
Management of Process Improvement by Prescription

Peter Middleton and Barry McCollum

School of Computer Science, The Queen’s University of Belfast, Northern Ireland

 BT7 1NN United Kingdom

This paper examines the efficiency and effectiveness of a prescriptive systems

development methodology in practice. The UK Government’s mandatory

Structured Systems Analysis and Design Method (SSADM) was examined to

determine its value to software projects. The evidence was collected from

interviews with 17 project managers, discussions with participants on 3 large

SSADM projects and from observing 90 end users in training. The generic

conclusions are that prescriptive information systems methodologies are unlikely

to cope well with strategic uncertainty, user communication or staff

development. The recommendations are to focus more on soft organizational

issues and to use approaches tailored to each project.

1. INTRODUCTION

Prescriptive methodology is often seem as a way of improving the delivery of

software systems. This approach will be analyzed by evaluating how effective

the UK Government’s Structured Systems Analysis and Design Method

(SSADM) is in raising the performance of software developers. The idea of

defining a way to develop software successfully and then training people to

follow it is an attractive one.

This studies proposition is that SSADM is claimed to offer the benefits listed

below. This research will therefore look for evidence to explore the validity of

these claims. The arguments for SSADM, and many prescriptive methodologies,

are at first sight persuasive and include:

1. Financial and technical resources could be harnessed to create the ‘best’

method possible.

 1

2. It would facilitate the mobility of labour and the formation of project teams.

3. It would aid industrial collaboration by providing a common framework for

complex software projects.

4. Systems written using a standard methodology could be maintained by a wider

range of suppliers.

5. A commonly used standard would increase the speed of software development

because support tools would become available.

6. Compensate for staff turnover and make inexperienced people productive.

The criteria by which SSADM would be judged effective would be the evidence

found to support the above 6 claims. To do this the experience of using SSADM

within the UK will be analyzed.

The Structured System Analysis and Design Method (SSADM) is important

because it is mandatory for UK central government software development

projects. Its sponsorship by the Central Computer and Telecommunications

Agency (CCTA) and the National Computer Centre (NCC), means that it

strongly influences the UK IT industry.

It was in 1981 that SSADM was introduced. SSADM is claimed to be the most

popular third party development methodology within the UK, holding 25%

(Ashworth, 1992) or 41% (Springett, 1993) of the market.

The government is the largest purchaser of software in the country, spending

about £1 billion a year (Ashworth, 1992). However, the House of Commons

Public Accounts Committee highlighted software as the major culprit in an

examination of project cost over-runs. The National Audit Office has also

produced reports detailing the serious waste caused by the poor management of

government software projects (National Audit Office, 1987, 1989, 1990).

 2

This research was undertaken to determine how SSADM has performed in

practice by recording the experiences of project managers, developers and users

with SSADM.

1.1 SSADM in the context of other methodologies

According to Jones (1990) a methodology is: “a body of knowledge and

techniques …methodologies should be algorithmic, in the sense that they furnish

rules for achieving their desired result.” DeMarco & Lister (1987) would agree

defining a methodology as: “a proven method for undertaking a repeated task.”

The above definition is very broad as the more detailed analysis of

methodologies provided by Avgerou & Cornford (1993) makes clear. For

example, methodologies can have varying degrees of prescription; they can be

more or less contingent on the context in which they are to be used; they can be

complete or only provide rules for parts of the task and they can have an

engineering or a sociological bias.

There are many views on how to develop information systems. Some of these

perspectives have been captured in particular methodologies. Many of these

methodologies overlap and it is not the purpose of this paper to classify them.

Examples of influential approaches include: ad hoc (Jones, 1990), waterfall

(Royce, 1970), participative (Mumford & Weir, 1979), soft systems (Checkland,

1981), prototyping (Naumann & Jenkins, 1982), incremental (Gilb, 1988), spiral

(Boehm, 1984), reuse (Matsumoto & Ohno, 1989), formal (Andrews & Ince,

1991), rapid application development (Martin, 1991), object-oriented (Coad &

Yourdon, 1991) and software capability (Humphrey, 1990).

SSADM would be classified as a heavily prescriptive methodology, although

some streamlining is allowed. It takes a rational, engineering view of the world.

It is driven by analysis of the data within a proposed information system and it

requires a ‘waterfall’ life cycle to be followed.

 3

Walsham (1993) would have concerns about the positivist intellectual foundation

of SSADM. Walsham points out that much of information systems ‘reflects a

rational-economic interpretation of organizational processes, and a positivist

methodology which is based on this view that the world exhibits objective cause-

effect relationships which can be discovered, at least partially, by structured

observation. Many researchers have noted the limitations of such approaches.’

Alternatively an interpretive method would aim to produce an ‘understanding of

the context of the information system, and the process whereby the information

system influences and is influenced by its context’ (ibid.).

Avison & Wood-Harper (1990) in their Multiview methodology explicitly bring

in the analysis of human activity and the socio-technical aspects. This is in

contrast to SSADM where people issues are rarely mentioned.

Stapleton (1997) describes the Dynamic Systems Development Method (DSDM)

which is based on the premise that that change is inherent in all systems

development. This is in contrast to SSADM (Weaver et al, 1998) which assumes

once a problem is carefully analysed and documented, there will not be

significant change in the problem domain while a solution is implemented.

