
ITC2007: Solver Description

Tomáš Müller

Purdue University, West Lafayette IN 47907, USA
muller@unitime.org

Abstract. This paper provides a brief description of a constraint-based
solver that was applied by the author to the problem instances in all
three tracks of the International Timetabling Competition 20071.

1 Introduction

The primary objective in the construction of the search algorithm for this time-
tabling competition was to demonstrate the feasibility of using a single solu-
tion framework on a variety of important timetabling problems. The Constraint
Solver Library [3] that was employed contains a constraint-based framework in-
corporating a series of algorithms based on local search techniques that operate
over feasible, though not necessarily complete, solutions. In these solutions some
variables may be left unassigned. All hard constraints on assigned variables must
be satisfied however. The library is written in Java and is publicly available under
GNU’s LGPL licence. It has also been successfully applied to several large scale
practical timetabling problems, including the course timetabling system that is
used for at Purdue University [6, 7], see http://www.unitime.org for more de-
tails. Currently, algorithms for student sectioning and examination timetabling
are being developed using this library. The same algorithm was used for all three
tracks of the International Timetabling Competition, with only minimal changes
to reflect different problem formulations (e.g., problem model, neighborhoods,
and solver parameters).

The remaining sections of this paper briefly describe the competition prob-
lems, the search algorithm, the neighborhoods employed for the problem in each
track, the results obtained for the early and late problem instances, and a few
concluding remarks.

2 Competition

The second International Timetabling Competition consisted of three tracks,
each representing a different problem in educational timetabling, namely, exam-
ination timetabling, post enrollment based course timetabling, and curriculum
based course timetabling. This section provides a brief description of these prob-
lems.
1 For more details see the official competition website at http://www.cs.qub.ac.uk/
itc2007.



2

2.1 Track 1: Examination Timetabling

The examination timetabling problem model presented in this track is an ex-
tension of the model commonly worked on. The fundamental problem involves
timetabling exams into a set of periods within a defined examination session
while satisfying a number of hard constraints. Like other areas of timetabling, a
feasible solution is one in which all hard constraints are satisfied. The quality of
the solution is measured in terms of soft constraints satisfaction.

The problem consists of the following:

– A list of periods covering a specified length of time. The number and lengths
of periods are provided.

– A set of exams that are to be scheduled into these periods.
– For each exam, a set of enrolled students is provided. Each student is enrolled

into a number of exams.
– A set of rooms with individual capacities.
– A set of additional period (e.g., exam A after exam B) and room (exam A

must use room R) hard constraints.
– Soft constraints which contribute to a penalty if they are violated (including

details on weightings of these constraints).

A feasible timetable is one in which all examinations have a period and a
room assigned and the following hard constraints are satisfied:

– No student sits for more than one examination at a time.
– The capacity of individual rooms is not exceeded at any time during the ex-

amination session. Note that, unlike course timetabling, exams are explicitly
allowed to share rooms.

– Period lengths are not violated.
– Additional hard constraints must be satisfied.

The problem includes the following soft constraints:

– Two Exams in a Row The number of occurrences when students have to
sit for two exams in a row on the same day.

– Two Exams in a Day The number of occurrences when students have to
sit for two exams on the same day.

– Period spread The number of occurrences when students have to sit for
more than one exam during a time interval specified by the institution. This
is often used in an attempt to be as fair as possible to all students taking
exams.

– Mixed Durations The number of occurrences of exams timetabled into
rooms along with an exams with a different duration.

– Larger Exams Constraints The number of large exams appearing in the
latter portion of the timetable. Definition of large and later portion is a part
of the description of a particular instance.

– Room Penalty: The number of times a room is used which has an asso-
ciated penalty. This is multiplied by the actual penalty as different rooms
may have different associated weightings.



3

– Period Penalty: The number of times a period is used which has an asso-
ciated penalty. This is multiplied by the actual penalty as different periods
may have different associated weightings.

2.2 Track 2: Post Enrollment based Course Timetabling

The timetabling problem in this track is intended to simulate the real-world situ-
ation where students are given a choice of lectures that they wish to attend, and
the timetable is then constructed according to these choices (i.e., the timetable is
to be constructed after students have selected the lectures they wish to attend).
This model is based on the model used in the first international timetabling
competition http://www.idsia.ch/Files/ttcomp2002, which was run in 2003
in conjunction with PATAT and the Metaheuristics Network.

