans) in a stochastic environment. Markov Deci-
sion Processes (MDP) and Partially Observable MDPs (POMDPs), are pop-
ular frameworks to model an agent’s decision making processes in stochastic
environments. In [22] a theoretical comparison of POMDPs and the BDI archi-
tecture identifies a correspondence between desires and intentions, and rewards
and policies. The performance and scalability of (PO)MDPs and the BDI ar-
chitecture are compared in [24]; while (PO)MDPs exhibit better performance
when the domain size is small, they do not scale well since the state space grows
exponentially. The BDI architecture (which uses a pre-defined plan library) has
better scalability at the cost of optimality, making it applicable to significantly
larger state spaces. Nevertheless, future research showed that BDI and MDP are
closely linked. Indeed, in [25] the relationship between the policies of MDPs and
the intentions in the BDI architecture is discussed. In particular, it shows that in-
tentions in the BDI architecture can be mapped to policies in MDPs. This in turn
led to some work in the literature on hybrid BDI-POMDP approaches. In [18]
an algorithm was proposed to build AgentSpeak plans from optimal POMDP
policies. However, most characteristics of the original BDI framework are not
retained in such hybrid approaches. In contrast, our approach embeds POMDPs
in the traditional BDI agent framework. Normal BDI execution is used by de-
fault, with the POMDP component allowing an agent to generate new plans
on-demand during execution. Extending the BDI architecture with more elab-
orate planning techniques has also been investigated in the literature. In [21],

the authors present a formal framework to integrate lookahead planning into
BDI, called CANPLAN. Similarly, in [16], the authors integrate classical planning
problems into the BDI interpreter to allow an agent to respond to unforeseen
scenarios. However, neither approach considers issues related to uncertainty.

6 Conclusions

In this work we proposed the AgentSpeak™’ in which we extend the belief base
of an agent by allowing it to be represented by one or more epistemic states.
An essential part of each epistemic state is a POMDP, which allows us to model
the domain knowledge of the partially observable environment and from which
we can compute optimal actions when needed. In addition, this allows us to deal
in a straightforward way with uncertain information in the environment. To keep
the computational complexity low, AgentSpeak™ extends AgentSpeak, an agent-
programming language based on the BDI paradigm where planning is reduced
to the simple task of plan selection. By adding actions to perform on-demand
planning, the resulting AgentSpeak™ can both offer good responsiveness while
at the same time providing the option for near-optimal planning when needed
through the POMDP component. For future work, we plan a full evaluation
of our approach, both compared to classical BDI implementations and pure
POMDP implementations. We furthermore plan an extension where knowledge
from other agents (which are only trusted to some degree) can be employed to
improve the domain knowledge currently encoded in the POMDP component.

Acknowledgements

This work has been funded by EPSRC PACES project (Ref: EP/J012149/1).

References

1. Andersen, S.K., Olesen, K.G., Jensen, F.V., Jensen, F.: HUGIN - a shell for build-
ing bayesian belief universes for expert systems. In: Proceedings of the 11th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’89). pp. 1080-1085
(1989)

2. Bauters, K., Liu, W., Hong, J., Sierra, C., Godo, L.: Can(plan)+: Extending the
operational semantics of the BDI architecture to deal with uncertain information.
In: Proceedings of the 30th Conference on Uncertainty in Artificial Intelligence
(UAT’'14). pp. 52-61 (2014)

3. Bellman, R.: A markovian decision process. Indiana University Mathematics Jour-
nal 6, 679-684 (1957)

4. Blum, A.L., Langford, J.C.: Probabilistic planning in the graphplan framework. In:
Recent Advances in Al Planning, pp. 319-332. Springer Berlin Heidelberg (2000)

5. Bordini, R.H., Hiibner, J.F.; Wooldridge, M.: Programming Multi-agent Systems
in AgentSpeak using Jason. Wiley-Interscience (2007)

