
Timetabling Competition ITC2007:
Solver description

Soolmaz Massoodian, Afsaneh Esteki

January 2008

Our solver is a genetic algorithm with two main stages. A local search is
applied to the algorithm at the first stage and another local search at the
second stage. The first stage minimizes the number of violations and the
second one attempt to minimize the cost while keeping the number of
violations minimized.

Introduction

The timetables represent the chromosomes. The columns in timetables
represent the periods (day and timeslot) and the rows represent the rooms,
therefore each location of timetable defines a room and a period. The course
lectures will be placed in timetable's locations. Using this algorithm, we never
have a missing or extra lecture or more than one lecture in the same room and
period. So the only hard constrains to consider will be conflicts and
availability.

To encode the input data, the permutation encoding is used. We assign to
each course as many integer numbers as the number of its lectures, starting
from 1. So the biggest integer number assigned is equal to the total number of
lectures.

After assigning values to the courses, the course list is sorted, and in the
initialization step, the integer numbers belonging to the courses which are
more limited, will be placed in the timetable first.

The algorithm in the initialization step creates a semi-random population of
chromosomes. The only thing to consider when placing the courses in the
timetable is that we do not place a course lecture in a timeslot which is not
available for that course. Integer numbers which start immediately after the
last number assigned to a lecture will be assigned to empty locations of the
timetable.

A fitness value is assigned to each timetable which shows how good the
timetable is. In calculation of the fitness, the effect of a hard constraint
violation is considered much stronger than one of a soft constraint violation.

Three types of fitness functions are used. The first fitness function only sees
the violations of hard constraints and calculates the fitness assuming there is
no soft constraint violations. This fitness is used at the first stage only. After
the first stage, the main fitness function is used, which calculates the real
fitness of the timetables. The third fitness function which only calculates the
violations of soft constrains is being used only in our second local search (In
stage 2)

At the beginning of each generation, the better half of the population is
selected and is directly sent to the genetic pool in a sorted order. The other
half is chosen using the tournament-3 selection method.

After the selection, crossover and then mutation are performed on a subset of
population which does not contain the best chromosomes. The mutation and
crossover rates are not fixed. The number of location pairs of the timetable
which their values will be exchanged in mutation is also variable. The
mutation operator in our algorithm does not cause any violation of the
availability constraints. After crossover and before mutation, the
chromosomes pool is sorted again to avoid any possibility of losing a good
timetable created by the crossover operation.

Stage 1: Making violations zero

At the beginning and in the end of every 10 generations of this stage the first
local search which only considers the violations of hard constraints and tries
to minimize them, is applied to the best chromosome of the population. At the
end of the stage one, we have at least one feasible timetable.

Stage 2: Minimizing the cost

The algorithm then tries to find a feasible timetable with the lowest possible
cost. At the beginning of this stage and in the end of every 10 generations a
local search is applied to the best chromosome of the population. This local
search only works in the columns of the timetable, which means it only
exchanges the values of two locations in the same column of the timetable, not
to cause any violation of hard constraints. Since the only possible violations of
hard constrains in our algorithm are conflicts and availability constraints, a
feasible timetable can never become infeasible by exchanging values in any
pairs of its locations which are within the same column.

