
ITC 2007 – Examination Track: Geoffrey De Smet
Drools-solver
Introduction
Since late 2006 I've been working as a hobby on my local search framework, which uses the 
Drools rule engine for score calculation. This open source framework has been accepted by the 
Drools team as an experimental module, called drools-solver. Currently, I am still the only 
author, although the community interest is growing and contributions are welcome.
A local search algorithm and the Drools rule engine turn out to be a really nice combination, 
because:

• A rule engine such as Drools is great for calculating the score of a solution of a planning 
problem. It make it easy to add additional soft or hard constraints such as "a teacher shouldn't 
teach more then 7 hours a day". However it tends to be too complex to use to actually find new 
solutions.

• A local search algorithm is great at finding new improving solutions for a planning problem, 
without brute-forcing every possibility. However it needs to know the score of a solution and 
normally offers no support in calculating that score.

References
• Solver blog: http://blog.athico.com/search/label/solver

• Reference manual: http://users.telenet.be/geoffrey/tmp/solver/manual/html_single/

• Drools website: http://labs.jboss.com/drools/

• Source code: http://anonsvn.labs.jboss.com/labs/jbossrules/trunk/drools-solver/

ITC2007 examination track implementation
The examination track is one of the examples of drools-solver (others include N-Queens and the 
traveling tournament problem). 

• It's completely object orientated, written in Java 6. There is a class for Exam, Period, Room, 
Student, PeriodHardConstraint, InstitutionalWeighting, ...

• The score calculation is completely declarative, written in DRL (drools rule language). Each 
score constraint is implemented as a score rule in few lines. Due to the forward chaining nature 
of those rules, they get the benefit of delta based score calculation for free.

• The ExaminationStartingSolutionInitializer initializes the Examination. It first sorts the Exams 
on student size (including coincidence and after period linked exams) and duration. Next, it 
iterates through the list and assigns each exam the best untaken spot. Coincidence exams are 
scheduled in the same period.

• Local search (actually tabu search) improves the solution found by the initializer:

• There are 3 types of moves implemented: PeriodChangeMove, RoomChangeMove and 
ExamSwitchMove. Coincidence exams are always moved together to another period.

• A percentage of all possible moves (0.2%) are randomly selected for evaluation. The 10 top 
moves of the last step (=iteration) are also selected.

• A move that lead an already visited solution is tabu and is not accepted. A move that 
changes an exam which has been changed in the last 10 steps (=iterations) is also tabu.

• The best accepted move is selected as the next step.

http://blog.athico.com/search/label/solver
http://anonsvn.labs.jboss.com/labs/jbossrules/trunk/drools-solver/
http://labs.jboss.com/drools/
http://users.telenet.be/geoffrey/tmp/solver/manual/html_single/


• The local search algorithm finishes once the time limit is reached.

Future improvements
• A forward-chained, stateful accumulate. The score rule “roomCapacityTooSmall” is getting 

backward chained, which seriously hurts performance (estimated at 50-90%).

• Aspiration for MoveTabuAccepter, UndoMoveTabuAccepter and PropertyTabuAccepter

• Tweak the move factory and selectors. Take advantage of the time gradient to select more 
moves near the end of the search.

• Tweak the dynamic lowering of the hard constraint weight for move decision.

• Multi-threading support to take advantage of multiple CPU's.

• A good SimulatedAnnealingAccepter: the current implementation is completely unoptimized.


	ITC 2007 – Examination Track: Geoffrey De Smet
	Drools-solver
	Introduction
	References

	ITC2007 examination track implementation
	Future improvements