6. Braubach, L., Lamersdorf, W., Pokahr, A.: JADEX: Implementing a BDI-
infrastructure for JADE agents. EXP — in search of innovation 3(3), 76-85 (2003)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Casali, A., Godo, L., Sierra, C.: A graded BDI agent model to represent and reason
about preferences. Artificial Intelligence 175(7-8), 1468-1478 (2011)

Chen, Y., Hong, J., Liu, W., Godo, L., Sierra, C., Loughlin, M.: Incorporating
PGMs into a BDI architecture. In: Proceedings of the 16th International Confer-
ence on Principles and Practice of Multi-Agent Systems (PRIMA’13). pp. 54-69
(2013)

de Silva, L., Sardifia, S., Padgham, L.: First principles planning in BDI systems.
In: Proceedings of the 8th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS’09). pp. 1105-1112 (2009)

Druzdzel, M.J.: SMILE: Structural modeling, inference, and learning engine and
GeNle: A development environment for graphical decision-theoretic models. In:
Proceedings of the 16th National Conference on Artificial Intelligence (AAAT99).
pp. 902-903 (1999)

Hansen, E.A.: Solving POMDPs by searching in policy space. In: Proceedings of
the 24th Conference in Uncertainty in Artificial Intelligence (UAT’98). pp. 211-219
(1998)

Jennings, N.R., Bussmann, S.: Agent-based control systems. IEEE Control Systems
Magazine 23, 61-74 (2003)

Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101(1), 99-134 (1998)

Ma, J., Liu, W.: A framework for managing uncertain inputs: An axiomization of
rewarding. International Journal of Approximate Reasoning (IJAR) 52(7), 917-934
(2011)

McArthur, S.D., Davidson, E.M., Catterson, V.M., Dimeas, A.L., Hatziargyriou,
N.D., Ponci, F., Funabashi, T.: Multi-agent systems for power engineering applica-
tions — Part I: concepts, approaches, and technical challenges. IEEE Transactions
on Power Systems 22(4), 1743-1752 (2007)

Meneguzzi, F., Luck, M.: Declarative planning in procedural agent architectures.
Expert Systems with Applications 40(16), 6508-6520 (2013)

Meneguzzi, F., Tang, Y., Sycara, K., Parsons, S.: On representing planning domains
under uncertainty. In: Proceedings of the 3rd Information Theory and Applications
Workshop (ITA’10) (2010)

Pereira, D., Gongalves, L., Dimuro, G., Costa, A.: Constructing BDI plans from
optimal POMDP policies, with an application to agentspeak programming. In:
Proceedings of Conferencia Latinoamerica de Informtica (CLI’08). pp. 240-249
(2008)

Rao, A.S.: Agentspeak(l): BDI agents speak out in a logical computable language.
In: Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW’96). pp. 42-55 (1996)

Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proceed-
ings of the 3rd International Conference on Principles of Knowledge Representation
and Reasoning (KR’92). pp. 439-449 (1992)

Sardina, S., Padgham, L.: A BDI agent programming language with failure han-
dling, declarative goals, and planning. Autonomous Agents and Multiagent Sys-
tems 23(1), 18-70 (2011)

Schut, M., Wooldridge, M., Parsons, S.: On partially observable MDPs and BDI
models. In: Proceedings of the UK Workshop on Foundations and Applications of
Multi-Agent Systems (UKMAS’02). pp. 243-260 (2002)

Silver, D., Veness, J.: Monte-carlo planning in large POMDPs. In: Proceedings of
the 24th Annual Conference on Neural Information Processing Systems (NIPS’10).
pp. 2164-2172 (2010)

24.

25.

Simari, G.I., Parsons, S.D.: On approximating the best decision for an autonomous
agent. In: Proceedings of the 6th Workshop on Game Theoretic and Decision The-
oretic Agents (GTDT’04). pp. 91-100 (2004)

Simari, G.I., Parsons, S.: On the relationship between MDPs and the BDI archi-
tecture. In: Proceedings of the 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’06). pp. 1041-1048 (2006)

