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Abstract

The 2nd International Timetabling Competition (ITC2007) is made up of
three tracks; one on examination timetabling and two on course timetabling.
This paper describes the examination timetabling track introduced as part of
the competition. Both the model and the datasets are based on current real
world instances introduced by EventMAP Limited. It is hoped that the interest
generated as part of this competition will lead to the development, investigation
and application of a host of novel and exciting techniques not previously trialed
within this important real world search domain.

1 Introduction

Building on the success of the First International Timetabling Competition in 2002
[1], the second competition (ITC2007) is introduced with the overall aim of attracting
researchers to develop and trial leading edge techniques within a competitive arena.
It also aims to further generate interest in the research area by providing various
formulations of the timetabling problems encountered within educational institutions
based on 'real world’ perspective. Particular emphasis is being placed on 'real world’
scenarios with the objective of encouraging the production of techniques which have
the potential to solve practical instances of the problem. The competition therefore
has an important part to play in helping to bridge the current gap which exists
between research and practice in this area.

To these ends three tracks are introduced along with a number of associated bench-
mark datasets. In this paper, we report on the Examination Timetabling Track
(Track 1). The information presented here can be regarded as the official docu-
mentation for Track 1' and complements the content on the ITC2007 web site at

1Updated versions of this report may be made available as the competition progresses. Changes
will only be made in an attempt to clarify the various issues discussed.



http://www.cs.qub.ac.uk/itc2007. Here, in addition to details on the examination
track, some general information on the competition is provided in relation to back-
ground, motivation and rules.

The three tracks are examination timetabling (Exam TT), post-enrolment course
timetabling (PostEnroll CTT) and curriculum-based course timetabling (Curriculum
CTT). Although under the general 'umbrella’ of educational timetabling, these three
identified problem areas have significant differences which are discussed in detail at
the Competition website. In addition, technical reports for all areas are available
from the official website and can be found under each track. This paper details the
examination track of the competition.

1.1 The Examination Timetabling Problem

As stated in the introduction, in order to tackle the main variations which exist
within the practical area of educational timetabling, the current competition has
been divided into three sections or tracks. From a research perspective this division
is important in that it provides a framework to capture the main types of educational
timetabling research currently taking place within the academic community.

Modeling the complexity of timetabling problems continue to represent important
issues in the timetabling research area [2]. However these issues have not been widely
discussed over the last ten years and there are still no universal complete models [3].
De Werra, Asratian and Durand [4] in 2002 presented a simple model and its possible
extensions for class-teacher timetabling problems. The complexity of these problems
was also studied, showing some variants of the problem as NP-complete. Further
work to address these and related issues is needed to provide fundamental support
for better understanding and development of exam timetabling research.

There is also research in the literature on building general timetabling languages and
tools in an attempt to model real world instances of the problem. Tsang, Mills and
Williams [5] developed a high level language to specify exam timetabling problems
as constraint satisfaction problems. Di Gaspero and Schaerf [6] built a software
tool called EASYLOCAL++ for easy implementation of local search algorithms on
general timetabling problems. A general and reusable framework will further improve
the current development and justify easy scientific comparisons.

The last ten years have seen a significant amount of research which addresses aspects
from both theory and practice [3]. Meta-heuristics (i.e. Tabu Search [7, 8, 9], Sim-
ulated Annealing [10, 11, 12], Genetic Algorithms [13, 14], memetic algorithms [15],
ant algorithms [16, 17], etc) represent the most effective state-of-the-art approaches
on standard benchmarks. There is also a large amount of work where hybridiza-
tions between meta-heuristics are studied. This includes the effective integration of
early timetabling techniques such as graph heuristics [18, 19, 20, 21] and constraint
based techniques [11, 22, 23]. Along with these main themes of research there are
also a number of new trends including more effective design of neighborhood struc-
tures (i.e. variable neighborhood search for timetabling [24, 25], etc). Flexibility



of search is thus improved to tackle more complex problems with a wider range
of constraints in exam timetabling. Some research motivated by the objective of
raising the generality of timetabling approaches has also obtained promising results,
hyper-heuristics [26] being one of the areas that is attracting much research attention
[19, 20, 21, 24, 27, 28]. The last ten years of research on examination timetabling is
discussed and reviewed in Qu et al [3].

