
The Computational Complexity
of Stochastic Optimization

Cassio Polpo de Campos4, Georgios Stamoulis1,3, and Dennis Weyland1,2

(cassio@idsia.ch, stamoulis.georgios@gmail.com,
dennisweyland@gmail.com)

1Università della Svizzera italiana – Lugano, Switzerland
2Università degli Studi di Brescia – Brescia, Italy

3Lamsade, Université Paris Dauphine – Paris, France
4Dalle Molle Institute for Artificial Intelligence – Lugano, Switzerland

Abstract. This paper presents an investigation on the computational
complexity of stochastic optimization problems. We discuss a scenario-
based model which captures the important classes of two-stage stochas-
tic combinatorial optimization, two-stage stochastic linear programming,
and two-stage stochastic integer linear programming. This model can also
be used to handle chance constraints, which are used in many stochastic
optimization problems. We derive general upper bounds for the complex-
ity of computational problems related to this model, which hold under
very mild conditions. Additionally, we show that these upper bounds are
matched for some stochastic combinatorial optimization problems arising
in the field of transportation and logistics.

Keywords: stochastic combinatorial optimization, computational com-
plexity, chance constraints, stochastic vehicle routing

1 Introduction

Stochastic optimization problems have received increasing attention in recent
years. While these problems are used extensively in practice, our theoretical
understanding of their complexity is far from complete. Hardness results have
been obtained in the context of two-stage stochastic linear programming and
two-stage stochastic integer linear programming [3]. It has been shown that just
the evaluation of the objective function is already #P-hard, where #P denotes
the famous class of counting problems originally introduced in [7]. The same
hardness results could have been derived for the corresponding decision and op-
timization variants. Similar lower bounds have been obtained in the context of
stochastic combinatorial optimization problems for a widely used stochastic ve-
hicle routing problem [8]. Analogously, it can be shown that the evaluation of
stochastic/chance constraints is #P-hard as well. On the other hand, we do not
have strong upper bounds for the computational complexity of stochastic opti-
mization problems. Some attempts have been done in [3], but the corresponding

2 C. de Campos, G. Stamoulis and D. Weyland

results are controversial, since the equality of P#P and NP#P is assumed, which
is to the best of our knowledge still an open problem.

In this paper we investigate a very general scenario-based model for stochastic
optimization problems. This model includes, among others, the above mentioned
classes of two-stage stochastic linear programming and two-stage stochastic com-
binatorial optimization. Our main results are general upper bounds, which hold
under very mild assumptions, and lower bounds derived for a very plausible
stochastic vehicle routing problem. We show that the evaluation of the objec-
tive function is in FP#P [1] and that the evaluation of constraints is in PP.
Furthermore, the decision variant of such problems resides in NP#P [1] and the
optimization variant can be solved with multiple calls to the corresponding de-

cision variant and is therefore in FPNP
#P [1]

. We then show that these bounds
are actually matched by an existing stochastic vehicle routing problem, where
the objective function is #P-hard and the decision and optimization variants
are both NP#P [1]-hard.

The remaining part of this paper is organized as follows. We start with a
discussion of the model used in this paper in Section 2, and explain why this
model captures many important stochastic optimization problems. In Section 3
we derive general upper bounds for some computational tasks related to this
model, which hold under very mild conditions. We then continue to show that
these upper bounds are actually matched for a (non artificial) stochastic vehi-
cle routing problem (Section 4). Finally, we conclude the paper with a short
discussion of the results and their implications in Section 5.

2 The Stochastic Optimization Model

We discuss a scenario-based model for stochastic optimization problems that
is very general and captures, among others, two-stage stochastic combinatorial
optimization, two-stage stochastic linear programming and two-stage stochastic
integer linear programming. Additionally, this model can also handle chance
constraints which are used in many stochastic optimization problems.

The basic assumption of our model is that we can describe the objective func-
tion and the constraints in a scenario-based way. For a given problem instance,
we have a set X of solutions and a set S of scenarios. There is a mass func-
tion p : S → R+ representing the probabilities of the scenarios and a function
k : X × S → R+ representing the costs of a solution under a specific scenario.
The objective function f : X → R+ is then the expectation of the costs over the
scenarios, that is, for a given solution x ∈ X , we have f(x) =

∑
s∈S p(s)k(x, s).

