
ITC2007: Solver Description

Tomáš Müller

Purdue University, West Lafayette IN 47907, USA
muller@unitime.org

Abstract. This paper outlines a description of a solver that was used
for all three tracks of the International Timetabling Competition 20071.

1 Introduction

The primary objective in the construction of the search algorithm for this time-
tabling competition was to use the Constraint Solver Library [3]. This library
contains a constraint based framework for local search based algorithms that
operate over feasible, though not necessarily complete, solutions. In these solu-
tions some variables may be left unassigned. All hard constraints on assigned
variables must be satisfied however. The library is written in Java and is pub-
licly available under GNU LGPL licence. Moreover, it has also been successfully
applied to several large scale practical timetabling problems, for instance, it is
used in the timetabling system that is used for university course timetabling at
Purdue University [6, 7], see http://www.unitime.org for more details. Cur-
rently, we are also developing student sectioning and examination timetabling
algorithms using this library. Another goal was to use the same algorithm for all
three tracks of this competition, with only minimal changes (different problem
model, neighborhoods, solver parameters, etc.).

2 Algorithm

The search algorithm consist of several phases: In the first (construction) phase,
a complete solution is found using an Iterative Forward Search (IFS) algo-
rithm [4] that is utilizing Constraint-based Statistics (CBS) [5] to prevent itself
from cycling. In the next phase, a local optimum is found using a Hill Climbing
(HC) algorithm. When a solution can no longer be improved, Great Deluge (GD)
technique [1] is used. The GD algorithm is altered so that it allows some oscil-
lations of the bound that is imposed on the overall solution value. Optionally,
Simulated Annealing (SA) technique [2] can be used between bound oscillations
of GD algorithm.

The search ends after a given time limit and the best found solution is re-
turned.
1 For more details see the official competition website at http://www.cs.qub.ac.uk/
itc2007.



2

2.1 Construction Phase

At first, a complete solution is found using Iterative Forward Search algorithm [4].
It starts from all variables being unassigned. In each iteration, an unassigned
variable (that is a lecture, a class, or an exam) is assigned with a value (assign-
ment of a room and a time). Since it may cause some violations of hard con-
straints with the existing assignments, all conflicting variables are unassigned as
well. This means, for instance, that if there is another class in the selected room
at the selected time, such class gets unassigned.

This search ends when all variables are assigned and it is parametrized by
variable and value selection criterions. First, it tries to find the worst unassigned
variable. A variable is randomly selected among unassigned variables with the
smallest domain size versus number of hard constraints ratio, however, some
more problem-based criterion can be used as well. Then, it tries to select the
best value that is to be assigned to the selected variable. A value whose assign-
ment increases the overall solution value the least is selected among values that
violate the smallest number of hard constraints (i.e., we minimize the number
of conflicting variables that will need to be unassigned in order to make the
problem feasible after the selected value is assigned to the selected variable).
If there are more than one of such values, one is selected randomly. It is also
possible to completely ignore soft constraints in this phase, a value is then se-
lected randomly among values that are minimizing the number of violated hard
constraints.

Moreover, Conflict-based Statistics [5] is used. This technique prevents repet-
itive assignments of the same values by memorizing conflicting assignments.
Conflict-based statistics is a data structure that memorizes hard conflicts which
have occurred during the search together with their frequency and assignments
which caused them. More precisely, it is an array

CBS [Va = va → ¬Vb = vb] = cab.

It means that the assignment Va = va caused cab times a hard conflict with
the assignment Vb = vb in the past. Note that it does not imply that these
assignments Va = va and Vb = vb cannot be used together in case of non-binary
constraints. In the value selection criterion, each hard conflict is then weighted
by its frequency, i.e., by the number of past unassignments of the current value
of the conflicting variable caused by the selected assignment.

2.2 Hill Climbing Phase

Once a complete solution is found, Hill Climbing algorithm is used in order
to find the local optimum. In each iteration a change in the assignment of the
current solution is proposed by a random selection from a problem-specific neigh-
borhood. The generated move is only accepted (change is made to the current
solution) when it does not worsen the overall solution value (i.e., the weighted
sum of violated soft constraints). Only changes that do not violate any hard



3

constraints are considered in this phase as well as in the following phases. Also,
these neighbor assignments are generated in the same way. That is, a problem
specific neighborhood is selected randomly (with given probability among sev-
eral neighborhoods that are created for the particular problem) and it is used
to generate a random change in the current solution.

The hill climbing phase is finished after a certain number of idle iterations,
i.e., when a solution is not improved during the last HCidle iterations. Parameter
HCidle may be defined differently for each particular competition track.

