
Our solution approach is a heuristic that assigns events to timeslots and
rooms given a feasible, not necessarily optimal, solution of a linear program.
We use column generation to find a feasible solution of the LP. First we define
the necessary parameters, then we give the description of the column generation
procedure and in the end we describe the heuristic.

Parameters
Given is a set E of events that have to be assigned to a timeslot from the set

T of timeslots (T = {0, . . . , 44}) and to a room of the set R of rooms. We also
have a set S of students, and every student s has a set Es of events that he is
attending. Every event e has a set Te of timeslots to which it can be assigned,
a set Fe of features that it requires and Ne students attending the event. Every
room r ∈ R has a set of features Fr and a specific seating capacity Cr. An event
e can be assigned to room r if room r satisfies all features that event e requires
(Fe ⊆ Fr) and the seating capacity of room r is larger or equal than the number
of students participating (Ne ≤ Cr). We define the set Re as the set of rooms
to which event e can be assigned. Precedences between events are modeled with
the parameter pef . It has value one if e is the predecessor of f .

An important parameter is ce, this is the number of events colliding with
event e. Two events are colliding if they can not be scheduled at the same
timeslot. This arises if they have at least one student in common, if both have
only one possible room which is the same or if there is a precedence relation
between the two events.

We define K as the set of slot-schedules. A slot-schedule k ∈ K is charac-
terized by a timeslot tk and a set of events assigned to this timeslot. For all
slot-schedules k ∈ K and all events e ∈ E we introduce the parameter ake,
which is one if event e is in slot-schedule k and zero otherwise. A slot-schedule
k is feasible if:
- The events in the slot-schedule are not colliding.
- tk ∈ Te for all events e in the slot-schedule.
- If an event e is assigned to a room r ∈ Re.
- Only one event is assigned to each room.

The master problem (MP)
MP has three types of decision variables:

- ∀k ∈ K : xk is the number of times slot-schedule k is assigned.
- ∀e ∈ E : ye = 0 if event e is assigned, stricty positive otherwise.
- ∀e, f ∈ E : If pef = 1, then zef ∈ Z+ is a variable that indicates whether the
precedence constraint between e and f is fullfilled. A feasible solution has zef is
zero.

MP is the following linear programming model:

min
∑
e∈E

ye +
∑

e,f∈E|pef =1

zef



ye +
∑
k∈K

akexk ≥ 1 ∀e ∈ E (1)∑
k∈K|tk=t

xk ≤ 1 ∀t ∈ T (2)

zef +
∑
k∈K

tk(akf − ake)xk ≥ 1 ∀e, f ∈ E|pef = 1 (3)

xk ≥ 0 ∀k ∈ K (4)
ye ≥ 0 ∀e ∈ E (5)
zef ≥ 0 ∀e, f ∈ E|pef = 1 (6)

Constraint (1) ensures that all events are assigned. For every timeslot at most
one slot-schedule can be selected, this is enforced by constraint (2). A precedence
constraint between two events is fulfilled by constraint (3).

In the initial set of columns we generate for all n events a column with only
the corresponding ye variable on one. We do the same for all the precedence con-
straints by setting only the corresponding zef variable to one. For all timeslots
in T we choose an empty slot-schedule k for which we take a column with only
a one for the coefficient of xk. To solve MP we start with t = 0 and solve pricing
problems in order of increasing value of t to extend the set K. If for all timeslots
in T no new slot-schedules are found, then the column generation procedure is
stopped, independent whether an optimal solution is found or not. The RMP is
solved with CPLEX 10.0.