In the 30 years since the ‘waterfall’ model emerged our understanding of

information systems development has significantly increased. For example,

Sauer (1993) in his case studies of information systems failure identifies the

importance of politics and contextual factors. Politics is not mentioned in

SSADM.

Sauer et al (1997) develop their ideas and make a distinction between traditional

and new mind-sets. For example, in the traditional mind-set, knowledge is seen

as ‘well-defined, explicit, articulate’ compared to the new mind-set where it is

seen as ‘ill-defined, tacit, diffuse, embedded’. If the new mind-set is an accurate

description of reality then SSADM is going to be hard to apply successfully.

 4

2 BACKGROUND

The UK government is not alone in trying to use methodology to raise the

effectiveness and efficiency of software developers. Capers Jones (1986)

examined the impact of standards and formal development methods in over 100

large enterprises in the United States and Europe. He concluded that people felt

a certain comfort from their existence but the evidence on their benefits was

ambiguous. Boehm (1981) provides comprehensive data which indicates that

methodology is far less important than the ability of the developers and the

complexity of the project.

DeMarco (1982) summarizes his experience of methodology in the following

terms: ‘The idea that a single methodology should govern even two different

projects is highly suspect: The differences between projects are much more

important than the similarities.’ (p. 131)

DeMarco goes on to point out that the need to tailor a methodology is always

recognized, but that the senior and lower levels of the hierarchy interpret this

differently. Data reported by DeMarco and Lister (1987) indicates that working

conditions are critical for raising productivity. They also observed that detailed

prescriptive methodologies reduce rather than increase productivity. The reasons

they identified for this were: a morass of paperwork; a paucity of methods; an

absence of responsibility and a general loss of motivation. (ibid. p.116)

SSADM is commonly perceived to be ‘prescriptive, burdensome and difficult to

apply’ (Thomson, 1990). Other criticisms are that staff do not really understand

SSADM and are just ‘going through the motions’ (Crinnion, 1991) or ‘learn it by

rote, then use it as an excuse not to think’ (Holloway, 1993). That the top down

structured approach of SSADM is too rigid and does not reflect the way people

work in practice (Whitefield & Sutcliffe, 1992) (Trull, 1990). That it attempts to

substitute methodology for management (Simpson 1990) and it puts too much

emphasis on functionality, analysis and design at the expense of people and

organisational issues (Cockcroft, 1990).

 5

On the positive side, Hares (1990,p.39) asserts: ‘Failure to produce high quality

deliverables is due to poor application of the method, not the method itself’.

Young, (1993) comments: ‘I strongly believe that any method is better than none

and SSADM is certainly worth using if the alternative is ad hoc software

development’.

The SSADM Version 3 manuals (Longworth & Nicholls, 1986,1986a), the

handbook, (Longworth, Nicholls & Abbott, 1988) and the SSADM Version 4

manuals (CCTA, 1990) offer no empirical data to underpin the methodology.

The official training materials (AIMS Systems, 1990) from the creators of

SSADM v.4 also offer no supporting data or references to explain the

construction of SSADM. The large number of books which have emerged for

the SSADM training market, (for example: Cutts, 1991; Downs, Clare & Coe,

1992; Eva, 1990; Skidmore, Farmer & Mills, 1992) tend to focus on presenting

the methodology rather than evaluating or criticising it.

3 RESEARCH METHODOLOGY

Yin’s (1994) guidance on research design is used. This research was also

influenced by Pettigrew’s (1990) work on longitudinal case studies. This studies

question is: does SSADM deliver on the 6 claims made by its sponsors? The unit

of analysis is the implementation of SSADM in organizations. The research

design is therefore to collect data from 3 different sources: users, developers and

project managers. This triangulation of views, collected from different projects,

is intended to illuminate the reality of SSADM. The data collection methods are

interviews and direct observations. This was the only feasible way to produce

insight into this research question.

It is necessary to have a logic linking the data produced to the propositions and to

define the criteria for interpreting the study’s findings. This cannot be as

precisely defined as the assignments of subjects and treatment conditions in

psychological experiments (Yin, 1994, p.25).

 6

If Campbell’s (1995) idea of ‘pattern matching’ is modified it could be used.

Simply if SSADM was producing the benefits claimed, then it would be

reasonable to expect interviews with people involved in SSADM projects to

reflect this. There would be a systematic pattern of supporting comments.

This research aimed to synthesize the experiences of SSADM project managers,

developers and users, to produce an overall assessment of its usefulness. The

previous studies which criticized SSADM (Thompson, 1990; Holloway, 1993;

Whitefield & Sutcliffe, 1992; Trull, 1990; Simpson 1990; Cockroft 1990)

generally do not produce extensive data and are from only one perspective.

The promise of SSADM is of short term pain - for thorough analysis and

documentation; for long term gain - reduced maintenance costs. Evidence to

support or refute this assertion is scarce. As hard quantitative data is simply not

available the alternative is to use qualitative research. This qualitative research

sought to satisfy two conditions: (a) the use of close-up, detailed observation on

the natural world by the investigator and (b) the attempt to avoid prior

commitment to any theoretical model (Yin, 1994). This research study collected

information from the 3 following sources:

Firstly, to establish how SSADM performs in practice 3 multi-million pound

SSADM projects were followed over a 3 year period. They were all public

sector although outside central government - housing, education and local

government. The progress of the projects was followed by meetings with users,

developers and project managers at roughly 3 month intervals. The people were

approached informally and assured of complete confidentiality. A questionnaire

was not appropriate for these meetings. The method was simply to discuss

progress and record observations made by the participants.