The problem consists of the following:

– A set of events that are to be scheduled into 45 time slots (5 days of 9 hours
each).

– A set of rooms, each of which has a specific seating capacity, in which the
events take place.

– A set of room features that are satisfied by rooms and which are required
by events.

– A set of students who attend various different combinations of events.
– A set of available time slots for each of the events (i.e. not all events can be

placed in all time slots).
– A set of precedence requirements that state that certain events should occur

before certain others.

The aim is to try and insert each of the given events into the timetable (that
is, assign each event to one of the rooms and one of the 45 time slots) while
obeying the following hard constraints:

– No student should be required to attend more than one event at the same
time.

– In each case, the room should be big enough for all of the attending students
and should satisfy all of the features required by the event.

– Only one event is put into each room in any time slot.
– Events should only be assigned to time slots that are pre-defined as available

for those events.
– Where specified, events should be scheduled to occur in the correct order

during the week.

Note that the first three hard constraints above are exactly the same as the hard
constraints used in the first competition. The last two constraints, however, are
new additions to the model.

In addition, to the five hard constraints that are given above, the following
soft constraints are included in the problem:



4

– Last Time Slots of a Day Students should not be scheduled to attend an
event in the last time slot of a day (that is, time slots 9, 18, 27, 36, or 45).

– More than Two in a Row Students should not have to attend three (or
more) events in consecutive time slots occurring in the same day.

– One Class on a Day Students should not be required to attend only one
event in a particular day.

Note that these three soft constraints are the same as those used in the first
competition. The overall solution penalty is the sum of occurrences of a student
in the soft constraints that are violated.

In this track, it is allowable to produce an incomplete solution (some events
may be left unassigned), however, all hard constraints on the assigned events
must be satisfied. Unplaced events are used to calculate a Distance to Fea-
sibility measure. This is calculated by identifying the number of students that
are required to attend each of the unplaced events and then simply adding these
values together.

2.3 Track 3: Curriculum based Course Timetabling

The Curriculum-based timetabling problem consists of the weekly scheduling of
lectures for several university courses within a given number of rooms and time
periods. Conflicts between courses are determined according to the curricula
published by the University and not on the basis of enrolment data.

The problem consists of the following entities:

– Days, Timeslots, and Periods. A number of teaching days in the week
are given (typically 5 or 6). Each day is split into a fixed number of timeslots,
which is equal for all days. A period is a pair composed of a day and a times-
lot. The total number of scheduling periods is the product of the number of
days times the number of daily timeslots.

– Courses and Teachers. Each course consists of a fixed number of lectures
to be scheduled in distinct periods, is attended by given number of students,
and is taught by a teacher. For each course there is a minimum number of
days over which the lectures of the course should be spread, moreover, there
are some periods during which the course cannot be scheduled.

– Rooms. Each room has a capacity, expressed as the number of available
seats. All rooms are equally suitable for all courses (if large enough).

– Curricula. A curriculum is a group of courses such that any pair of courses
in the group has students in common. Conflicts between courses, and other
soft constraints, are based on curricula.

The solution of the problem is an assignment of a period (day and timeslot)
and a room to all lectures of each course. The following hard constraints must
be satisfied:

– All lectures of a course must be scheduled, and they must be assigned to
distinct periods.



5

– Two lectures cannot take place in the same room in the same period.
– Lectures of courses in the same curriculum, or taught by the same teacher,

must be scheduled in different periods.
– If the teacher of the course is not available to teach that course in a given

period, then no lectures of the course can be scheduled in that period.

The problem includes the following soft constraints:

– Room Capacity For each lecture, the number of students that attend the
course must be less than or equal to the number of seats in all the rooms
that host its lectures. Each student above the capacity counts as 1 point of
penalty.

– Minimum Working Days The lectures of each course must be spread into
the given minimum number of days. Each day below the minimum counts
as 5 points of penalty.

– Curriculum Compactness Lectures belonging to a curriculum should be
adjacent to each other (i.e., in consecutive periods). For a given curriculum
we account for a violation every time there is one lecture not adjacent to
any other lecture within the same day. Each isolated lecture in a curriculum
counts as 2 points of penalty.

– Room Stability All lectures of a course should be given in the same room.
Each distinct room used for the lectures of a course, beside the first, counts
as 1 point of penalty.