2.3 Grat Deluge Phase

Great Deluge algorithm [1] is using a bound B that is imposed on the overall
value of the current solution that the algorithm is working with. This means
that the generated change is only accepted when the value of the solution after
the assignment does not exceed the bound. The bound starts at value

B = GDub · Sbest

where Sbest is the overall value of the best solution found so far, and GDub is
a problem specific parameter (upper bound coefficient). The bound is decreased
after each iteration (it is multiplied by a cooling rate GDcr).

B = B ·GDcr

The search continues until the bound reaches the lower limit, that is, GDlb
at ·

Sbest, where GDlb is a parameter defining lower bound coefficient. When this
lower limit is reached, the bound is reset back to its upper limit, that is, GDub

at ·
Sbest.

B < GDlb
at · Sbest ⇒ B = GDub

at · Sbest

Parameter at is a counter starting from 1. It is increased by one every time after
the lower limit is reached and the bound is increased. It is also reset back to
1 once a best found solution is improved. This helps the solver to wider the
search when it cannot find an improvement, allowing it to get out of a deep local
minima.

2.4 Simulated Annealing Phase

Simulated Annealing algorithm [2] is using a temperature T . A generated neigh-
bor assignment is accepted when it is not worsening the overall value of the
current solution or with the following probability otherwise

paccept = e−T/∆

where ∆ is the increase of the overall value of the current solution when the
worsening move is assigned. Temperature T starts at initial temperature SAit.
Temperature is cooled down (multiplied by cooling rate SAcr) after each SAcc ·



4

TL iterations (SAcc is a cooling coefficient), where TL is an instance specific
number (temperature length), computed as a sum of domain sizes of all variables.
If the best found solution is not improved after SArc ·SAcc ·TL iterations (SArc

is a reheat coefficient), temperature is increased to

T = T · SAcr
−1.7·SArc

In the case when simulated annealing is used, great deluge phase is stoped after
the bound B reaches its lower limit and the control is passed to this simulated
annealing phase. Similarly, the control is passed from this phase to hill climber
phase just after the temperature is reheated (see Figure 1). When simulated
annealing is not used, the control is never passed from great deluge phase (GD
immediately continues after the bound is increased).

Fig. 1. Algorithm schema when Simulated Annealing is used as well.

3 Competition Tracks

Individual neighborhoods, above described algorithm parameters (see Table 1)
and other competition track specific aspects of the solver are discussed in this

Table 1. Solver parameters for each competition track

Parameter Track 1 Track 2 Track 3

HCidle 25,000 50,000 50,000

GDub 1.12 1.10 1.15

GDlb 0.90 0.90 0.90

GDcr 1− 1
9·106 1− 1

5·106 1− 1
7·106

SAit 1.5 2.5

SAcr 0.97 0.82

SAcc 5 7

SArc 7 7

section. As it is mentioned above, in hill climbing, great deluge, and simulated



5

annealing phase, an assignment change (neighbor assignment) is randomly gen-
erated from the bellow described neighborhoods. Only moves that do not violate
any hard constraint are generated. At first, a neighborhood is selected, it is then
used to generate a change that is assigned when accepted by the currently used
search strategy (HC, GD, or SA).

3.1 Track 1: Examination Timetabling

The following neighborhoods are used during the examination timetabling (all of
them are selected with the same probability). All of the proposed neighborhoods
try to change an assignment of an exam or to swap two exams in either period,
room, or both. If a new change cannot be made, it tries to systematically search
for another change that follows the proposed one (e.g., try to use one of the
following periods or rooms) rather than randomly generating and checking of
some other change.

Exam swap An examination is randomly selected. A new period and a room
is randomly selected. If there is no (hard) conflict in assigning the selected exam
into the new period and room, the new assignment is returned. If there is one
conflicting examination and if it is possible to swap the selected examination
with the conflicting one, such a swap is returned. Following rooms and periods
are tried otherwise (both rooms and periods are considered in the order they
were loaded from the input file; first all rooms are considered for the selected
period, then for the next period etc.). Only periods and rooms that are valid for
the selected exam are considered.

Period change An examination and a new period is randomly selected. If
there is no conflict in assigning the selected exam into the new period (keeping
its room assignment), the new assignment is returned. The following periods are
tried otherwise. First available period is returned, another neighborhood is tried
if no such period can be found.

Room change An examination and a new room is randomly selected. If there
is no conflict in assigning the selected exam into the new room (keeping its
period assignment), the new assignment is returned. The following rooms are
tried otherwise.

Period swap An examination and a new period is randomly selected. If there
is just one conflict in assigning the selected exam into the new period (keeping
its room assignment) and it is possible to swap these two exams (each keeping
its room assignment and taking period assignment of the other exam), such a
swap is returned. The following periods are tried otherwise.