Secondly, the author was awarded a contract to provide SSADM training to 90

end users, to enable them to understand their SSADM documents. These training

 7

courses were in seminar form in groups of 10 people each lasting for 2 days. The

course training materials were live SSADM documents produced by the project

teams. The comments of the participants were written down as were any

observations about how they coped with the SSADM material.

Thirdly, to provide a broader sample, 17 semi-structured, 2 hour interviews with

other project managers were carried out. The questionnaire used was 11 sides of

A4 paper long. It was designed to introduce topics, collect responses and record

any other comments made. The interviewees were from 12 public sector and 5

private sector organisations. The public sector organisations were the

Information Systems Units of a range of government departments. They all used

SSADM except for their small projects. Of the private sector organisations only

one of them used SSADM and then only if requested by a public sector client.

It was originally understood all the 17 organizations approached used SSADM.

The reason for retaining non SSADM projects in this sample was to try to

establish what difference SSADM was making to the complete software

development process. The private sector representatives were the software

development organisation of a major multi national company, two systems

software companies that export their products world wide and two national

bespoke software developers. These last two companies were accredited with the

ISO9000 quality standard.

The questionnaire used for the 17 interviews was lengthy running to 11 sides of

A4 paper, so only a summary of it is included.

 8

The questions asked in the 17 interviews included:

What was the methodology used for analysis and design?

 (SSADM v.3; SSADM v4; Jackson, Yourdon; other)

How much was the methodology tailored?

 (A lot 5 4 3 2 1 A little)

Life cycle used?

 (ad hoc; prototyping; evolutionary; big bang; other)

What was the background of the project leader?

 (I.T.; user; other)

What was the role of the user?

 (Q.A.; programmer; admin; planning; other)

Which methodology was used for project management?

 (Prince; Prompt; other)

How much was this methodology tailored?

 (A lot 5 4 3 2 1 A little)

How does this project compare to others?

 (last year; organizational best; UK best; world best)

How is service delivery measured?

(time sheets; observation; errors; service level agreements; post

implementation review)

 9

List of the 17 Interviews

 Public/ Months Computer Project Proj.

Ref. Private Duration Language IT staff Method Mgt.

1 Private 30 COBOL 12 MAP none

2 Private 25 COBOL 5 Yourdon Prince

3 Private 22 ‘Client’ 18 SSADM4 Prince

4 Private 10 C 9 Own Task

5 Private Variety of small projects ad hoc ad hoc

6 Public 30 Oracle 10 SSAD M Prince

7 Public 7 Oracle 7 SSADM3 Prince

8 Public 12 Oracle 5 SSADM4 Prince

9 Public 10 Oracle 6 SSADM3 Prompt

10 Public 24 Quickbuild 5 SSADM3 Prompt

11 Public 4 Network 5 ad hoc Prince

12 Public 24 Oracle 3 SSADM3 Prince

13 Public 28 Proprietary 10 Own Prince

14 Public 24 Dataflex 10 SSADM4 Prince

15 Public 27 Dbase 2 ad hoc none

16 Public Variety of small projects ad hoc ad hoc

17 Public 12 Package 3 SSADM4 Prince

All respondents were project managers and came from an IT background.

In all cases SSADM, when used, was reported to be modified. Respondents were

asked to give a response on a 5 point scale if appropriate and then encouraged to

talk as they wished about the topics raised.

This approach to collecting empirical data is not perfect. It is open to interviewer

bias distorting the answers given by respondents. The people interviewed are not

chosen at random; they will tend to self select. There is a limit to how much hard

data can be obtained, for example, respondents sometimes did not know the

 10

budget for the system or the timetable. The main justification for this more

informal approach is because it was seen as the only way to produce reasonably

comprehensive data.

4. KEY FINDINGS

To illustrate the findings, quotations from the interviewees are used. These

quotes represent the dominant theme of the responses. Given the nature of the

sample and the spontaneous nature of the comments, statistical analysis of the

responses was not judged to be helpful.

4.1. Modifying SSADM

SSADM sees the software development process as a cascade flowing from a

clear strategic direction and firm requirements (CCTA, 1990, F-OVE-6):

STRATEGIC PLANNING

|

FEASIBILITY STUDY

|

REQUIREMENTS ANALYSIS

|

REQUIREMENTS SPECIFICATION

|

LOGICAL SYSTEM SPECIFICATION

|

PHYSICAL DESIGN

|

CONSTRUCT AND TEST

This investigation found that in the central and local government sites visited

there were roughly 100 small PC based projects for one large mainframe based

project. For these small projects SSADM was either disregarded or tailored

beyond recognition. The approaches used were either ad hoc, prototyping, or

 11

incremental development. This goes far beyond the ‘streamlining’ recommended

for using SSADM.