The Examination Timetabling Problem addressed here introduces a practical formu-
lation of the problem which, organisers believe, significantly adds to current research
and provides a firm basis for future efforts in the area. In addition, it is hoped that
the interest generated as part of this competition will lead to the development, in-
vestigation and application of a host of novel and exciting techniques not previously
trialed within this important real world search domain. The problem model can be
described as post enrollment. That is to say, students enrolled on particular courses
which have associated exams are considered to be enrolled on or 'taking’ those ex-
ams. Although other approaches to the problem are taken within institutions, this
is by far the most common from a practical perspective as well as being the most
widely reported model of the problem within the academic literature.

Recent Research has concentrated on a number of benchmark datasets introduced by
Carter [29]. These benchmarks and the problems associated with them are discussed
in more detail in Qu et al [3]. This particular track of the competition significantly
adds to the research field by the introduction of a more ’real’ model of the problem
in terms of data, constraints and evaluation. All datasets used as part of this com-
petition are taken from Institutions and have been anonymised for the purpose of
competition use. At a future time, after the end of the competition, all 12 datasets
will be released to the community.

Section 2 gives a non-mathematical description of the problem and motivations.
Section 3 gives a mathematical programming formulation of the problem. For ease
of exposition we have kept it separate and compact.

2 The Problem Model

The examination timetabling problem model presented here extends the current
model of the problem commonly worked upon. The fundamental problem involves
timetabling exams into a number of periods within a defined examination session
while satisfying a number of hard constraints. Like other areas of timetabling, a
feasible solution is one in which all hard constraints are satisfied. The quality of the
solution is measured in terms of soft constraints satisfaction.

New and additional Information is provided on constraints (hard and soft), resources
and the examination session. For example, in terms of hard constraints, room num-
bers and sizes are provided. In addition, information on the structure, length and
number of individual periods is also presented. In terms of soft constraints, much
more practical information is provided in terms of how an organisation measures the
overall quality of a solution.



2.1

Problem Description

The problem consists of the following:

An examination session is made of a number of periods over a specified length
of time. Number and length of Periods are provided.

A set of exams that are to be scheduled into periods. Exam codes are not
provided. As with all entities, competitors should assume sequential numbering
beginning with 0.

A set of students enrolled on individual exams. Each student is enrolled on a
number of exams. Students enrolled on an exam are considered to ’take’ that
examination. For each exam, the set of enrolled students is provided.

A set of rooms with individual capacities are provided.
Hard Constraints which must be satisfied
Soft Constraints which contribute to a penalty if they are violated.

Details including a 'weighting’ of particular soft constraints.

A feasible timetable is one in which all examinations have been assigned to a period
and room and all the following hard constraints are satisfied:

No student sits more than one examination at the same time;

The capacity of individual rooms is not exceeded at any time throughout the
examination session;

Period Lengths are not violated;
Satisfaction of period related hard constraints e.g. Exam_A after Exam_B;

Satisfaction of room related hard constraints e.g. Exam_A must use Room 101.

(Notice that, unlike course timetabling, exams are explicitly allowed to share rooms).

The soft constraints can be outlined as follows;

Two exams In a row

The number of occurrences when students have to sit two exams in a row on
the same day.

Two exams in a day

The number of occurrences when students have to sit two exams on the same
day. This constraint only becomes important when there are more than two
examination periods in the one day. This is further explained later when the
evaluation is described.



e Specified spread of examinations.

The number of occurrences when students have to sit more than one exam in
a time period specified by the institution. This is often used in an attempt to
be as fair as possible to all students taking exams.

e Mixed duration of examinations within individual periods;

The number of occurrences of exams timetabled in rooms along with other
exams of differing time duration.

e Larger examinations appearing later in the timetable

The number of ’large’ exams appearing in the ’latter portion’ of the timetable.
Both ’large’ and ’later portion’ are user defined.

e Period related soft constraints

The number of times a period is used which has an associated penalty. This
is multiplied by the actual penalty as different periods may have different
associated weightings.

e Room related soft constraints.

The number of times a room is used which has an associated penalty. This is
multiplied by the actual penalty as different rooms may have different associ-
ated weightings.

These can effectively be split into two groups i.e. those which are resource specific and
those which can have a global setting. Period related and room related constraints
are resource specific i.e. settings can be established for each period and each room.
This allows control of how resources would be used in constructing a solution. Values
for these can be found after the introduction of periods and rooms in the datasets.
All other soft constraints can be set relative to each other. These are referred to as
global Settings.

