
Tree Decomposition Constraint-Based
Variable Neighborhood Local Search Procedure

(Examination Time Table)

Blind Review

No Institute Given

1 Algorithm for Tree Decomposition

An Iterative local search algorithm:

Calculate Perfect Elimination Order and Tree Decomposition using Iterated Search
Huristic (IHA)

Programe TreeDecomposeGraph(input: Graph G(V,E)):
{Assuming G a primal graph with vertex set V and Edges E}
output: pair(T,X) {X = [Xi (i in I)] a family of subsets of V for
each node of T);

begin:
Initial order A1 = Use min-fill heuristic to determin
elimination order from G;
while Number of Iterations < MAX Iterations do

While NrNotImprovments < MAXNotImprovments do
if probability p:
Select a vertex in the elimination ordering which causes
the largest clique (ties are broken randomly);
Swap this vertex with another vertex located in the
randomly chosen position;

else if probability (1 - p):
Select a vertex in the elimination ordering which causes
the largest clique (ties are broken randomly);
Generate neighborhood by swapping the selected vertex
with its neighbors i.e. all orderings are generated by
swapping the selected vertex with its neighbors;
A2 := Best order from the generated neighborhood;

end if
end while
if A2 fulfils acceptance criteria then

A1 := A2;
end if

end while
Generate pair(T,X) using elimination order A1;

end begin;



2 Demonstration @PATAT-ITC 2007

return pair(T,X);
end programe

(Determining Tree Decomposition along with perfect elimination ordering to partition

the problem in to subproblems improved verion of IHA)

2 Algorithm for Constraint Directed Neighborhood
Search Space

Calculating solution and violation Matrix from neighborhood matrix using con-
straint directed search.

Programe ConstraintDirectedSearch(input:pair(T,X)):
{Assuming pair (T,X) is obtained using Algorithem1}
output: pair(S, P)
{S a solution matrix and P a plenty matrix for solution S);
begin:
loop each Xi (i in I) {I a node set in T}

Define constraint Matrix C_max;
Define neighborhoods Matrix N_max;
Define Violation Counter C;
{Assuming for each Xi (i in I) constraint matrix and neighborhood
matrix separatly made available}
while Number of Iterations < MAXIterations do

N_max := C_max[Xi];
For loop each k in N_max Perform a local search for local
optima;
Select newly obtained local optima if better than previous;
Update violations counter C with the newly obtained local
optima;

end while
update pair(T,X) with local optima solution of Xi;
{Propagate solution to next level in T}

end loop
S := obtained final solution from T.
P := plenty matrix obtained from solution matrix S and violation

counter;
end begin;
return (S,P);

end programe

(Calculating solution and violation Matrix from neighborhood matrix using constraint

directed search.)