6

Room swap An examination and a new room is randomly selected. If there is
just one conflict in assigning the selected exam into the new room (keeping its
period assignment) and it is possible to swap these two exams (each keeping its
period assignment and taking room assignment of the other exam), such a swap
is returned. The following rooms are tried otherwise.

Period and room change An examination and a new period is randomly se-
lected. If there is no conflict in assigning the selected exam into the new period
(into a randomly selected available room), the new assignment is returned. The
following periods are tried otherwise.

Examination timetabling solver is not using simulated annealing phase. Gen-
eration of the above described neighbor changes takes much more time than in
other tracks due to the complexity of the imposed soft constraints. When com-
bined with the imposed time limit for each instance, various test runs indicated
that the time is better spent just using great deluge approach.

3.2 Track 2: Post Enrollment based Course Timetabling

In order to be able to find a complete solution quickly, soft constraints are ignored
during construction phase. Also, unlike in other tracks, it is allowed to assign an
event into a time slot without assigning it into a room (e.g., in the case when there
is no room available at the proposed time), or violate a precedence constraint.
Both no room assignments and violated precedence constraints are treated as
soft constraints. The algorithm starts with a weight of these soft constraints
being one (overall solution value is the given score plus the weighted sum of
violated no-room and precedence constraints), and these weights are increased
by one after every 1,000 iterations during which there is no improvement in
the number of violations of these constraints. This helps the solver to gradually
decrease the number of these violations while it is looking for the best solution
score.

The following neighborhoods are used during the post enrollment based
course timetabling (all of them are selected with the same probability, except of
Precedence Swap that is selected with 1

10 probability of the others).

Time Move An event and a new time slot is selected randomly. If it is possible
to reassign the event into the new time slot while keeping its room without any
conflict, such an assignment is returned. Following time slots are tried otherwise,
first available (if any) time slot is returned.

Room Move An event and a new room is selected randomly. If it is possible to
reassign the event into the new room while keeping its current time assignment
without any conflict, such an assignment is returned. Following rooms are tried
otherwise, first available (if any) room is returned. Only rooms that are valid for



7

the selected event are considered (i.e., rooms that are of sufficient size and that
have all the required features).

Event Move An event is randomly selected. A new time slot and a room is
randomly selected. If there is no conflict in assigning the selected event into the
new time and room, such an assignment is returned. If there is exactly one event
conflicting with the new assignment and it is possible to swap these events, such
a swap is returned. Otherwise it tries to use one of the following time slots and
rooms (first it keeps the selected time slot and picks another room, then the
same with the following time slot, etc.).

Event Swap Two events are randomly selected. If it is possible to swap these
two events, such a swap is retuned. Otherwise it tries to swap the times but pick
a different room for these events (in a similar way as Room Move).

Precedence Swap This neighborhood tries to decrease the number of violated
precedence constraints by reassigning an event into a different time and room. A
violated precedence constraint is selected randomly, one of its events (randomly
selected) is placed in a different time and room that does not violate the selected
constraint. The time and room is picked in the same way as in Event Swap
neighborhood. If no time and room can be found for the selected event, the
other event is tried to be moved as well.

3.3 Track 3: Curriculum based Course Timetabling

The following neighborhoods are used during the curriculum based course time-
tabling (all of them are selected with the same probability, except of Curriculum
Compactness Move that is selected with 1

10 probability of the others).

Time Move A period is changed for a randomly selected lecture. First not
conflicting period after a randomly selected one is used.

Room Move A room is changed for a randomly selected lecture. First not
conflicting room after a randomly selected one is returned.

Lecture Move A lecture is selected randomly, a new time and room is selected
for the lecture. If there is no conflict in assigning the selected lecture into the
selected time and room, such an assignment is returned. If there is another
lecture conflicting with the time and room and it is possible to swap these two
lectures, such a swap is returned. Following times and rooms are tried otherwise.
Only times that are available for the course of the selected lecture are considered.



8

Room Stability Move This neighborhood tries to find a change that decreases
room stability penalty. A course and a room is selected randomly. It tries to
assign all lectures of the course into the selected room. If there is already some
other lecture in the room, it is reassinged to the room of the moving lecture.

Min Working Days Move This neighborhood tries to find a change that
decreases course minimum working days penalty. A course with a positive penalty
is selected randomly, a day on which two or more lectures are taught is selected
and one of lectures of that day is moved to a day that the course is not being
taught on.