Institutions may weight these soft constraints differently relative to one another in an
attempt to produce a solution which is appropriate for their particular needs. This
is known as building the "Institutional Model’ and is defined here as the Institutional
Model Index. This is a relative weighting of the soft constraints which effectively
provides a quality measure of the solution to be built. Within the datasets provided
a number of variables are given with values.

It should be noted that when formulating a solution, it is common place for an
institution to ’play’ with various settings of soft constraints in an attempt to produce
solutions which they judge satisfactory to all the end users. Indeed, this is why we
have provided the soft constraint weightings in the data as opposed to the problem
definition. In addition, including the weights in the data rather than expecting them
to be hard coded into the solver allows us to set different weightings for each dataset.
We hope that this will encourage the development of solvers that are robust rather
than potentially over-tuned to one particular set of weights for a dataset. Once again,
this is motivated by our experience that different institutions do indeed have different



weights, and so no one set would be completely useful. The hidden instances will
have weights that we believe are reasonable; but competitors should not assume that
such weights are necessarily similar (or different!) to those of the public instances.

The details provided here significantly add to the model of the problem commonly
used within the research arena. Of course, how individuals judge that particular
solutions are ’satisfactory’ is an interesting open research problem and is currently
being tackled in a number of novel ways e.g. Asmuni et al [30].

2.2 The Evaluation Function

Generally, the quality of a timetable is reflected by two values: the number of hard
constraint violations (Distance to Feasibility), and the weighted sum of soft con-
straint violations. In order to compare two solutions, first we will look at the Distance
to Feasibility, and the solution with the lowest value for this will be the winner?.
If the two solutions are tied, we will then look at the number of soft constraint

violations. The winner will be the solution that has the lowest value here.
The Distance to Feasibility is the total of the following numbers;
Conflicts: The number of occurrences of conflicting exams in the same period.

RoomOccupancy: The number of occurrences of more seating being required in
any individual period than that available.

PeriodUtilisation: The number of occurrences when more time is required in any
individual period than that available.

PeriodRelated: The number of occurrences when ordering requirements are not
obeyed.

RoomRelated: The number of occurrences when room requirements not obeyed.
The resulting system is a special case of “constraint hierarchies” [31, 32]. In our

case, we effectively have three levels of constraints

1. required: constraints that absolutely cannot be broken (e.g. the constraint
that exams are not split between rooms)

2. hard: constraints whose violation leads to non-zero “distance to feasibility”
(which is essentially just the objective function relevant to this level). Feasi-
bility corresponds to satisfaction of all hard and required constraints.

3. soft: the usual sets of constraints that we prefer to satisfy but expect that it
will not be possible to satisfy them all

with the implication that improving the solution at any level takes precedence over
improving it at lower levels. We remark that although we have made a particular

ZFor the competition datasets, all solutions which are deemed acceptable or ’legal’ should have
a zero value for this measure.



choice in the competition for which constraints are hard and which required, it is
quite possible that other choices are also useful.

Although the nature of the practical problem described here usually leads to feasi-
bility being found quite easily, this is not necessarily always the case in practice. It
was felt essential that this measure was included here to allow solution evaluation
to be consistent across all tracks of the competition and in order to establish an
evaluation method that can be built upon for the future. In practice, the examina-
tion timetabling problem dictates that there must be no hard constraint violations.
When the situation arises where this is not the case, the incumbent timetabler would
normally introduce another period or indeed room and set a high associated penalty.
It is clear that this issue required detailed discussion and as gaining feasibility is
not seen as a major issue for the competition datasets, the organizers feel such a
discussion is outside the remit of the current report.

Within the competition, the solution will be classified based on the satisfaction of the
soft constraints. On the website, in order to explain the calculation of the penalty
a simple example is used allowing individual components of the overall penalty to
be explained. This may be added to as competitors report issues which require
clarification etc.. Trial datasets will also be introduced which will illustrate the
calculations. The following provides a description of how each soft constraint is
calculated. (We also give references to the appropriate sections in the mathematical
formulation of section 3).

2.2.1 Two Exams in a Row

This calculation considers the number of occurrences where two examinations are
taken by students straight after one another, i.e. back to back. Once this has
been established, the number of students are totaled and multiplied by the number
provided in the ’two in a row’ weighting within the ’Institutional Model Index’. Note
that two exams in a row are not counted overnight e.g. if a student has an exam the
last period of one day and another the first period the next day, this does not count
as two in a row. (See section 3.9.1).