Constraints representing simple predicates on the solution space are allowed and
divided into the two sets C and D. Constraints c ∈ C are computable predicates
c : X → {false, true} and correspond to non-stochastic constraints. Constraints
in D are defined in a similar way as the objective function and correspond to
stochastic constraints. Each d ∈ D is associated with two functions pd : S → R+

and kd : X × S → R and a bound bd ∈ R. For a given solution x ∈ X , the
predicate d is simply

∑
s∈S pd(s)kd(x, s) ≤ bd.

The Computational Complexity of Stochastic Optimization 3

For the model to be meaningful, we need the following additional assump-
tions. First of all, we assume that the input, including all the functions’ speci-
fications, is shortly encoded in the sense that the sets X and S are of at most
exponential size with respect to the input. Additionally, we require that the size
of these sets can be efficiently computed and that these two sets can be efficiently
enumerated. Furthermore, we require p and k to provide efficiently computable
numbers1. Analogously, the functions pd and kd associated with the constraints
d ∈ D are required to provide efficiently computable numbers. Finally, the pred-
icates c ∈ C are required to be computable in polynomial time.

This model is very powerful and it is easy to verify that it captures the
important classes of two-stage stochastic combinatorial optimization, two-stage
stochastic linear programming, two-stage stochastic integer linear programming
(with continuous variables in the second stage) and chance-constrained program-
ming. For more information about these classes we refer to [1].

3 General Upper Bounds

The relation between stochastic optimization problems [1] and counting problems
[7] has proven to be very useful in order to derive results about the computational
complexity of stochastic optimization problems [3, 8]. In this work we use the
recently introduced framework of weighted counting [2] to derive upper bounds
for the computational complexity of our model. For the sake of clarity, we first
give an overview about the framework of weighted counting and the results which
are needed in the context of this paper. We then discuss the very mild technical
condition to our stochastic optimization model and give formulations for the
corresponding computational problems. After that, we derive upper bounds for
these computational problems using the results about weighted counting.

Weighted counting problems are a natural generalization of conventional
counting problems [2]. The computational variant and the decision variant of
weighted counting problems can be defined as follows.

Definition 1 (Weighted Counting Problem). We are given a polynomial p
and a function w : {0, 1}?×{0, 1}? → R that can be approximated by a polynomial
time (in the size of the first two arguments and the third argument) computable
function v : {0, 1}? × {0, 1}? × N → Z, such that |w(x, u) − v(x, u, b)/2b| ≤ 2−b

for all x ∈ {0, 1}?, u ∈ {0, 1}?, b ∈ N. The weighted counting problem associated
with p and w is to compute for x ∈ {0, 1}? the function

f(x) =
∑

u∈{0,1}p(|x|)

w(x, u).

1 That means p and k have one additional input which specifies the number of output
bits that are required. In this way p and k are providing the numbers to any desired
accuracy in polynomial time with respect to the input and the number of output
bits.

4 C. de Campos, G. Stamoulis and D. Weyland

Definition 2 (Weighted Counting Problem, Decision Variant). We are
given a weighted counting problem defined by a polynomial p and a function
w : {0, 1}? × {0, 1}? → R as well as a threshold value t ∈ Q. The corresponding
decision problem is to decide for x ∈ {0, 1}? whether f(x) ≥ t or not.

Here the variable x is the “input” and w is a function which assigns an effi-
ciently computable weight to each of the exponentially many values of u. At a
first glance, the relationship to our scenario-based model is apparent. The impor-
tant observation is that we are able to describe the objective function and the
stochastic constraints of stochastic optimization problems using the scenario-
based model in terms of weighted counting. In fact, the computation of the
objective function and the evaluation of the stochastic constraints can be seen
as weighted counting problems themselves. By exploiting this fact, we derive
upper bounds for the complexity of computational tasks related to stochastic
optimization problems. The (slightly adapted) results regarding weighted count-
ing [2] that are important for this work can be stated as follows.

Theorem 1. We are given a weighted counting problem defined by a polynomial
p and a function w : {0, 1}? × {0, 1}? → R. If the size of the output (eventually
encoded as a fraction) is bounded by a polynomial q(|x|), then the given weighted
counting problem is in FP#P [1].

Theorem 2. We are given the decision variant of a weighted counting problem
defined by a polynomial p, a function w : {0, 1}? × {0, 1}? → R and a threshold
value t ∈ Q. If the size of the output (of the computational variant, eventually
encoded as a fraction) is bounded by a polynomial q(|x|), then the problem is in
PP.