3 Algorithm

The search algorithm consists of several phases: In the first (construction) phase,
a complete solution is found using an Iterative Forward Search (IFS) algo-
rithm [4]. This algorithm makes use of Conflict-based Statistics (CBS) [5] to
prevent itself from cycling. In the next phase, a local optimum is found using a
Hill Climbing (HC) algorithm. Once a solution can no longer be improved using
this method, the Great Deluge (GD) technique [1] is used. The GD algorithm
is altered so that it allows some oscillations of the bound that is imposed on
the overall solution value. Optionally, Simulated Annealing (SA) [2] can also be
used between bound oscillations of the GD algorithm.

The search ends after a predetermined time limit has been reached. The best
solution found within that limit is returned.

3.1 Construction Phase

Initially, a complete solution is found using the Iterative Forward Search algo-
rithm [4]. It starts with all variables being unassigned. During each iteration,
an unassigned variable (i.e., a class, or exam) is selected and a value from its
domain is assigned to it (assignment of a room and a time). If this causes any
violations of hard constraints with existing assignments, the conflicting variables
are unassigned. For example, if there is another class in the selected room at the



6

selected time, that class will be unassigned. The search ends when all variables
are assigned.

The search is also parametrized by variable and value selection criteria. It
first tries to find those variables that are most difficult to assign. A variable is
randomly selected among unassigned variables with the smallest ratio of domain
size to the number of hard constraints. Other problem-based criterion can be
used as well. It then tries to select the best value to assign to the selected
variable. A value whose assignment increases the overall cost of the solution
the least is selected among values that violate the smallest number of hard
constraints (i.e., the number of conflicting variables that need to be unassigned
in order to make the problem feasible after assignment of the selected value
to the selected variable is minimized). If there is a tie, one of these is selected
randomly. It is also possible to completely ignore soft constraints in this phase
in order to speed computation of a feasible solution. A value is then selected
randomly among values that minimize the number of violated hard constraints.

Conflict-based Statistics [5] is used during this process to prevent repetitive
assignments of the same values by memorizing conflicting assignments. Conflict-
based Statistics is a data structure that memorizes hard conflicts which have
occurred during the search together with their frequency and the assignments
that caused them. More precisely, it is an array

CBS [Va = va → ¬Vb = vb] = cab.

This means that the assignment Va = va has caused a hard conflict cab times
in the past with the assignment Vb = vb. Note that this does not imply that
the assignments Va = va and Vb = vb cannot be used together in the case
of non-binary constraints. In the value selection criterion, each hard conflict is
then weighted by its frequency, i.e., by the number of past unassignments of the
current value of the conflicting variable caused by the selected assignment.

3.2 Hill Climbing Phase

Once a complete solution is found, a Hill Climbing algorithm is used in order to
find the local optimum. In each iteration a change in the assignment of the cur-
rent solution is proposed by random selection from a problem-specific neighbor-
hood. The generated move is only accepted when it does not worsen the overall
solution value (i.e., the weighted sum of violated soft constraints). Only changes
that do not violate any hard constraints are considered. This rule applies dur-
ing all phases. Neighbor assignments are also generated consistently throughout
all phases. That is, a problem specific neighborhood is selected randomly (with
a given probability among the neighborhoods that have been created for the
problem) and is used to generate a random change in the current solution.

The hill climbing phase is finished after a specified number HCidle of idle
iterations during which a solution has not improved. The parameter HCidle may
be defined differently for the problems in the three competition tracks.



7

3.3 Great Deluge Phase

The Great Deluge algorithm [1] uses a bound B that is imposed on the overall
value of the current solution that the algorithm is working with. This means
that the generated change is only accepted when the value of the solution after
an assignment does not exceed the bound. The bound starts at the value

B = GDub · Sbest

where Sbest is the overall value of the best solution found so far, and GDub is
a problem specific parameter (upper bound coefficient). The bound is decreased
after each iteration. This is done by multiplying the bound by a cooling rate
GDcr.

B = B ·GDcr

The search continues until the bound reaches a lower limit equal to GDlb
at ·Sbest,

where GDlb is a parameter defining lower bound coefficient. When this lower
limit is reached, the bound is reset back to its upper limit of GDub

at · Sbest.

B < GDlb
at · Sbest ⇒ B = GDub

at · Sbest

The parameter at is a counter starting at 1. It is increased by one every time
the lower limit is reached and the bound increased. It is also reset back to 1
when a previous best solution is improved upon. This helps the solver to widen
the search when it cannot find an improvement, allowing it to get out of a deep
local minima.

