The Second International Timetabling
Competition, Track 3:
Description of the Beam Search Based
Algorithm

Donatas Elvikis*

Department of Mathematics, University of Kaiserslautern,
Paul-Ehrlich-Str. 14/461, 67653 Kaiserslautern, Germany
{elvikis}O@mathematik.uni-k1l.de
http://optimierung.mathematik.uni-kl.de

Abstract. We describe solution method applied to solve timetabling
problems presented in the Track 3 of ITC2007. Heuristic approach is di-
vided in two major parts: hard constraint solver and soft costs minimizer.
Feasible solution is constructed by simple graph coloring and local search
methods and afterwards heuristic, based on the beam search algorithm,
is applied to minimize the soft costs.

Key words: Educational Timetabling, Heuristics, Beam Search

1 Introduction

Idea of solution algorithm came while analyzing beam search method [1], which
is actually a bridge between breadth-first search and best-first search heuristics.
Namely, it builds a solution tree by expanding nodes layer by layer, however con-
versely to breadth-first algorithms it only continues expanding w most promising
nodes. This allows to avoid memory consumption problems without paying the
price of inadmissibility pruning nodes which could lead to an optimal solution.
Recently variations of beam search were successfully applied for solving STRIPS
planning (see Zhou and Hansen [6, 7]) and scheduling (see Morton [5], Croce and
T’kind [3]) problems. Here we describe how beam-stack search [7] was adapted
for the local search procedure in the timetabling framework.

2 Algorithm Description

Description of the algorithm is given in this chapter. Solution ranking rules de-
fined by the competition organizers clearly imply lezicographical objective func-
tion f = Lex(fn, fs), where f}, stands for hard constraint violations and fs — soft

* The author thankfully acknowledge partial support from the Deutsche Forschungsge-
meinschaft (DFG) grant HA 1737/7 7 Algorithmik groBer und komplexer Netzwerke”,
New Zealand’s Julius von Haast award and the Rheinland-Pfalz cluster of excellence
“Dependable adaptive systems and mathematical modeling”.

2 Description of the Beam Search Based Algorithm (ITC2007, Track 3)

costs. Hence the first goal is to reach feasibility while minimizing soft constraint
violations stays secondary aim. Following the landmarks set by organizers algo-
rithm is divided into two major parts: namely, hard and soft constraint solvers
which are partially interrelated.

2.1 Data Handling

The data container classes were inherited from the solution validation source pro-
vided by the Track 3 organizers. Additionally Faculty class was supplemented
with a list of all lectures, i.e. L = {ly,...,l}, that have to be scheduled to the
slotsin S = {s = (p,r) | p € P,r € R}. Here lecture is defined as a part of
course ¢ € C and slot is an element of the Cartesian product of periods P and
rooms R. Moreover we keep a conflict graph G = (V, E), where V and F are sets
of vertices and edges, respectively. All lectures and periods are associated with
vertices v; € V. Edges are added to the graph G if either lectures /; and [; in
L associated with v;,v; € V' are conflicting or period p € P is not available for
lecture [€ L. Collision graph is implemented as an adjacency list data structure
which is provided in the BGL! library. G is used as a helper data structure for
faster access to conflicting lectures and forbidden periods.

2.2 Solving Hard Constraints

Hard constraint solver consists of two components: graph coloring and local
search. Simple greedy type heuristic implemented in BGL is used for coloring
graph vertices. First all vertices are sorted by smallest-last ordering [4] and then
sequentially colored [2] with respect to the given order. Note that there may be
more lectures assigned to some period p € P than rooms available in p. Moreover,
lectures without assignment to any period may appear, i.e. there exists lecture
[€ £ with some color k such that there is no period p having color k. In the
first case algorithm greedily assigns lectures to the rooms using best-fit ordering,
i.e. we assign lecture to the smallest available room r while minimizing room
capacity constraint violations. Lectures without assignments as well as lectures
without common color with periods are left for further considerations. Algorithm
is iteratively applied until no lecture [can be assigned to some slot 1. This way
constructed timetable has no conflicting lectures in the current assignments,
however it may have a number of unscheduled lectures.

Note that sequential coloring algorithm depends not only on the supplied
ordering but also on the adjacency structure of the graph G, i.e. in which adja-
cency order vertices are connected. In order to avoid systematically bad coloring
solutions, depending on the order of suplied problem data, conflict graph is con-
structed in random order, namely the order of courses is shuffled and then G is
build.

Almost all instances could be solved to feasibility using simple coloring heuris-
tic, however for instances 1, 2, 7 and 10 feasibility could not be reached in none of

! BGL - Boost Graph Library: http://www.boost .org

Description of the Beam Search Based Algorithm (ITC2007, Track 3) 3

the test runs. Hence additional local search procedure was added with maximum
runtime limitation of 1 second. Local search procedure contains two operations:
lecture shifting and kick off.