2.2.2 Two Exams in a Day

In the case where there are three periods or more in a day, the number of occurrences
of students having two exams in a day which are not directly adjacent, i.e. not back
to back, are calculated. The total number is subsequently multiplied by the 'two
in a day’ weighting provided within the 'Institutional Model Index’. Therefore, two
exams in a day are considered as those which are not adjacent i.e. they have a free
period between them. This is done to ensure a particular exam placing within a
solution does not contribute twice to the overall penalty. For example if Exam A
and Exam B were in adjacent periods in the same day the penalty would be counted
as part of the "T'wo exams in a row penalty’. It should be noted that where the
examination session contains days with 2 periods, this component of the penalty,



although present for continuity, becomes superfluous. When this is the case this
portion of the penalty will always be equal to zero. (See section 3.9.2).

2.2.3 Period Spread

This constraint allows an organisation to 'spread’ an individual’s examinations over
a specified number of periods. This can be thought of as an extension of the two
constraints previously described. Within the ’Institutional Model Index’, a figure is
provided relating to how many periods the solution should be ’optimised’ over. The
higher this figure, potentially the better the spread of examinations for individual
students. In many institutions constructing solutions while changing this setting has
led to timetables with which the Institution is much more satisfied. If, for example,
PERIODSPREAD within the Institutional Model Index is set at 7, for each exam we
count all the occurrences of enrolled students who have to sit other exams afterwards
but within 7 periods i.e. the desired period spread. This total is added to the overall
penalty. It should be noted that the occurrences here will have contributed to the
penalty calculated for the 'two exams in a row’ and ’two exams in a day’ penalties.
Although, a single occurrence within the solution is effectively penalised twice, it
is often necessary due to, as indicated above, many institutions requiring certain
spreads to be minimised as an indication of solution quality. (See section 3.9.3).

2.2.4 Mixed Durations

This applies a penalty to a Room and Period (not Exam) where there are mixed du-
rations. The intention here is to try and ensure that exams occur together which are
of equal length. In calculating this portion of the penalty, the mixed duration com-
ponent of the ’Institutional Model Index’ is calculated by the number of violations
detected. (See section 3.9.4).

2.2.5 Larger Exams towards the beginning of the examination session

It is desirable that examinations with the largest numbers of students are timetabled
at the beginning of the examination session. In order to take account of this the
FRONTLOAD expression is introduced. Within the ’Institutional Model Index’ the
FRONTLOAD expression has three parameters e.g., 100, 30, 5. The first of these is
the number of largest exams that are to be considered. Largest exams are specified
by class size. If there are ties by size then exams occurring first in the data file are
chosen. The second parameter is the number of last periods to take into account
which should be ideally avoided. The third parameter is the penalty or weighting
that should be added each time the constraint is violated. This allows the Institution
to attempt to ensure that larger exams occur earlier in the examination session. This
is popular in practice as exams with more students enrolled take longer to mark. (See
section 3.9.5).



2.2.6 Room Penalty

It is often the case that organisations want to keep certain room usage to a minimum.
As with the 'Mixed Durations’ component of the overall penalty, this part of the
overall penalty should be calculated on a period by period basis. For each period, if
a room used within the solution has an associated penalty, the penalty for that room
for that period is calculated by multiplying the associated penalty by the number of
times the room is used. (See section 3.9.6).

2.2.7 Period Penalty

It is often the case that organisations want to keep certain period usage to a min-
imum. As with the 'Mixed Durations’ and the 'Room Penalty’ components of the
overall penalty, this part of the overall penalty should be calculated on a period by
period basis. For each period, the penalty is calculated by multiplying the associ-
ated penalty by the number of times the exams timetabled within that period. (See
section 3.9.7).

3 Mathematical Programming Formulation

The formulation given here is intended to provide a mathematical definition of the
problem. Accordingly, it was designed for compactness and (relative) clarity, and so
was allowed to be non-linear. This means, in our experience with it, that it is not
fit for solving the problems, however, it has been used it to validate solutions. The
formulation is backed by implementation in Ilog’s OPL/CPLEX? cross-checked with
the web-based validator.