3.4 Simulated Annealing Phase

The Simulated Annealing algorithm [2] is applied using a temperature parameter
of T . A generated neighbor assignment is accepted if it does not worsen the
overall value of the current solution, or with the following probability

paccept = e−T/∆

where ∆ is the increase in the overall value of the current solution when a detri-
mental move is assigned. The temperature T starts at initial value of SAit. It is
cooled down (multiplied by cooling rate SAcr) after each SAcc · TL iterations
(SAcc is a cooling coefficient), where TL is an instance specific number (tem-
perature length), computed as the sum of domain sizes of all variables. If the
best solution found is not improved after SArc · SAcc · TL iterations (SArc is a
reheat coefficient), temperature is increased to

T = T · SAcr
−1.7·SArc

In the case when simulated annealing is used, the great deluge phase is stoped
after the bound B reaches its lower limit and control is passed to the simulated
annealing phase. Similarly, control is passed from the simulated annealing phase
back to to hill climbing phase just after the temperature is reheated (see Fig-
ure 1). When simulated annealing is not used, control is never passed from the
great deluge phase (GD continues immediately after the bound is increased).



8

Fig. 1. Algorithm schema when Simulated Annealing is used.

4 Competition Tracks

Value settings for the algorithm parameters used in each of the three competition
tracks are listed in Table 1. Simulated annealing as not used on the examina-
tion timetabling problem for reasons discussed below. As is mentioned above, in

Table 1. Solver parameters for each competition track

Parameter Track 1 Track 2 Track 3

HCidle 25,000 50,000 50,000

GDub 1.12 1.10 1.15

GDlb 0.90 0.90 0.90

GDcr 1− 1
9·106 1− 1

5·106 1− 1
7·106

SAit 1.5 2.5

SAcr 0.97 0.82

SAcc 5 7

SArc 7 7

the hill climbing, great deluge, and simulated annealing phases, an assignment
change (neighbor assignment) is randomly generated from a set of problem spe-
cific neighborhoods. Only moves that do not violate any hard constraints are
generated. The first step is selection of a neighborhood. This neighborhood is
then used to generate a change that is assigned if accepted by the currently used
search strategy (HC, GD, or SA). The individual neighborhoods used in each of
the tracks are described below.

4.1 Track 1: Examination Timetabling

The following neighborhoods are selected with equal probability during exam-
ination timetabling. All of the proposed neighborhoods attempt to change an
assignment of an exam or to swap the periods and/or rooms of two exams. If
a change cannot be made, it systematically searches for an alternate change by
selecting the next feasible assignment that follows the initially proposed change



9

(i.e., it tries to use one of the subsequent periods or rooms in the variable’s
domain in the order they are loaded from the input file) rather than randomly
generating and checking of some other change.

Exam swap An examination is randomly selected. A new period and room
are randomly selected. If there is no (hard) conflict as a result of assigning the
selected exam into the new period and room, the new assignment is returned. If
there is only one conflicting examination, and it is possible to swap the selected
examination with it, such a swap is returned. Following rooms and periods are
tried otherwise (all rooms are first considered for the selected period, then for
the next period, etc.). Only periods and rooms that are valid for the selected
exam are considered.

Period change An examination and a new period are randomly selected. If no
conflict results from assigning the selected exam to the new period (keeping its
room assignment), the new assignment is returned. Following periods are tried
otherwise. The first available period is returned, another neighborhood is tried
if no such period can be found.

Room change An examination and a new room are randomly selected. If no
conflict results from assigning the selected exam into the new room (keeping its
period assignment), the new assignment is returned. Following rooms are tried
otherwise.

Period swap An examination and a new period are randomly selected. If just
one conflict results from assigning the selected exam to the new period (keeping
its room assignment), and it is possible to swap these two exams (each keeping
its room assignment and taking the period assignment of the other exam), such
a swap is returned. Following periods are tried otherwise.

Room swap An examination and a new room are randomly selected. If just
one conflict results from assigning the selected exam into the new room (keeping
its period assignment), and it is possible to swap these two exams (each keeping
its period assignment and taking the room assignment of the other exam), such
a swap is returned. Following rooms are tried otherwise.

Period and room change An examination and a new period are randomly
selected. If no conflict results from assigning the selected exam to the new pe-
riod (into a randomly selected available room), the new assignment is returned.
Following periods are tried otherwise.