Even when the core ‘waterfall’ life cycle was retained considerable changes to

SSADM were being made. There were no reports of ‘pure’ SSADM being used

and all respondents stated that significant modifications to the methodology were

made. Samples of quotes from developers were:

“Entity Life History diagrams not done - no time - wouldn’t add that much

value”

“Used prototyping with no particular process. Couldn’t fit SSADM to Oracle

easily.”

“Because a modified package solution - no Entity Life History diagrams, no

Logical Design, no analysis done, no technical options needed.”

The need by all developers to modify SSADM in most cases significantly would

indicate that its prescriptive approach is found hard to apply.

4.2. Iteration

SSADM recommends that the work for each of SSADM’s five modules is

completed in sequence:

‘It should be noted that the applications projects are essentially linear, albeit with

some opportunities for integrated tasks.’ (CCTA, 1990, F-OVE-6)

‘The resulting input to the next module must contain all the required

information.’ (CCTA, 1990, F-OVE-11)

In practice this linear approach was not happening, for the following reasons.

Firstly, in every case there was a preferred computer language - either because of

 12

their existing skills or due to an organisational standard. Secondly, the needs of

the lengthy budgeting, and procurement procedures required decisions to be

made on hardware early in the process. Often as will be discussed in the next

section the ‘upstream’ work could not be completed.

4.3. Strategy

SSADM states that:

‘It is assumed that business planning, IS strategy and tactical planning, will have

been carried out before an SSADM project is initiated. Whether formally or

informally, the types of analysis implied by these tasks; must be undertaken

before an SSADM project can be initiated.’ (CCTA, 1990, F-OVE-6)

The interviews showed that this was rarely the case.

“When a change in strategy - users don’t know how to interpret - can’t see what

to do.”

“Often strategy not defined; yet have to act.”

Developers mentioned that strategies were often contradictory and vague at key

points which were vital for implementation. The strategies were also liable to

confuse the line managers who were not really sure what they meant. They were

also non existent on occasions when action was unavoidable. There were several

mentions of ‘planners blight’, when action was halted while the strategy was

completed, which was disruptive. Finally, in four cases, there were fundamental

changes of strategy in the middle of projects due to changes in the senior

management.

4.4. Requirements Analysis

SSADM advocates the use of a prioritized list of requirements. Requirements

can be added to and deleted from this list as the project progresses.

 13

Requirements are to be quantifiable and measurable, for example, Step 370

(CCTA, 1990, F-RD-7) requires:

‘...ensure that all requirements, particularly non-functional requirements, have

been identified, are described correctly, and are fully detailed.’

This need to start with firm requirements was in every case a stumbling block.

The interviews with project managers and developers found:

“Users sign off documents - this doesn’t mean they understand or agree.”

“Users often don’t understand their own systems.”

“Internal politics override administrative and technical sense.”

In summary some of the main reasons this part of the methodology caused so

many problems were the following. This is not a ranked list of problems, but

elements of each were present in most projects.

• The users did not know what they wanted.

• The users did not know the possibilities of the technology.

• Users’ perceptions changed as the system was being developed.

• The developers did not understand the intricacies of the users’ work.

• There were constant changes in the external environment that were not

anticipated.

This need in SSADM for developers to establish firm requirements was for all

practical purposes impossible to achieve. As a consequence of this the following

inevitably happened with SSADM projects - either the users were obliged to take

the system they asked for even though it did not meet their requirements or the

projects degenerated into a ‘code and test’ cycle to try to create a useful product.

This caused particular problems when there was a legal contract with an outside

 14

developer, based on the firm set of requirements. The requirements, although

firm, were of poor quality and frequent alterations were needed.

4.5 Approach to users

In SSADM users are asked their requirements which are then catalogued and

prioritized. This process is described in (CCTA, 1990. F-CON-4):

‘Users needs are given high priority in SSADM and user involvement is defined

and highly visible. They have a major involvement in the expression of their

business needs, in the decision-making process at all levels, and throughout all

phases of the method.’

This approach tended to lead to communication being ritualized with long formal

meetings and documents signed off unread. The lack of partial deliveries of

software, the long time scales and the large quantities of documentation sapped

morale and were the reasons given for the low commitment to the projects.

The better projects, defined as delivering working systems within reasonable cost

and time parameters, did much more than ask or involve the users. To establish

the depth of communication necessary the successful projects ensured that

developers and users shared the same office space, went on joint site visits and

that the developers spent time doing the users’ job. They also went to talk to the

users’ customers to learn their perspectives. Joint informal meetings with the

project sponsors helped the team to gain a depth of insight and consensus into

what their objectives were.

It would appear that, in practice, the need was to develop trust and a shared

vision of what the project was trying to achieve: users are part of the system and

therefore it is necessary that their capabilities are explicitly grown with the

system. The SSADM recommendation of asking and involving users was

observed to be too superficial an approach. The perceived need was to foster

commitment, develop the users’ skills and to consciously handle the politics of

 15

the project. The evidence from these projects is that SSADM tends to limit the

contribution of the user to ‘involvement’ and ‘expression’ rather than the needed

participation and commitment.

4.6. The use of diagrams

SSADM states that:

‘SSADM’s graphical notations can be readily understood by users, and greatly

contribute to effective communication between them and the analysis team.’