The pricing problem

The pricing problem determines feasible slot-schedules that can be added to
the restricted master problem (RMP). It has as input a timeslot t, a set Ep of
events that can be scheduled and the shadowprices of RMP. These are given by
αe, βt and γef . The decision variable y′e is one if event e is assigned and zero
otherwise. Variable yer is one if event e is assigned to room r and zero otherwise.
The pricing problem is formulated as follows:

max
∑

e∈Ep

αey
′
e + βt +

∑
e,f∈Ep|pef =1

γef t(y′f − y′e)



∑
r∈Re

yer = y′e ∀e ∈ Ep (7)

∑
e∈Ep∩Es

y′e ≤ 1 ∀s ∈ S (8)∑
e∈Ep|r∈Re

yer ≤ 1 ∀r ∈ R (9)

ye + yf ≤ 1 ∀e, f ∈ Ep|pef = 1 (10)
yer ∈ {0, 1} ∀e ∈ Ep,∀r ∈ Re (11)
ye ∈ {0, 1} ∀e ∈ Ep (12)

Solving the pricing problem with an IP solver takes too much computation
time. Therefore, we apply a greedy heuristic that generates a set Kp of 30 feasible
slot-schedules. We define obje as the value that event e adds to the above given
objective function. The greedy heuristic goes as follows:

1. Select event ef with maximum value of obje. If obje = objf for events e and
f , then take the event with minimum ce.

2. Select the room r ∈ Ref
with the most events e ∈ Ep with Re = {r}. If this

is equal for two rooms, then take the room that is in the minimum number
of sets Re with e ∈ Ep.

3. As long as there are rooms and events left, go back to 1.

To generate 30 different slot-schedules we always delete the first selected
event ef from Ep. Note that we only add a slot-schedule k ∈ Kp as a column
to RMP if the reduced costs of the slot-schedule are larger than the average
reduced costs over the last 50 added slot-schedules.

Heuristic Based on LP solution
We define Ec as the set of events that still have to be scheduled and Tc as

the set of timeslots to which a slot-schedule still can be assigned. Our heuristic
is the following algorithm:

1. Initialize Tc = T\{8, 17, 26, 35, 44} and Ec = E.
2. Solve column generation procedure → K.
3. For all generated slot-schedules k ∈ K, determine objk =

∑
e∈E akewe.

4. Assign the events in the slot-schedule k with maximum objk to tk and delete
them from Ec.

5. Tc = Tc\tk.
6. If |Tc| > 0 and |Ec| > 0, then go to step 2.
7. If |Ec| > 0, then solve an integer program to optimality (with CPLEX

10.0) to assign as many as possible of the events in Ec to the timeslots
in {8, 17, 26, 35, 44}.

The value of the weighting factor we for an event e depends on the values
of ce, on the timeslot tk in combination with the precedence constraints and on
the number of rooms to which an event can be assigned.



The integer programming model that we solve in step 7, has decision variable
zert which is one if event e is assigned to room r on timeslot t and zero otherwise.
The variable zert is only defined for the triples (e, r, t) if t ∈ Te and r ∈ Re. Our
objective is to maximize the number of students assigned. The IP is:

max
∑
e∈E

(Ne(
∑

r∈Re

∑
t∈Te

zert))

∑
e∈Es|t∈Te

∑
r∈Re

zert ≤ 1 ∀s ∈ S,∀t ∈ T (13)

∑
e∈E|r∈Re&t∈Te

zert ≤ 1 ∀r ∈ R,∀t ∈ T (14)

∑
r∈Re

∑
t∈Te

zert ≤ 1 ∀e ∈ E (15)

∑
t∈Tj |t<t′

∑
r∈Rj

zjrt ≥
∑

t∈Tk|t≤t′

∑
r∈Rk

zkrt ∀j, k ∈ E|pjk = 1,∀t′ ∈ [1, 44] (16)

zert ∈ {0, 1} ∀e ∈ E,∀r ∈ Re,∀t ∈ Te (17)

Constraint (13) ensures that no student has to attend more than one event
at a time. Only one event can be put into each room on any timeslot. This is
enforced by constraints (14). Constraint (15) imposes that every event is assigned
to at most one of the timeslots and one of the rooms. If there exists a precedence
relation between two events, they should be scheduled in the correct order during
the week. This is fulfilled by constraint (16).