Naturally, anyone intending to use mathematical programming methods should not
be biased by the formulation given here. For example, we also have various linear
formulation(s) but will report on these at a later date.*

In an effort to render the formulation more readable we will follow the following
conventions:
e Sets (of exams,etc) are upper case

e Parameters (quantities whose value is known or easily derivable from the input
files) are lower case

e Variables (quantities whose value is to be determined by the search) are upper
case.

3http:/ /www.ilog.fr
4And in case the reader is wondering, no we don’t have a magic one that solves all the instances
to optimality!



e When quantities such as size are associated with two different types, such
as exam size and room size, then, rather than increase the usual plethora of
symbols, we’ll indicate the “type” with a superscript. For example, s® and s%
are used for exam and room sizes respectively.

3.1 Sets and Parameters

The following sets and parameters are either directly present in the input file, or are
straightforward to derive from it.

3.1.1 Exam Related

E : set of exams

s; . size of exam i € FE

d¥ : duration of exam i € E

fE : aboolean that is 1 iff exam e is subject to the Front-Load penalties, 0 otherwise

D : the set of durations used U;d”

U@% : a boolean that is 1 iff exam 4 has “duration type” d which an index for set D.

We call them “types” because the duration values don’t matter, only whether they
are equal.

In the competition input file format, the “FRONTLOAD” entry specifies 3 param-
eters. The first parameter is “number of largest exams. Largest exams are specified
by class size” and is used to select which exams are subject to the front load penalty,
that is, the exams for which ff = 1. To be precise, the exams should be sorted by
largest-first, with a secondary sort by earliest-index-first in the case of equal sized
exams. The specified number of exams are then taken from the front of this sorted
list and given f¥ = 1, the remaining exams (if any) are given f¥ = 0.

The duration type, ufc)l, is used for the no-mixed-duration penalty. For example,
suppose all exams might have durations of either 120 or 180 minutes, then there
would be two duration types, and we could have d € {0,1} with u} = 1 iff exam i
has duration 120, ufy = 1 iff exam 7 has duration 180.

3.1.2 Students

S : set of students
Student enrollments are encoded by:

tis : 1 iff student s takes (is enrolled in) exam 4, 0 otherwise

10



3.1.3 Room Related

R : set of rooms

R
s

R

r

st size of room r € R

w;' : a weight that specifies the penalty for using room

3.1.4 Period Related

P : set of periods
df : duration of period p € P

fF . aboolean that is 1 iff period p is subject to the FrontLoad penalties. The second
parameter of the FRONTLOAD line in the input file is used to fix this. Starting
with the latest period, the required number of periods are given f; =1.

w;: : a weight that specifies the penalty for using period p

Ypq © & boolean that is 1 iff periods p and ¢ are in the same day

3.2 Period Related Hard Constraints

3.2.1 AFTER

Hft . a set of pairs of exams.

For every pair (e1,e2) € H aft exam e; must occur strictly after exam es
3.2.2 EXAM_COINCIDENCE

H™ . a set of pairs of exams

For every pair (er,e2) € H®™ exams e; and ey must occur in the same period
(though not necessarily the same room)

3.2.3 EXCLUSION

Hexel . g set of pairs of exams

For every pair (e, ez) € Herel exams e; and e must not occur in the same period.

11



3.3 Room Related Hard Constraints
3.3.1 EXCLUSIVE

Hs° . a set of exams

For every exam e € H*' if exam el is assigned to period p and room 7 then e must
be the sole occupier, i.e. no other exam can be assigned to both p and r. (Unless
specified by an EXCLUSIVE rule, then, as standard in exam timetabling, exams are
allowed to share rooms.)

3.4 Institutional Weights and Parameters

w2k : weight for “two in a row”
w?P : weight for “two in a day”
PS

w'? : weight for period spread (defaults to one as not currently specified in the
input format, but included here for completeness)

wNMDP . weight for “No mixed duration”

w : weight for the Front load penalty

The PERIODSPREAD line of the input format itself just specifies

g : the period spread, the preferred minimal “gap” between exams for a student
3.5 Variables

3.5.1 Primary Decision Variables

The binary (boolean) decision variables that fix the assignment are simply

XZ-I; = 1if exam i is in period p, 0 otherwise (1)

XE = 1if exam i is in room r, 0 otherwise (2)

3.5.2 Secondary Variables

By secondary variables we mean those whose values will be directly forced given any
legal assignment to primary variables. They are used to write the constraints and
to compute the objective function.