(CCTA, 1990, F-CON-4)

Diagrams and conventions for their use are central to SSADM, but practical

evidence shows that they may not contribute as expected for the following

reasons that emerged from the observations and the interviews:

1. End users easily confuse the different diagramming techniques and are rarely

clear if they are describing an existing system or designing a new one. Users

who are asked to communicate through an unfamiliar method with apparently

arcane conventions, often just retreat from the project and virtually all

communication is lost.

2. The lack of effective communication is confirmed by routinely finding several

errors per page on diagrams which have been quality assured. This high level

of errors for these diagramming techniques has also been reported by Gilb

(1988) and Parkinson (1991).

The most successful projects, in terms of practical results delivered, focused on

creating a supportive atmosphere in which communication could flourish. There

seems to be no reason why users cannot scribble and express themselves as they

wish. These ideas can then by refined as necessary. The important point is to

ensure that the users enjoy the process and may become curious about how to

develop their system skills. Boddie (1987) observes that formal communication

 16

is often ineffective, compared to using ‘social’ mechanisms of leadership and

peer group example.

SSADM focuses the developer on the technical drawing techniques and not on

the soft skills of facilitating the human process of communication. By

encouraging this orientation, real communication is lost which is partly why

SSADM diagrams tend to be inaccurate in practice.

4.7 SSADM with large systems

These are systems with over 3 years development time and budgets over £1

million. Following 3 of these projects for 3 years showed that they all failed to

deliver the system to users on time and to meet users needs. The large systems

adhered to SSADM very closely. The reasons for this were:

1. Because of the amount of money involved staff at all levels become very

cautious about deviating from the recommended way.

2. Using SSADM would provide political protection should the project run into

trouble.

3. Large projects are of necessity more formalized and it was easier to agree to

use the complete method.

4. In all 3 cases this was the biggest project the staff had ever attempted and they

were willing to trust SSADM even if its recommendations did not seem

sensible.

In all 3 projects technical problems emerged very late on in the development

process. For example on one project the database response times were

hopelessly slow. This was in spite of the extensive use of experienced SSADM

consultants. This was only solved by an expensive upgrade of the hardware. In

another a serious design flaw was not picked up until just before implementation.

Because the problems were discovered late on in the project they were costly and

disruptive.

 17

All 3 projects experienced severe problems in their relationships with users. The

users for two of the large systems who were ‘involved’ with their SSADM

project were also trying to undermine the project, by actively lobbying to obtain

their own separate system. After 2 years the SSADM projects had produced

nothing tangible and they had lost confidence in the process. In the third the

users had to wait 4 years for any tangible results that they could work with. This

had damaged their morale and that of the developers.

4.8. Staff turnover and capability

SSADM is intended to compensate for staff turnover and make inexperienced

staff more productive (Longworth, 1989,1992).

In this sample of projects examined, staff turnover within the developers was not

observed to be the reason that the projects were running into problems. A main

reason was that the developers had generally only two or three years of project

experience and junior staff often less than that. The development of their skills

did not seem to have been very methodical. Handling I.T. projects with or

without SSADM takes a lot of skill which the inexperienced people did not have.

The two most successful projects both had project managers with over 10 years

good experience.

Sauer et al (1997) indicates why using SSADM is unlikely to counter the effects

of staff turnover or inexperienced staff. They argue in the traditional (SSADM)

mind-set, knowledge is seen as ‘well-defined, explicit, articulate’ compared to

the new mind-set where it is seen as ‘ill-defined, tacit, diffuse, embedded’. If the

new mind-set is an accurate description of reality, then SSADM is not going to

produce greater staff productivity.

Staff turnover was not an issue for the projects examined and yet the projects

were experiencing problems. This would indicate that SSADM would not be an

adequate remedy for high staff turnover. Certainly the benefits of having a

common structure and vocabulary to communicate systems development were

 18

observed. Unfortunately if the methodology is not shown to assist in the

production of successful systems - this is a dubious benefit.

4.9. Learning SSADM

The introduction to the 4 volumes of the SSADM manual which weigh 10

pounds states:

‘This document has been produced as a Reference manual for analysts trained in

SSADM. It does not, by itself, constitute an adequate training guide and is not

therefore suitable for use by trainees.’ (CCTA, 1990,1-INT-vii)

To understand SSADM v.4 it is necessary to attend an authorized three week

training course and work through three files (AIMS Systems, 1990) The training,

although expertly carried out, lacked conviction because there was no empirical

validation of the methodology. There were no references showing SSADM’s

development or comparisons with other approaches. There was no data on

developer productivity, product quality, timeliness of delivery or user

satisfaction. SSADM is such a large and sophisticated methodology that students

tended to be overwhelmed with the detail and complexity. As Skidmore & Wroe

(1990) observe, SSADM models often become more elaborate than the system

they are attempting to explain.

5 DISCUSSION

SSADM is a data driven, ‘waterfall’ methodology which takes a rational and

technical view of the world. It is prescriptive although streamlining is allowable.

But the results of this present study raise questions about key parts of the

methodology.

5.1 The ‘waterfall’ approach?

 19

The drawbacks of this ‘waterfall’ approach have been well documented by Jones

(1990), Parnas & Clements (1986), Spence & Carey (1991) and others. The

difficulties confirmed by this research were those of managing ever shifting

requirements, poor relationships with users and the emergence of serious

problems late in a project. This indicates that the waterfall method may not be

the best way to develop the majority of public sector IS projects.