Shift operation randomly chooses unscheduled lecture I € £ and tries to find
slot s € S such that either it is empty or lecture I’ scheduled in s could be
moved to some other free slot s’ € S without causing any conflicts. If it does not
succeed, then algorithm looks for a slot s such that exchanging lectures [and I’
in s does not cause additional fj costs. However if predefined number of steps
do not improve the best known schedule, then kick off operation is performed.

Kick off randomly chooses unscheduled lecture [€ £ and some feasible slots
s € S for I. Here by feasibility of slot is meant that s in period p is not forbidden
for the course ¢ € C, where | € ¢, and no other lecture !’ in course ¢ have
an assignment to the same period p. If such lecture and slot exists, then [is
assigned to the slot s and all conflicting lectures are kicked off of their current
assignments.

Note that kick off operation is done on the best currently known solution,
whereas lecture shift starts with the best know and continues iterating on the last
generated timetable, even if f costs gets worse than those of the best schedule.

2.3 Solving Soft Constraints

Soft constraint solver is based on the beam search, namely an adaption of the
beam-stack search algorithm [7] for the timetabling problem. Zhou and Hansen
improved classical beam search method with systematic backtracking, hence
enabling algorithm quickly find initial solution and further continue search for
an optimal until one is found or allowed time is exhausted.

Algorithm uses the global upper bound UB and a stack with lower and upper
bounds on f for each layer, denoted by fiin and [y, respectively. Costs bounds
equal to fmin = (0,0) and fax = (UBR,UBs) are pushed to the stack each
time a new layer is expanded. Solution tree node is pruned whenether its costs
f satisfies f >= UB or f < fin. If layer contains more nodes than the beam
width w, then only the most promising nodes are kept for further consideration
and fqz is set to the minimum costs of the rejected or pruned nodes. Note that
rejected nodes are not pruned as they still have a chance to be expanded after
the backtracking step. In order to track pruned solution nodes algorithm uses
caching system.

Backtracking is done whenether an empty layer is found, i.e. layer where all
nodes are pruned by the rule presented above or nodes are leaves of the solution
tree. Algorithm backtracks until the layer with f,,.. < UB is found. Every
time algorithm backtracks it shifts the layer costs bounds to the right, namely
[fmins fmaz) = [fmaz, UB) in such way systematically forcing the search beam
to admit a different set of successor nodes and thus continuing search for an
optimal solution.

In spite of improvements introduced by Zhou and Hansen [7] beam-stack
search is far too slow in the framework of competition, hence we use it only as a
local search heuristic to explore solution space. Instead of starting to construct

4 Description of the Beam Search Based Algorithm (ITC2007, Track 3)

solution from the first layer, i.e. an empty schedule, we start directly by back-
tracking from the solution found after applying hard constraint solver. In the
solution tree each layer corresponds to the number of assignments of lectures
to slots in the timetable, hence all assignments in the schedule are kept in the
order they were added. Whenever algorithm backtracks, it removes the last as-
signment from the timetable. This way algorithm performs local search by trying
to reschedule lastly assigned lectures.

In order to limit the number of steps performed on one schedule we set
two parameters: execution time ¢,,,, and maximum number of backtracks b,,q.
Whenever beam search violates one of the given parameters, the order of assign-
ments in the current best timetable is shuffled and beam search is repeated, thus
local search is done in the other region of solution space. However given bounds
might be too tight, therefore we increase t,,4, and by,q, values stepwise using
the following pattern which depends on the number of b,,,, violations without
improving timetable costs:

#Backtracks‘tmax, (S)‘bmaz

0 1 3
300 1 4
900 2)

every 3000 +2 +1

Initially we set t,,42 and by,q2 to 1 second and 3, respectively. If no improvements
can be found in the local solution search space we increase the values, hence
solution search space is broadened. Whenether an improved solution is found,
#Backtracks is set to 0 and algorithm continues by first examining small solution
space of the current schedule.

References

1. Bisiani, R.: Beam Search. In S. Shapiro, editor, Encyclopedia of Articial Intelligence,
Wiley & Sons, pp. 56-58 (1987)

2. Coleman, T. F., More, J. J.: Estimation of sparse Jacobian matrices and graph
coloring problems. Journal of Numerical Analysis, vol. 20, pp. 187-209 (1983)

3. Della Croce, F., T’kindt, V.: A Recovering Beam Search algorithm for the one-
machine dynamic total completion time scheduling problem. Journal of the Opera-
tional Research Society, vol. 53, pp. 1275-1280 (2002)

4. Matula, D., Marble, G., Isaacson, J.: Graph coloring algorithms in Graph Theory
and Computing. Academic Press, pp. 104122 (1972)

5. Ow, P. S., Morton, T. E.: Filtered beam search in scheduling. International Journal
of Production Research, vol. 26, pp. 35-62 (1988)

6. Zhou, R., Hansen, E.: Breadth-First Heuristic Search. 14th International Conference
on Automated Planning and Scheduling (2004)

7. Zhou, R., Hansen, E.: Beam-Stack Search: Integrating Backtracking with Beam
Search. 15th International Conference on Automated Planning and Scheduling
(2005)

