Track 2

Solving Post Enrolment based Course Timetabling Using Differential Evolution

Differential evolution (DE) is a relatively new evolutionary algorithm proposed by Storn and
Price 1995, DE is applied successfully to solve a wide range of optimization problems. The
suitability of applying Differential evolution toward solving the course scheduling problem is
investigated in solving post enrolment based course timetabling problem.

Differential evolution is the relative new evolution algorithm that has been proposed by Storn
and Price (1995). DE is similar to Genetic Algorithms (GAs) in that a population of individuals
are used to search for an optimal solution (Feoktistov and Janagi 2004). The main difference
between GAs and DE isthat, in GAs, mutation is the result of small perturbations to the genes
of an individua while in DE mutation is the result of arithmetic combinations of individuds.
DE uses the differences between randomly selected vectors (individuals) as the source of
random variations for athird vector (individua), referred to as the target vector. Tria solutions
are generated by adding weighted difference vectors to the target vector. This process is
referred to as the mutation operator where the target vector is mutated. A recombination, or
crossover step is then applied to produce an offspring which is only accepted if it improves on
the fitness of the parent individud.

Explanation for our method:

At the beginning a random floating-point represents a priority will be given for each individua
recourse (i.e. rooms, time slots).

A suitable room and time dot will be assigned to each event (e) as follows:

Stepl: Let V'=/ with V'l V, whereV isthearray for al rooms.

Step2: For All jT V do

If j is big enough for all the attending students and satisfies all the features required by the
evente, Then V'=V'E{j},i.e insertjinset V.

Step3: Determine the component i with highest priority y for al jinset V'.

Step4: Assigned i tothe current event e,

Now selecting time dot;

Step6: Let T'=/ with T T, where T isthe array for dl Timeslots.

Step7: FordltT Tdo

if room i which selected in step 3is not already occupied int by other event, and if no student
is aready has event intimet (i.e. t will not produce conflict in students schedule), and if t will
not violate the events’ order constraint, and event eis available a timet. then T'=T'E{j}, i.e
inserttinsat T.

Step8: Determine the component t with highest valueof y, foral tinset V.

Step9: assignedt to the current event e.

Other wise if no suitable room, time is available to event e, then event e will not be schedule
“i.e. assgn -1 for room and time slto).

Steps 1 to 10 will be repeated for all event. Moreover, in each generation, new mutant priority
will be assigned for each time slot and room. By applying a convention mutation, crossover
operations as follows:

Step 1: for Timedot vector:

For each element ti’ ; InT vector, aperturbed (offspring), V, |



is generated according to following;
If (U, 1) <Pr)

Vioj =t Rt j -t )

Otherwiseg,

Vi,j =i j

) L1
Where 172781 (s 1 the number of parent “schedule”, and 1~ 2 LEUF s

area and congtant factor | [0, 2] which controls the amplification of the differential
(i ~'si) where p is the number of timeslots available, Pr is the probability of
reproduction (with Pr1 [0, 1]).

Step 2: for room vector:

For each element Y in F vector, a perturbed (offspring), Vi
is generated according to following;

If (U0, 1) < Pr)

Vij = fr g TR g - g g)

Otherwise

Vi,j = fi,j

where 72731 @ 1 the number of parent “schedule”, and ntRiLtE g
areal and congtant factor | [0, 2] which controls the amplification of the differential

(T~ ") \vhere f is the number of rooms available, Pr is the probability of
reproduction (with Pr T [0, 1]). With each new generation, an offspring schedule only
will be accepted if it improves on the fitness of the parent individual.

Selection: anew schedule M ® will be generated for each parent schedule using

the mutated value of priority. The generated offspring, m(©) , replaces the parent,

xi(1) , only if the fitness of the offspring is better than that of the parent, where fittnes
calculated by the total number of violating soft constraints and the distance to
feasibility. The offspring is in better fitness if violate a smaller number of soft
contrarians that its parent.

Mutation, crossover, and selection operations will be repeated till max number of
generations is reached or if the executed time is finished. A best schedule obtained in
all generation will be saved.