5.2. A recommended and efficient way?

There are many different approaches to software development. The following

are not classified but presented as examples to show the variety of approaches

available. Examples: include: ad hoc, waterfall, participative, soft systems,

prototyping, incremental, spiral, reuse, formal, rapid application development,

object-oriented and software capability. All of these approaches have different

cost profiles, strengths and weaknesses. Each model has many variants and to

some extent they can be combined to produce hybrid approaches.

Given the wide range in the size, complexity, risk, context and urgency of the IS

projects in the public sector, it would seem sensible for the developers and users

to agree the optimum approach for their particular needs. It is suggested that,

rather than streamlining a prescriptive approach, a specific development model

for each project should be created.

5.3. Strategic Stability?

The assumption of a stable and coherent strategic context within which an

SSADM project would take place was shown to be invalid in practice. While it

may be possible to improve the strategies within organizations, it seems

unrealistic to assume a clear strategy before starting an IS project. Therefore a

software development model which is more comfortable with strategic ambiguity

and uncertainty is required. The models most at home in this environment would

 20

be: Rapid Applications Development (Martin, 1991) and Incremental

Development (Gilb, 1988; Humphrey, 1990).

5.4. Firm requirements?

This research shows that good quality, firm, detailed requirements are very hard

to obtain. This has been observed by others, for example Humphrey (1990)

states:

‘For large-scale programs, the task of stating a complete requirement is not just

difficult; it is practically impossible. Unless the job has previously been done

and only modest changes are needed, it is best to assume the requirements are

wrong’ (p.25)

As this seems to the general case then the best software development approach

would seem to be the incremental one. This entails defining a small core of

major requirements which are to be delivered within a few months, rather than

years. The system is then grown rather than built.

5.5. Project size?

Examining the range of projects being worked on showed that there were roughly

100 small PC projects to 1 large mainframe project. SSADM which has its roots

in MODUS from the mainframes of the early 1970s (Hares, 1990), did not adapt

easily to these micro computer based projects. It would therefore seem sensible

to revise SSADM to focus on the majority of projects which are small. This

would help the junior staff learn good practice early on. Tailoring SSADM takes

considerable skill (Ince, 1991) which these staff are unlikely to possess.

There seemed no reason why the larger projects could not each be broken down

into several smaller ones and handled with an incremental development process.

The data from Putnam & Meyers (1992) shows that larger projects require

exponentially more effort than smaller ones. Many of the objectives of SSADM

could be achieved by restricting developers and users to small projects until their

 21

skills develop. This indicates that SSADM should have small projects as its

primary rather than secondary target.

5.6. One track approach?

SSADM implies a one track approach and does not encourage the creation of

alternative scenarios for the project as it develops. In contrast experienced

analysts were always planning what action to take if problems arose with staff

turnover, hardware performance, procurement delays and so on. The successful

analyst is careful to focus his attention on high risk areas, not on the whole

project as indicated by SSADM,

5.7. Staff development?

Cheap literature and authorized training is claimed to be one of the main

advantages of SSADM as an open methodology. The problem is that if the

standard approach is flawed, as this evidence indicates, then the books, training

and consultancy are obliged to propagate the errors.

5.8 Differences between SSADM and non SSADM projects.

In this sample the main difference was that non SSADM projects tended to be

small. The ‘ad hoc’ approach dominant for small projects was felt to be

dangerous because they were so numerous; this meant cumulatively large amount

of resources were not being managed. Secondly, developers and users were

picking up bad habits which would cause problems in larger projects.

5.9 Differences between successful and unsuccessful projects

The key difference was the care taken to build up relationships between the

people concerned with the project. Supporting this was awareness training for

non technical staff on what would be involved in an information systems project

and what their role would be. Also technical IT training for non-technical staff

greatly improved their ability to understand and contribute to the project.

 22

The co-location of the developers and users in the same room was vital for

building and sustaining of commitment. What is significant is that these soft

people issues are ignored by SSADM.

5.10. Comparison of users’ and developers’ views

Users generally found the diagramming techniques difficult and often confused

the different techniques. The net result was that they did not feel confident about

expressing their knowledge of their application domain. They therefore tended

to withdraw from the project.

Users’ knowledge is often very compartmentalized and restricted to their specific

area of work. This means that for each diagram to be signed off it has to be

shown to a specific individual. This often did not happen and all completed

diagrams were presented to a manager, who could not be familiar with all the

detail, for sign off.

The developers generally found the methodology a source of political protection

should things go wrong. They could show they had tried to adhere to the

approved procedures for systems development. They felt it increased their

professionalism.

Interestingly, on one occasion when a group of users became comfortable with

SSADM and found significant errors in the diagrams, there was little enthusiasm

from the developers to revise them. This was because the diagrams had been

signed off and quality assured as correct and changing them was awkward.

6 RECOMMENDATIONS

This present work confirms the findings of Boehm (1981), Jones (1986) and

DeMarco & Lister (1987) that people rather than methodology are the key factors

in raising productivity. The recommendations are therefore concerned with ways

to develop staff.

 23

Project register: for funds to be released for a software project, large quantities of

documentation have to be created and submitted. A few parameters of budget,

size, time scales should be held centrally and updated as the project progresses.