The penalties for violations of the various soft constraints are encoded as non-
negative variables as follows

12



C?F = “two in a row” penalty for student s
C?P = “two in a row” penalty for student s
cr S = “period spread” penalty for student s
CNMD — «No mixed duration” penalty
CFL = “Front-Load” penalty

CF = “soft period” penalty

CP = “soft room” penalty

Note: since these are all secondary and will be forced by the constraints then many
of these secondary variables need not be forced to be integer but can be relaxed to
be floats if desired.

We also remark that many of these variable are not really necessary, as they will
be constrained to be equal to expressions that could be included directly into the
objective. However, we keep them separate here for the purposes of clarity, and
because their values should correspond to values given by the validator on the web.

We also use:

Ugw = 1 if duration type d is used in period p and room r, 0 otherwise (3)

3.6 Objective and Constraints
3.6.1 Objective
Minimise

Z (szcszR +szCSzD +wPSCfS> +wNMDCNMD +wFLCFL + cf + Ok (4)
sES

Notice that there are no separate weights for the room and period penalties C** and
CF as the associated weights were already included in their definitions. Of course,
the problem is inherently multi-objective, but this weighted sum approach is used
for simplicity.

One can also see that the objective represents a compromise between the various
interested parties or stakeholders. Roughly speaking:

e the desire of student s is for a good individual timetable is represented by
w? O 4 2P 02D + wPSCPS. Notice, that it would also be straightforward
to encourage assignments that are fair between students by using the standard
technique of including nonlinear terms, such as (C’L‘?R)Z7 to suppress penalties
above the average.

e interests of exam invigilators (and students) are represented by CVMP

13



e the front load CF! represents the desire of the exam markers to receive the
largest exams as soon as possible so as to give more time for marking

e the estate management has interests, represented by terms such as C and
C" in avoiding the (presumably expensive) use of some rooms and periods

One can also define the penalties for the entire set of students:

o = Yo ©
seS

o = Yo ©
seS

crs = 3 ol (7)
ses

It might help potential competitors to know that, for the sequence constraints, the
current web validator reports

e two-in-a-row penalty = w?RC?E

e two-in-a-day penalty = w?PC?P

e period spread penalty = w?CPS

rather than the individual components.

Minimisation is subject to the following required and hard constraints, and the
constraints defining the soft penalties.

3.7 “Required” Constraints

Any solution that violates these is rejected outright, and if these are violated it does
not even get a “distance to feasibility” score.

Every exam is allocated to at most one room (exams cannot be “split”):

VieBE. Y XF < 1 (8)
reR

Every exam is allocated to at most one period:

VieE. Y X[
peEP

IN
—_
—~
Ne)
N—

3.8 “Hard” Constraints

Remember that “hard” constraints are those that might be relaxed if no solution can
be found that satisfies them all (with the drawback of getting a non-zero “distance

14



to feasibility” score). However, for the competition instances it is expected that
solvers will be able to satisfy all the hard constraints, and so here we will simply
enforce them as constraints, and not allow relaxations. That is, we do not encode
the “distance to feasibility” that measures the extent to which the hard constraints
are violated, but just force it to be zero.

Every exam is allocated to at least one room, and to at least one period:

VieE. > XF > 1 (10)
reR

vieE. > XL o> 1 (11)
peEP

It can depend on the context whether these ought to be “required” instead of merely
“hard”; but we make them potentially relaxable for consistency with the other tracks.

Room capacities are always respected:

VpeP. VreR Y sFXPx[ < s (12)

Notice that this is not linear: Recall we just giving a mathematical formulation to
define the problem, not a formulation that we expect to be effective for solving it.

Period durations are respected:

VpeP. VieE. dfXp < df (13)

In any period, any student is taking at most one exam:

VpeP. VseS > tiuXp < 1 (14)
i€l

(This enforces the usual conflict matrix between exams.)

The hard period constraints are enforced by:

V(i,j) € H*'" VYp,q € P, withp < ¢

xXp+xf, < 1 (15)

Y(i,7) € H®™ Vp € P,

P_ yP
xp=xr (16)
V(i,j) € H®* Vp e P,

xp+x) <1 (17)

The hard room constraints are enforced by

Vie H Vje E,j#i Vpe P, Vr € R,

Xh+x+xD+ X <3 (18)

15



3.9 “Soft” Constraints
3.9.1 Two in a Row

If a student s is enrolled into two distinct exams ¢ and j, and j occurs on the same
day in the period immediately after the period used for i, then the penalty CSQR
receives an increment of 1. Hence,

o= 3 Yt XpX) (19)

“jEE P,qEP
j#i  q=p+1 & ypg=1

Notice that there is no double counting. The condition on the periods is ¢ = p+ 1
rather than |p — ¢| = 1 and so the condition j # i is needed rather than j > i. That
is, we separately capture the cases ‘i is before 5’ and ‘i is after j’.