It is evident that in order to use these results we have to make an additional,
mild condition to our scenario-based model: We assume that the size of the out-
put of the objective function and the (computational variants of the) constraints
is polynomially bounded. That means that we require the output to be limited
to a polynomial number of bits and this is indeed an extremely mild condition2.
With this assumption, we can immediately obtain the following results.

Theorem 3. The following statements hold for stochastic optimization problems
using the scenario-based model.

(i) The evaluation of the objective function is in FP#P [1].
(ii) Deciding whether a given solution has costs of at most t ∈ Q is in PP.

(iii) The evaluation of a stochastic constraint is in PP.
(iv) Checking the feasibility of a given solution is in PP.

2 In fact, we can even handle problems which do not fulfill this assumption by trun-
cating the objective function and the constraints after a certain number of at most
polynomially many bits. The resulting problem is then a slight perturbation of the
original problem which should not incur any difference for practical purposes.

The Computational Complexity of Stochastic Optimization 5

(v) The task of computing the objective function in case the given solution is
feasible, or returning some arbitrarily fixed value in case the given solution
is not feasible is in FP#P [1].

Proof. (i), (ii) and (iii) follow directly from the fact that we can write the ob-
jective function and the stochastic constraints as weighted counting problems.
Since PP is closed under multiple non-adaptive/independent calls [4] and since
the constraints can be checked independently, (iv) follows. For (v) we have to
combine the computation of the objective function and the verification of the
constraints. It is clear that we can perform this task in polynomial time with
2 calls to a #P-oracle. Since these oracle calls are independent, they can be
combined into a single call, which shows that the task is in FP#P [1]. ut

Using this result for the evaluation of solutions, we can derive the following
upper bounds for the optimization and decision variants of stochastic optimiza-
tion problems using the scenario-based model.

Theorem 4. We have given a stochastic optimization problem using the scenario-
based model and a bound t ∈ Q. The problem to decide whether a solution with
costs at most t exists or not is in NP#P [1].

Proof. Here the idea is to create all possible solutions for the given problem in
a nondeterministic way. According to Theorem 3 the objective function and the
constraints can be evaluated within the NP machine using only a single call to a
#P-oracle. Finally, a solution is accepted if it is feasible and has costs of at most
t. That means our NP#P [1] accepts the input if and only if there is at least one
feasible solution which obeys the cost bound. ut

Theorem 5. We have given a stochastic optimization problem using the scenario-
based model. The task to compute an optimal solution (if it exists) or to return
some arbitrarily fixed value in the case where no feasible solution exists can
be solved in polynomial time using an oracle for the decision version. In other

words, this problem is in FPNP
#P [1]

.

Proof. We have to show that we can solve the optimization variant in polynomial
time with oracle access to the decision variant. We start with a binary search to
determine the costs of an optimal solution. Since the size of the output of the
objective function is polynomially bounded, we can do this with polynomially
many oracle calls. Once we know the value of an optimal solution, we perform
a second binary search on the set of solutions. This can be done efficiently by
dividing the set of solutions that is enumerated in the NP part of the oracle
into two parts. We then continue with any of the two sets of solutions that still
contains an optimal solution. Since the number of possible solutions is at most
exponentially large, this step can also be performed with at most polynomially
many oracle calls. ut

6 C. de Campos, G. Stamoulis and D. Weyland

4 Hardness Results for the Dependent PTSPD

In this section we will complement the general upper bounds for our model
of stochastic optimization problems with lower bounds for a specific stochastic
vehicle routing problem. It seems fairly easy to prove such lower bounds for
artificially created stochastic optimization problems. The strength of our results
is based on the fact that we are able to show strong lower bounds for a practical
stochastic combinatorial optimization problem.

We focus on the Dependent Probabilistic Traveling Salesman Problem with
Deadlines (Dependent PTSPD, [8]). As a generalization of the Probabilistic
Traveling Salesman Problem with Deadlines, the objective function is #P-hard
[8] and therefore basically matches the lower bound derived in the previous sec-
tion. The Dependent PTSPD also inherits the #P-hardness for the decision and
optimization variants from the PTSPD. We strengthen these hardness results
and show that the optimization and decision variants of the Dependent PTSPD
are both in fact NP#P [1]-hard. For this purpose we use reductions from the
NP#P [1]-complete problem E-MINORITY-SAT (explained later on). We first
give the formal definitions of the problems used in this section. After that we
present the reduction from E-MINORITY-SAT to the decision variant of the
Dependent PTSPD in detail. At the end, we show how this reduction can be
modified for the optimization variant of the Dependent PTSPD.