Curriculum Compactness Move This neighborhood tries to find a change
that decreases curriculum compactness penalty. A curriculum is selected ran-
domly, a lecture that is not adjacent to any other one of the curriculum is
selected, and placed to another available period that has an adjacent lecture of
the curriculum (if such placement exists and does not create any conflict). A
different room may be assigned to the lecture if the current one is not available
as well.

4 Results

The following results were achieved with the above described solver. The tables
below present results for all three tracks of the competition, computed within
given time limit, including early and late instances. The best solutions of 100
runs of each instance are presented.

Table 2. Results of Track 1 (Examination Timetabling)

Instance Number 1 2 3 4 5 6 7 8

Two Exams in a Row 42 0 1275 7533 40 3700 0 0

Two Exams in a Day 0 10 2070 3245 0 0 0 0

Period Spread 2534 0 5193 3958 1361 19900 3628 6718

Mixed Durations 100 0 0 0 0 75 0 0

Larger Exams Constraints 260 380 840 105 1440 375 460 380

Room Penalty 1150 0 0 0 0 1250 0 125

Period Penalty 270 0 190 1750 100 475 0 342

Overall Value 4356 390 9568 16591 2941 25775 4088 7565

All results have zero Distance to Feasibility (i.e., a complete feasible solution
was found), except of one instance of Track 2 (Post Enrollment based Course
Timetabling), see Table 3 for more details.



9

Table 3. Results of Track 2 (Post Enrollment based Course Timetabling)

Instance Number 1 2 3 4 5 6 7 8

Distance to Feasibility 0 0 0 0 0 0 0 0

More than Two in a Row 728 1093 73 111 0 8 2 0

One Class on a Day 23 21 132 283 0 0 3 0

Last Time Slot of a Day 579 1040 0 0 0 5 0 0

Overall Value 1330 2154 205 394 0 13 5 0

Instance Number 9 10 11 12 13 14 15 16

Distance to Feasibility 0 57 0 0 0 0 0 0

More than Two in a Row 881 1268 118 169 70 2 0 2

One Class on a Day 16 33 177 233 1 0 0 4

Last Time Slot of a Day 998 1139 52 51 3 0 0 0

Overall Value 1895 2440 347 453 74 2 0 6

Table 4. Results of Track 3 (Curriculum based Course Timetabling)

Instance Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Room Capacity 4 0 0 0 0 0 0 0 0 0 0 0 0 0

Minimum Working Days 0 15 10 5 180 15 0 5 35 5 0 255 10 5

Curriculum Compactness 0 28 62 30 114 26 14 34 68 4 0 76 56 48

Room Stability 1 0 0 0 4 0 0 0 0 0 0 0 0 0

Overall Value 5 43 72 35 298 41 14 39 103 9 0 331 66 53

5 Conclusion

At this point, it is hard to estimate how successful the presented approach will be.
However, the comparison with other solvers could be quite valuable, especially
since in the presented work the same solver was used to solve all three tracks of
the competition. And also since the presented approach is built on a framework
and techniques that are currently being used to solve real world, large scale
course timetabling problems.

Various test runs with different solver settings and other changes to the above
described neighborhoods were performed. The above described algorithm and its
parameters represent the best achieved results. However, there is most likely still
enough space in various optimizations of the solver behavior and parameters.

For more information about the presented approach, including source codes,
please visit http://www.unitime.org/itc2007.



10

References

[1] G. Dueck. New optimization heuristics: The great deluge algorithm and the record-
to record travel. Journal of Computational Physics, 104:86–92, 1993.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

[3] Tomáš Müller. Constraint solver library. GNU Lesser General Public License,
SourceForge.net. Available at http://cpsolver.sf.net.

[4] Tomáš Müller. Constraint-based Timetabling. PhD thesis, Charles University in
Prague, Faculty of Mathematics and Physics, 2005.

[5] Tomáš Müller, Roman Barták, and Hana Rudová. Conflict-based statistics. In
J. Gottlieb, D. Landa Silva, N. Musliu, and E. Soubeiga, editors, EU/ME Work-
shop on Design and Evaluation of Advanced Hybrid Meta-Heuristics. University of
Nottingham, 2004.

[6] Keith Murray, Tomáš Müller, and Hana Rudová. Modeling and solution of a com-
plex university course timetabling problem. In Edmund Burke and Hana Rudová,
editors, Practice And Theory of Automated Timetabling, Selected Revised Papers,
pages 189–209. Springer-Verlag LNCS 3867, 2007.

[7] H. Rudová T. Müller, R. Barták. Minimal perturbation problem in course time-
tabling. In Edmund Burke and Michael Trick, editors, Practice And Theory of
Automated Timetabling, Selected Revised Papers, pages 126–146. Springer-Verlag
LNCS 3616, 2005.