The examination timetabling solver does not use the simulated annealing
phase. Generation of the above described neighbor changes takes much more



10

time than in other tracks due to the complexity of the imposed soft constraints.
When combined with the imposed time limit for each instance, various test runs
indicated that the time is better spent using only the great deluge approach.

4.2 Track 2: Post Enrollment based Course Timetabling

In order to be able to find a complete solution quickly, soft constraints are ignored
during the construction phase. Also, unlike in other tracks, it is allowable to
assign an event to a time slot without assigning it into a room (e.g., in the case
where there is no room available at the proposed time), or to violate a precedence
constraint. Both the case of no room assignment and the violation of precedence
constraints are treated as soft constraints. The algorithm starts with the weight
of these soft constraints being one (overall solution value is the given score plus
the weighted sum of violated no-room and precedence constraints), and these
weights are increased by one after every 1,000 iterations during which there is
no improvement in the number of violations of these constraints. This helps the
solver to gradually decrease the number of these violations while it looks for the
best solution score.

The following neighborhoods are used during post enrollment based course
timetabling (all are selected with the same probability, except of Precedence
Swap which is selected with 1

10 the likelihood of the others).

Time Move An event and a new time slot are selected randomly. If it is possible
to reassign the event into the new time slot while keeping its room without any
conflict, such an assignment is returned. Following time slots are tried otherwise,
with the first available time slot being returned if any are available.

Room Move An event and a new room are selected randomly. If it is possible to
reassign the event into the new room while keeping its current time assignment
without any conflict, such an assignment is returned. Following rooms are tried
otherwise, with the first available room being returned if any are available. Only
rooms that are valid for the selected event are considered (i.e., rooms that are
of sufficient size and that have all the required features).

Event Move An event is randomly selected. A new time slot and a room are
randomly selected. If there is no conflict in assigning the selected event into the
new time and room, such an assignment is returned. If there is exactly one event
conflicting with the new assignment and it is possible to swap these events, this
swap is returned. Otherwise, it tries to use one of the following time slots and
rooms (first it keeps the selected time slot and picks another room, then the
same with the following time slot, etc.).

Event Swap Two events are randomly selected. If it is possible to swap these
two events, such a swap is retuned. Otherwise it tries to swap the times but pick
a different room for these events (in a similar way as Room Move).



11

Precedence Swap This neighborhood tries to decrease the number of violated
precedence constraints by reassigning an event into a different time and room. A
violated precedence constraint is selected randomly, one of its events (randomly
selected) is placed in a different time and room that does not violate the selected
constraint. The time and room are picked in the same way as in Event Swap
neighborhood. If no time and room can be found for the selected event, an
attempt is made to move the other event as well.

4.3 Track 3: Curriculum based Course Timetabling

The following neighborhoods are used during the curriculum based course time-
tabling. All are selected with the same probability, except for Curriculum Com-
pactness Move which is selected with 1

10 the likelihood of the others.

Time Move A period is changed for a randomly selected lecture. The first
non-conflicting period after a randomly selected one is used.

Room Move A room is changed for a randomly selected lecture. The first
non-conflicting room after a randomly selected one is returned.

Lecture Move A lecture is selected randomly, a new time and room are selected
for the lecture. If no conflict results from assigning the selected lecture into the
selected time and room, the assignment is returned. If there is another lecture
conflicting with the time and room and it is possible to swap these two lectures,
this swap is returned. Following times and rooms are tried otherwise. Only times
that are available for the course of the selected lecture are considered.

Room Stability Move This neighborhood tries to find a change that decreases
the room stability penalty. A course and a room are selected randomly. An
attempt is made to assign all lectures of the course into the selected room. If
there is already another lecture in the room, it is reassinged to the room of the
lecture being moved.

Min Working Days Move This neighborhood tries to find a change that
decreases course minimum working days penalty. A course with a positive penalty
is selected randomly, a day on which two or more lectures are taught is selected,
and one of lectures of that day is moved to a day that the course is not being
taught on.

Curriculum Compactness Move This neighborhood tries to find a change
that decreases the curriculum compactness penalty. A curriculum is selected
randomly, a lecture that is not adjacent to any other in the curriculum is selected
and placed into another available period that has an adjacent lecture in the
curriculum (if such placement exists and does not create any conflict). A different
room may also be assigned to the lecture if the current one is not available.