4.1 Problem Definitions

In [6] it has been shown that the problem E-MAJ-SAT is NP#P [1]-complete. For
this problem we have given a formula in conjunctive normal form. The variables
are partitioned into two sets. The question is if there exists an assignment for the
first set of variables such that at least half of the assignments for the second set
of variables (together with the assignment for the first set of variables) satisfy
the given formula. For our proof we use a variant of this problem called E-
MINORITY-SAT, which is defined analogously but asks for at most half of the
assignments to satisfy the formula.

Problem 1 (E-MINORITY-SAT). We have given a boolean formula over n vari-
ables x1, x2, . . . , xn in conjunctive normal form with m clauses and a number
k ∈ {0, 1, . . . , n}. The task is to decide if there exists an assignment of the first
k variables, such that at most half of the assignments of the remaining variables
(together with the assignment of the first k variables) satisfy the given formula.

E-MINORITY-SAT is NP#P [1]-complete. The proof is analogous to the one
for E-MAJ-SAT [6] and makes use of PP closure properties [4].

The formal definition of the Dependent Probabilistic Traveling Salesman
Problem (Dependent PTSPD, [8]) is more intricate. Here we refer as V a set
of n locations, including the special starting point v0 ∈ V . We have given dis-
tances / travel times between the locations which are represented by a function
d : V ×V → Q+. Deadlines for different customers are modeled using a function

The Computational Complexity of Stochastic Optimization 7

t : V → Q+ and penalty values for different customers are modeled using a
function h : V → Q+. For simplicity we also define these values for the starting
point v0, although we meet the deadline at v0 nevertheless, since we start the
tour there. Additionally, the presence of customers is modeled in a stochastic
way. We allow certain kinds of dependencies between the presence of different
customers. Two customers vi, vj ∈ V can be bonded in the following way: (1)
the presence of vi and vj is independent, (2) vi is present if and only if vj is
present, or (3) vi is present if and only if vj is absent. These dependencies can
be efficiently modeled by defining sets of paired customers and their associated
bonds. We avoid further details for the sake of clarity, since we explicitly point
out the necessary dependencies used in our reduction. The probabilities for the
customers’ presence are represented by a function p : V → [0, 1]. Obviously, p is
assumed to respect the dependencies.

A solution can now be represented by a permutation τ : [n] → V with
τ1 = v0. For a specific realization of the customers’ presence we use this solution
to derive a second-stage solution just by skipping customers which are absent.
The costs for the second-stage solution are then the sum of the travel times
plus the penalties for missed deadlines. We assume that a customer specific
fixed penalty of h(v) for customer v ∈ V occurs in case the deadline is missed,
independently of the actual delay. The costs for a solution τ are the expected
costs of the second-stage solutions derived from τ over the different realizations
of the customers’ presence.

Let τ : [n] → V with τ1 = v0 be a solution. For all v ∈ V , let Av be a
random variable indicating the arrival time at customer v. Since the travel times
of the second-stage solutions are identical to those of the Probabilistic Traveling
Salesman Problem (PTSP, [5, 9]), the costs of τ can be expressed as

fptspd(τ) = fptsp(τ) +

n∑
i=1

Pr(Aτi ≥ t(τi))h(τi).

The first part of the costs is the (polynomial time computable) objective
function of the PTSP and represents the expected travel times over the second-
stage solutions. The second part represents the penalties for missed deadlines.
With this expression for the costs of a solution, we define the decision and
optimization variants of the Dependent PTSPD in the following way.

Problem 2 (Dependent PTSPD - Decision Variant). Given a set V of size n with
a special element v0 ∈ V , a function d : V ×V → Q+, sets of pairs of V defining
the customers’ bonds, a function p : V → [0, 1] respecting the dependencies
imposed by the partition, a function t : V → Q+, a function h : V → Q+, and a
bound b ∈ Q, the problem is to decide if there exists a solution τ : [n]→ V with
τ1 = v0 such that fptspd(τ) ≤ b.