3.9.2 Two in a Day

If a student s is enrolled into two distinct exams ¢ and j and these exams occur in
non-consecutive periods on the same day, then the penalty C’SQR receives an increment
of 1. Hence,

CSQD = Z Z tis tjs Xz]; X]I; (20)

1,jEE p,q€P
Jj#i  q>p+1 & ypg=1

This is the same as for two-in-a-row except the ¢ = p + 1 condition changed to
g>p+ 1

3.9.3 Period Spread

If a student s is enrolled into two distinct exams 4 and j and these exams occur in
distinct periods such that j is after 4 but is within the gap g, then the penalty CF S
receives an increment of 1. Again, double counting is prevented by putting a time
order on the exams that contribute. Hence,

Crf o= N > it X0X) (21)

,jEE p,qEP
Jj#i  p<q<p+tg

This is the same as for two-in-a-row or day except that the conditions on the two
periods p and ¢ changed to g € [(p+1),...,(p+ g)].

3.9.4 Non-Mixed Durations

We need to force U ng to be non-zero whenever some exam with duration type d uses
period p and room r:

Vd € D.Vi € E, with uiq =1.Vp € P.Vr € R.
Upew > Xp+X[J—-1 (22)
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The period-room pair pr receives a non-negative penalty, , which is the maxi-
mum of zero and the excess above one of the total number of durations types assigned
to it:

NMD
Cor

Vpe P. VreR.

L+CyMP > S Up, (23)
deD
cyMP >0 (24)
The overall penalty is
ONMD  _ Z Z CﬁMD (25)
pEPTrER

The minimisation in the overall objective will force chr and CpNTM D to be the in-
tended minimal values consistent with the assignment.

3.9.5 Front Load

cft = NN PP (26)

i€eE peP

3.9.6 Soft Period Penalties

ctl o= >33 w'Xx) (27)

pePiceE

3.9.7 Soft Room Penalties

o= 33 wixf (28)

reRIER

4 Conclusion and Discussion

Information is presented here on a formulation of the examination timetabling prob-
lem that is common to many institutions. This track introduces a practical formula-
tion of the problem which, organisers believe, significantly adds to current research
and provides a firm basis for future efforts in the area. In relation to this, the
following points are made.

We do not consider minimising the number of periods as part of this formulation as,
in our experience, educational institutions manage the process by using set times for
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the examination session. That is not to say of course that this is not a major issue in
relation to planning examination sessions. It is acknowledged that a full investigation
and explanation of ’Distance of feasibility” is required if the formulation provided
here is to be useful for such purposes.

From experience we have found that, in general, gaining feasibility is not as important
an issue as in some cases of course timetabling. That is not to say, of course,
that competitors may have difficulty satisfying all the hard constraints within the
competition time limit requirement. If this is the case, and competitors experience
difficulty in finding feasibility, we will decide how to deal with 'non feasible’ solutions.
It is pointed out here that a competition time limit is essential to allow comparison of
the techniques used. In practice, it can be argued that the need for such a time limit
is not required as organisations are often happy to allow for longer running times in
search for 'better’ solutions. That being said, it is often the case that due to many
changes having to be made during solution construction [2], an individual within
an institution requires the ability to generate many solutions quickly after making
various amendments to the underlying data. This style of solution construction will
be well served by the techniques developed as part of this track. Please also see the
associated Curriculum CTT technical report for a discussion of this issue.

Although a ’weighted sum’ evaluation function is not ideal e.g. it may have adverse
side effects for certain individual students, it is the chosen method here due to the
ease of implementation for purposes of comparison. It is hoped that the interest
generated by efforts here will lead to true multi-objective evaluation of potential
solutions. In particular, we specifically decided to include the weights in the data
format itself rather than solvers having to hard code them. This at least ought
to easily allow variations of the weights so as to explore multi-objective properties.
Also, it is unlikely that every institution would have the same weights, and so fixing
them in the solver seems inappropriate.
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