This would quickly provide a profile of actual performance and a basis for

benchmarking.

Process Maturity: assessment of the software development capability of the

various parts of the public sector, would provide a firmer base for training and

development plans. If this sample is typical, virtually all of the public sector

would rank at the bottom of the Software Engineering Institute’s Software

Process Maturity model.

User communication: The emphasis needs to be shifted from diagramming

techniques and CASE tools to the sociology of projects. The evidence of the

poor relationships with users, indicates that much larger and cheaper gains could

be made from tackling the ‘soft’ organisational rather than the ‘hard’ technical

issues within IS development.

Tailored life cycles: for each project the proposed approach: Evolutionary,

Participative, Soft Systems or others as appropriate, would be explicitly stated

and related to the context and risk factors of the project.

Project managers: The need for a ‘cadre’ of well trained and experienced project

managers was mentioned by several practitioners. The use of a fast track, career

development scheme to improve the skills of staff is required.

7. CONCLUSION

SSADM has done a service in promoting an ordered approach to software

development and spreading the use of valuable techniques. SSADM offers

political protection to civil servants should projects go wrong. It also helps to

give the appearance of administrative control over the complex process of

software development. It is therefore useful to the public sector.

 24

The evidence presented in this study would confirm the observations of others

that SSADM is flawed (Black, 1990; Thomson,1990; Crinnion, 1991; Holloway,

1993; Trull, 1990; Simpson, 1990; Cockcroft, 1990). There was little evidence

found to support the 6 claims made for SSADM by its sponsors.

SSADM has three main weaknesses.

Firstly, it is based on a waterfall model of software development which is

appropriate for only a minority of projects. This finding is confirmed by data

from Verner & Cerpa (1997) that shows that only 27% of organisations use the

waterfall approach for all projects.

Secondly, as Avgerou & Cornford (1993) point out there are limitations in trying

to standardize professional practices for activities which are so little understood.

The fact that SSADM has no empirical base and has not been systematically

monitored in use by the CCTA would indicate that it is unlikely to be an

effective way to direct the efforts of software developers.

Thirdly, the high level of prescription which accounts for much of the size and

complexity of the methodology is not useful for practitioners. This is because

the prescriptions are based on the assumption that the waterfall life cycle is

appropriate for many projects when clearly it is not. Also the techniques

prescribed in such detail, without any empirical justification, are not found to

produce benefits and are therefore ignored.

The idea of a ‘best’ method is misleading because of the diverse range of projects

and developers. The generic lesson from this research is that an organisation is

probably unwise to use a heavily prescriptive methodology to improve its

software development performance. If an organisation feels that methodology is

the appropriate route it should ensure there is some empirical data to underpin the

proposed approach and that there is some objective monitoring of the

methodology when in use.

 25

REFERENCES

AIMS Systems., SSADM Version 4 Training Manuals Vols. 1,2 & 3. Aims

Systems, England. 1990

Andrews, D., Ince, D., Practical Formal Methods with VDM, McGraw Hill,

London. 1991

Ashworth, A., The current position of SSADM, NCC Software Seminar, ICL

Belfast. (1992)

Bickers, M, CCTA’s Head of Current Methods Branch, in Springett, P. Moving

on with the method. Government Computing, Vol. 6, no. 7, p. 23-25. (1992)

Avgerou, C. & Cornford, T., Developing Information Systems: Methodologies,

Techniques and Tools, Macmillan, London. 1993

Avison, D.E. & Wood-Harper, A.T., Multiview: An exploration of Information

Systems Development, McGraw Hill, London 1990

Black, G., Promises yet to be fulfilled, Financial Times, October 19, p.VII.

(1990)

Boddie, J., Crunch Mode. Building Effective Systems on a Tight Schedule

Yourdon Press, Prentice-Hall, Englewood Cliffs, NJ. 1987

Boehm, B. W. et al. A Software Development Environment for Improving

Productivity. Computer, 17(6), 30-42. (1984)

Boehm, Barry (1981) Software Engineering Economics, Prentice Hall,

Englewood Cliffs, NJ.

 26

Campbell, D. Degrees of Freedom and the Case Study, Comparative Political

Studies, 8, 178-193 (1975)

CCTA, SSADM Version 4 Reference manuals, vols. 1,2,3, & 4. NCC Blackwell,

Oxford. (1990)

Checkland, P. Soft Systems Methodology, Wiley, Chichester. (1981)

Coad, P & Yourdon, E., Object-Oriented Analysis, Prentice-Hall, Englewood

Cliffs, NJ. (1991)

Cockcroft, M. Structured methods - not seeing the wood for the trees? paper

presented to the Southcourt conference Making Structured Methods Work, April,

London. (1990)

Crinnion, J., Evolutionary Systems Development, Pitman, London. (1991)

Cutts, G., SSADM. Blackwell Scientific Publications, Oxford, 2nd ed. (1991)

DeMarco, T., Controlling Software Projects : Management Measurement and

Estimation. Prentice-Hall, Englewood Cliffs. (1982)

DeMarco, Tom, and Lister, Timothy, Peopleware: Productive Projects and

Teams, Dorset House, New York, Prentice-Hall, Englewood Cliffs. (1987)

Downs, E., Clare, P., and Coe, I., SSADM : Application and Context. Prentice

Hall, Hemel, Hempstead, 2nd ed. (1992)

Eva, M., SSADM: a practical approach. McGraw Hill, Maidenhead. (1990)

Gilb, T., Principles of Software Engineering Management, Addison-Wesley,

Wokingham, United Kingdom. (1988)

 27

Hares, J.S. SSADM for the advanced practitioner. John Wiley & Sons,

Chichester. (1990)

Holloway, S. in Springett, P., The Method and the madness. Government

Computing, Vol. 7, no. 6, p. 10. . (1993)

Holway, R., A Review of the Financial Performance of United Kingdom

Computing Services Companies. The Holway Report, 1, Richard Holway Ltd.