Problem 3 (Dependent PTSPD - Optimization Variant). Given a set V of size
n with a special element v0 ∈ V , a function d : V × V → Q+, sets of pairs

8 C. de Campos, G. Stamoulis and D. Weyland

of V defining the customers’ bonds, a function p : V → [0, 1] respecting the
dependencies imposed by the partition, a function t : V → Q+ and a function
h : V → Q+, the problem is to compute a permutation τ? : [n]→ V with τ?1 = v0
such that fptspd(τ?) ≤ fptspd(τ) for any permutation τ : [n]→ V with τ1 = v0.

4.2 Hardness of the Decision Variant

We now present a reduction from E-MINORITY-SAT to the decision variant of
the Dependent PTSPD. First, we give the general idea behind the reduction,
and then we show step by step how for any given instance of E-MINORITY-
SAT an instance of the Dependent PTSPD can be constructed. Based on this
construction we conclude that the Dependent PTSPD is NP#P [1]-hard. Later
we show how this reduction can be modified to obtain the same hardness result
for the optimization variant of the Dependent PTSPD.

The overall idea is to construct, for a given E-MINORITY-SAT instance, a
highly restricted instance for the decision variant Dependent PTSPD. By highly
restricted we mean that deadlines are used to allow only certain paths to ap-
pear in an optimal solution. We then simulate the NP decision process, that is,
we simulate the assignment for the first set of variables, by using a gadget for
each variable which allows an optimal solution to take one of two possible paths.
By using customers which are present with a probability of 1/2 and with prop-
erly defined dependencies, we create “copies” of these assignments. The second
set of variables from the E-MINORITY-SAT instance is modeled by customers
which are present with a probability of 1/2. In this case proper dependencies
can be used to directly create “copies” of these customers. We then build a
new collection of gadgets for the clauses of the formula. The idea is that an
assignment which satisfies the formula leads to a certain (controlled) delay. At
the end, a special customer is added. The probability for a deadline violation at
this customer in an optimal solution enables us to infer the minimum (over the
assignments of the first set of variables) number of assignments for the second
set of variables that satisfy the clauses. Finally, the cost of an optimal solution
for the constructed instance allows us to infer the probability with which the
deadline is actually violated in an optimal solution, and this solves the given
E-MINORITY-SAT instance.

Simulating the assignment of the first k variables: For the simulation of
the NP decision process, we use the gadget depicted in Figure 1. The distance
function used here (and also throughout the whole instance) is the Euclidean
distance. The starting customer here is v0. The presence probabilities are 1
for all customers except x1 and x̄1. The presence probabilities for these two
customers are 1/2 and additionally x1 is present if and only if x̄1 is absent3.

3 We use the following convention for all the x customers in the reduction: A group of
customers with the same label is either completely present or none of those customers
is present. Customers with a label of xi are present if and only if the customers with
the label x̄i are absent.

The Computational Complexity of Stochastic Optimization 9

By using large enough penalty values and appropriate deadlines, we can force
a solution to take one of the following two paths: v0, true, v1, xi, x̄i, false, v2 or
v0, false, v1, xi, x̄i, true, v2

4. The first path corresponds to an assignment of true
for the corresponding xi from the E-MINORITY-SAT formula, while the second
corresponds to an assignment of false for xi. The goal of the stochastic customers
is to guess such chosen assignment. In case the guess is wrong, the travel time
within this gadget is by a value of d(xi, x̄i) = ε larger than if the guess would
be correct. The reason why we are guessing the chosen assignment is that we
can use dependencies between stochastic customers to create “copies” which we
require at later stages of the construction to check the clauses. The drawback is
that we have to handle the case in which the guess is wrong, but this is not an
issue as we will see soon.

v0

true, t(true) = 17 + kε

false, t(false) = 17 + kε

v1 v2

x̄1, t(x̄1) = 14 + kε

x1, t(x1) = 14 + kεt(v0) = kε t(v1) = 10 + kε t(v2) = 30 + kε

5 5

55 13

13
3

3

4

4

Fig. 1. The gadget used to simulate the variable assignment.

It is clear that we can put k of these gadgets in a row to simulate the as-
signment of the first k variables. Since we might have some additional delay of
ε for each of the gadgets, the deadlines all contain some sort of slack. As long
as this distance is small enough compared to the other distances in the gadget,
this does not change the overall characteristic of possible optimal paths.5

The situation now is as follows. A solution in which the gadgets are visited
one after another and in which one of the two paths is chosen for each of the
gadgets is always better (of lower cost) than a solution which does not visit the
customers in this order. This just follows from the fact that we can use sufficiently
large penalty values for the involved customers. Additionally, a realization of the
presence for the customers x1, x2, . . . , xk (and therefore also for the customers
x̄1, x̄2, . . . , x̄k) might result in a delay. If the realization correctly guesses the
assignment chosen by the path, the delay is 0, otherwise the delay is at least ε.