12

5 Results

The following results were achieved using the above described solver. The tables
below present results for all three tracks of the competition, computed within
the given time limit, including early and late instances. The best solutions of
100 runs of each instance are presented.

Table 2. Results of Track 1 (Examination Timetabling)

Instance Number 1 2 3 4 5 6 7 8

Two Exams in a Row 42 0 1275 7533 40 3700 0 0

Two Exams in a Day 0 10 2070 3245 0 0 0 0

Period Spread 2534 0 5193 3958 1361 19900 3628 6718

Mixed Durations 100 0 0 0 0 75 0 0

Larger Exams Constraints 260 380 840 105 1440 375 460 380

Room Penalty 1150 0 0 0 0 1250 0 125

Period Penalty 270 0 190 1750 100 475 0 342

Overall Value 4356 390 9568 16591 2941 25775 4088 7565

Table 3. Results of Track 3 (Curriculum based Course Timetabling)

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Room Capacity 4 0 0 0 0 0 0 0 0 0 0 0 0 0

Minimum Working Days 0 15 10 5 180 15 0 5 35 5 0 255 10 5

Curriculum Compactness 0 28 62 30 114 26 14 34 68 4 0 76 56 48

Room Stability 1 0 0 0 4 0 0 0 0 0 0 0 0 0

Overall Value 5 43 72 35 298 41 14 39 103 9 0 331 66 53

All results have zero Distance to Feasibility (i.e., a complete feasible solution
was found), except for one instance of Track 2 (Post Enrollment based Course
Timetabling), see Table 4 for more details.



13

Table 4. Results of Track 2 (Post Enrollment based Course Timetabling)

Instance Number 1 2 3 4 5 6 7 8

Distance to Feasibility 0 0 0 0 0 0 0 0

More than Two in a Row 728 1093 73 111 0 8 2 0

One Class on a Day 23 21 132 283 0 0 3 0

Last Time Slot of a Day 579 1040 0 0 0 5 0 0

Overall Value 1330 2154 205 394 0 13 5 0

Instance Number 9 10 11 12 13 14 15 16

Distance to Feasibility 0 57 0 0 0 0 0 0

More than Two in a Row 881 1268 118 169 70 2 0 2

One Class on a Day 16 33 177 233 1 0 0 4

Last Time Slot of a Day 998 1139 52 51 3 0 0 0

Overall Value 1895 2440 347 453 74 2 0 6

6 Conclusion

At this point, it is hard to estimate how successful the presented approach will
be. However, the comparison with other solvers will be quite valuable, especially
since the same solver was used for all three tracks of the competition. This
provides an opportunity to test the quality of solutions that can be achieved
using a general approach to timetabling problems. Given that the presented
approach is built on a framework and techniques that are currently being used
to solve real, large-scale course timetabling problems, the results will also help
in evaluating the effectiveness of the solver for these applications.

Various test runs with different solver settings and other changes to the above
described neighborhoods were performed. The above described algorithm and its
parameters represent the best achieved results. However, it is likely that there
is still plenty of room for optimization of the solver behavior and parameters.

For more information about the presented approach, including source codes,
please visit http://www.unitime.org/itc2007.

References

[1] G. Dueck. New optimization heuristics: The great deluge algorithm and the record-
to record travel. Journal of Computational Physics, 104:86–92, 1993.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[3] Tomáš Müller. Constraint solver library. GNU Lesser General Public License,
SourceForge.net. Available at http://cpsolver.sf.net.

[4] Tomáš Müller. Constraint-based Timetabling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, 2005.



14

[5] Tomáš Müller, Roman Barták, and Hana Rudová. Conflict-based statistics. In
J. Gottlieb, D. Landa Silva, N. Musliu, and E. Soubeiga, editors, EU/ME Work-
shop on Design and Evaluation of Advanced Hybrid Meta-Heuristics. University of
Nottingham, 2004.

[6] Keith Murray, Tomáš Müller, and Hana Rudová. Modeling and solution of a com-
plex university course timetabling problem. In Edmund Burke and Hana Rudová,
editors, Practice And Theory of Automated Timetabling, Selected Revised Papers,
pages 189–209. Springer-Verlag LNCS 3867, 2007.

[7] H. Rudová T. Müller, R. Barták. Minimal perturbation problem in course time-
tabling. In Edmund Burke and Michael Trick, editors, Practice And Theory of
Automated Timetabling, Selected Revised Papers, pages 126–146. Springer-Verlag
LNCS 3616, 2005.