Farnham, Surrey. (1992)

Humphrey, W.S., Managing the Software process. Addison-Wesley, Reading,

MA. (1990)

Ince, D., The Making of a Modern Methodology. Informatics, June, p.26-32.

(1991)

Jones, G.W. (1990) Software Engineering John Wiley & Sons, New York.

Jones, T. Capers, Programming Productivity, McGraw-Hill, New York. (1986)

Longworth, G., Introducing SSADM Version 4. NCC Blackwell, Manchester.

(1992)

Longworth, G., Getting the System you want; a user’s guide to SSADM. NCC

Publications, Manchester. (1989)

Longworth, G., Nicholls, D. and Abbott, J., SSADM Developer’s Handbook.

NCC, Manchester. (1988)

Longworth, G. and Nicholls, D., SSADM Manual (Version 3), Vol. 1 Tasks and

Terms. NCC, Manchester. (1986)

 28

Longworth, G. and Nicholls, D., SSADM Manual (Version 3), Vol. 2 Techniques

and Documentation. NCC, Manchester. (1986a)

Martin, J., Rapid Application Development. Macmillan, New York, NY. (1991)

Matsumoto, Y. and Y. Ohno, (eds) Japanese Perspectives in Software

Engineering Addison-Wesley, Singapore. (1989)

Mumford, E. & Weir, M. Computer Systems in work design - the ETHICS

method, Associated Business Press, London. (1979)

National Audit Office. Managing Computer Projects in the National Health

Service. HMSO, London. (1990)

National Audit Office, Department of Social Security : Operational Strategy.

HMSO. Session 1988-89, HC111, London. , (1989)

National Audit Office, Inland Revenue : Control of Major Development in the

use of Information Technology. HMSO, London. (1987)

Naumann, J. D. & Jenkins, A.M. Prototyping: the new paradigm for systems

development, MIS Quarterly, Sept. (1982)

Parkinson, John, Making CASE Work, Blackwell, Oxford, United Kingdom.

(1991)

Parnas, D.L., and Clements, P.C., A Rational Design Process: How and Why to

Fake It, IEEE Transactions on Software Engineering, Vol. SE-12, No. 2, p. 251-

57. (1986)

 29

Pettigrew, A.M., Longitudinal Field Research on Change: theory and practice,

Organisational Science, No. 3, 267-292 (1990)

Putnam, L, H and Meyers, W Measures for Excellence : Reliable Software on

Time and on Budget, Yourdon Press, Englewood Cliffs, NY. (1992)

Royce, W. W., Managing the Development of Large Software Systems: Concepts

and Techniques, Proceedings WESCON. (1970)

Sauer, C., Why Information Systems Fail: A Case Study Approach, Alfred Waller

Ltd, Henley-On-Thames, England. (1993)

Sauer, C. & Yetton, P.W. et al. Steps to the Future: fresh thinking on the

management of IT-based organisational transformation, Jossey-Bass, San

Francisco, CA (1997)

Simpson, I. quoted in Black, G. ibid. (1990)

Skidmore, S., Farmer, R., and Mills, G., SSADM Version 4 Models and Methods.

NCC Manchester. (1992)

Skidmore, S., Wroe, B., Introducing Systems Design NCC Blackwell,

Manchester. (1990)

Spence, I. T. A. and Carey, B. N. Customers do not want frozen specifications.

Software Eng. J.,6,(4), p. 175-180. (1991)

Springett, P., The Method and the madness. Government Computing, Vol. 7, no.

6, p. 10. (1993)

Stapleton, J., Dynamic Systems Development Method, Addison-Wesley, Harlow,

Essex, England. (1997)

 30

Thomson, I., SSADM: The last word. Government Computing, Vol. 4, no. 5, p.

28-29. (1990)

Trull, H. quoted in Black, G. Promises yet to be fulfilled. Financial Times,

October 19, p.VII. (1990)

Verner, J.M. & Cerpa, N. Prototyping: Does your view of its advantages depend

on your job, J. Systems Software 36,1,3-16. (1997)

Walsham, G., Interpreting Information Systems in Organisations, Chichester,

John Wiley & Sons. (1993)

Weaver, P.L., Lambrou, N. & Walkley, M., Practical SSADM 4+, Pitman,

London (1998)

Whitefield, A. and Sutcliffe., ACase study in human factors evaluation.

Information and Software Technology, 34, 7, 443-453. (1992)

R.K. Yin, Case Study Research: Design and Methods, Sage Publications,

California, 1994.

Young, G. (1993) quoted in Springett, P. ibid.

 31