4 In fact, there are four and not two possible paths, since the order of xi and x̄i can
be changed without affecting the quality of the solution, but they are analogous.

5 Additionally, we save some travel time going from v1 over x1 / x̄1 to true / false.
Again, this does not incur in relevant changes, for the very same reasons.

10 C. de Campos, G. Stamoulis and D. Weyland

Verifying the clauses: To verify the clauses’ satisfiability, we build gadgets as
depicted in Figure 2. Here we illustrate the construction for the clause x1 ∨ x̄3 ∨
x̄4 ∨ x7. The two customers w0 and w1 on the bottom part have to be always
visited, while the customers on the top part correspond to the literals used in this
particular clause. A separate customer is used for each literal, sharing the same
position with the other literal customers. Their presence depends on the actual
variable assignment. We set the deadlines of all the customers in such a way that
they have to be visited from left to right. In case one of the top customers is
present and requires to be visited, an additionally travel time of ε/m is required.
This corresponds to the case in which the clause is satisfied. Please note that the
realization of the x-variables might not correspond to the assignment defined by
the paths that were chosen in the first part of the constructed instance, because
it might be that the x-variables have not guessed this assignment correctly. We
will handle this case soon.

It is clear that we can put m of these gadgets next to each other to check
all the clauses given in the E-MINORITY-SAT instance. Here the deadlines
of subsequent gadgets have to be adapted accordingly. If the whole formula is
satisfied by the realization of the x-variables, we get a delay of ε/m for each of
the clauses for a total delay of ε. This means that the total delay after all clause
gadgets is at least ε if the realization of the x-variables is not correctly guessing
the assignment defined by the chosen paths, or if the guess is correct and the
x-variables satisfy the formula. Otherwise, the delay is at most ε− ε/m.

w0 w1

x1, x̄3, x̄4, x7

10

5 + ε
2m5 + ε

2m

t(w0) = 2kε t(w1) = 10 + 2kε

t(x1) = t(x̄3) = t(x̄4) = t(x7) = 5 + 2kε

Fig. 2. The gadget used to verify if a clause is satisfied or not.

Putting everything together: We will now place the two sets of gadgets
next to each other. Additionally, we will add a special customer z after the
clause gadgets. Let T be the arrival time at z without any of the delays. We
now use for z a deadline of t(z) = T + ε − ε/m. In an optimal tour, z is the
last customer visited. After visiting z, the vehicle returns to the depot. z is also
the only customer whose deadline is violated in an optimal solution. We set the
penalty value for z to be h(z) = 22n.

Let us analyze the costs of a solution which does not violate any deadlines
except at customer z and which therefore corresponds to an assignment of the
first k variables of the original E-MINORITY-SAT instance. There is no need
to care about travel times, since the costs are completely dominated by the

The Computational Complexity of Stochastic Optimization 11

penalty at customer z. We are late at customer z if the guess of the decisions
that have been made in the first part of the constructed instance is wrong. This
happens with a probability of 1 − 2−k. If our guess is correct, we arrive at the
clause part without any additional delay. The deadline at customer z is then
violated if and only if all the clauses are satisfied by the correctly guessed first k
variables and the randomly assigned remaining n−k variables. Each assignment
of the remaining n− k variables occurs with the same probability of 2−n+k. Let
r denote the number of satisfying assignments of the remaining n− k variables
for the given assignment of the first k variables. We can now write the expected
penalty as (1− 2−k + 2−k2−n+kr)h(z) = 22n − 22n−k + 2nr.

If there exists an assignment of the first k variables of the original E-
MINORITY-SAT instance such that the formula is satisfied for at most half of
the assignments of the remaining n−k variables, then there exists a solution for
the Dependent PTSPD instance with costs of at most 22n−22n−k+2n2n−k/2 =
22n − 22n−k−1. On the other hand, if no such solution exists, then every solu-
tion for the Dependent PTSPD instance has higher cost. Considering the rela-
tively small travel times, we can set the bound of the constructed instance to
22n−22n−k−1+2n−1. In this way we are able to solve the original E-MINORITY-
SAT problem with the decision version of the Dependent PTSPD.

Theorem 6. The decision version of the Dependent Probabilistic Traveling Sales-
man Problem with Deadlines is NP#P [1]-hard, even for Euclidean instances.

4.3 Hardness of the Optimization Variant

To obtain the same hardness result for the optimization variant of the Dependent
PTSPD, we have to modify the construction slightly. The same technique has
been used in [8] and therefore we only describe the main ideas at this point.
Instead of a single final customer z, we add three customers z1, z2, z3. z1 is located
at the position of z and is forced to be visited immediately after the clause part
by imposing proper deadlines and penalties. The three new customers then form
an equilateral triangle. This triangle is now placed in a way such that z2 is closer
to the depot than z3. The deadline which was formerly imposed on z will now
be prolonged by the sidelength of the triangle and imposed on z2. No deadline
is imposed on z3. In this way we offer an optimal solution two choices: visiting
at the end of the tour z1, z2, z3 or z1, z3, z2. In the first case the probability
that the deadline at z2 will be violated is lower than in the second case. On the
other hand, the travel times are larger in the first case. Placing the triangle in
a proper way and using adequate sidelengths, we are able to solve the original
E-MINORITY-SAT instance by computing an optimal solution for this modified
Dependent PTSPD instance. In case the optimal solution finishes with z1, z2, z3
a solution for the E-MINORITY-SAT instance exists, if the optimal solution
finishes with z1, z3, z2, no such solution exists.

Theorem 7. The optimization version of the Dependent Probabilistic Travel-
ing Salesman Problem with Deadlines is NP#P [1]-hard, even for Euclidean in-
stances.

12 C. de Campos, G. Stamoulis and D. Weyland

5 Discussion and Conclusions

In this paper we have investigated a very powerful scenario-based model of
stochastic optimization problems. Using the framework of weighted counting we
prove upper bounds for the complexity of various computational tasks related
to these problems. Additionally, we show that these upper bounds are matched
for a practical existing stochastic vehicle routing problem.

Many stochastic optimization problems inherit NP-hardness from their non-
stochastic counterparts, which are usually contained as a special case. We believe
that it is possible to obtain much stronger hardness results for a large number of
these problems and we hope that our work can help in obtaining such stronger
hardness results.

It would also be very interesting to better understand which properties of
stochastic optimization problems are actually responsible for their hardness. In
particular, it would be interesting to understand if the same hardness results
can be obtained for (non artificial) stochastic optimization problems without any
dependencies among the random variables. Our work also motivates the usage of
approximation algorithms (for both, the objective function and the optimization
variant). Objective functions which are #P-hard might still allow for efficient
approximations. In this case, the class NP would be an upper bound for the
complexity of an approximative version of the decision variant (the upper bound
for the optimization variant would change accordingly). On the other hand,
inapproximability results for certain stochastic optimization problems could even
further strengthen the already existing hardness results.

References

1. J.R. Birge and F.V. Louveaux. Introduction to stochastic programming. Springer,
1997.

2. C. de Campos, G. Stamoulis, and D. Weyland. A structured view on weighted
counting with relations to quantum computation and applications. Technical report,
Electronic Colloquium on Computational Complexity, 2013. TR13-133.

3. M. Dyer and L. Stougie. Computational complexity of stochastic programming
problems. Mathematical Programming, 106(3):423–432, 2006.

4. L. Fortnow and N. Reingold. PP is closed under truth-table reductions. Information
and Computation, 124(1):1–6, 1996.

5. P. Jaillet. A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Operations Research, 36(6):929–936, 1988.

6. M.L. Littman, J. Goldsmith, and M. Mundhenk. The computational complexity of
probabilistic planning. Journal of Artificial Intelligence Research, 9(1):36, 1998.

7. L.G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci.,
8:189–201, 1979.

8. D. Weyland, R. Montemanni, and L.M. Gambardella. Hardness results for the
probabilistic traveling salesman problem with deadlines. In Proceedings of ISCO
2012 - The 2nd International Symposium on Combinatorial Optimization, 2012.

9. D. Weyland, R. Montemanni, and L.M. Gambardella. An improved heuristic for
the probabilistic traveling salesman problem with deadlines based on GPGPU. In
Computer Aided Systems Theory-EUROCAST 2013, pages 332–339. Springer, 2013.

