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Denis Deratani Mauáa,∗, Cassio Polpo de Camposa, Marco Zaffalona

aIstituto Dalle Molle di Studi sull’Intelligenza Articiale (IDSIA)
Galleria 2, Manno, 6928 Switzerland

Abstract

Influence diagrams are intuitive and concise representations of structured deci-
sion problems. When the problem is non-Markovian, an optimal strategy can
be exponentially large in the size of the diagram. We can avoid the inherent
intractability by constraining the size of admissible strategies, giving rise to
limited memory influence diagrams. A valuable question is then how small do
strategies need to be to enable efficient optimal planning. Arguably, the smallest
strategies one can conceive simply prescribe an action for each time step, with-
out considering past decisions or observations. Previous work has shown that
finding such optimal strategies even for polytree-shaped diagrams with ternary
variables and a single value node is NP-hard, but the case of binary variables
was left open. In this paper we address such a case, by first noting that optimal
strategies can be obtained in polynomial time for polytree-shaped diagrams with
binary variables and a single value node. We then show that the same problem
is NP-hard if the diagram has multiple value nodes. These two results close the
fixed-parameter complexity analysis of optimal strategy selection in influence
diagrams parametrized by the shape of the diagram, the number of value nodes
and the maximum variable cardinality.

Keywords: decision theory, influence diagrams, decision networks,
probabilistic planning, computational complexity.

1. Introduction

Planning with influence diagrams in partially observable domains suffers
from the so-called curse of history: the size of an optimal strategy grows expo-
nentially large with the number of look-ahead steps considered. Lauritzen and
Nilsson proposed using limited-memory strategies to avoid the complexity blow
up, coining the term limited memory influence diagrams (limids) [1]. Limids re-
lax the no-forgetting requirement of traditional influence diagrams, and require
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Table 1: Parametrized complexity of the decision version of the optimal strategy selection
problem in limids of bounded treewidth.

topology num of value
nodes

max variable
cardinality

complexity

polytree one two P
polytree unbounded two NP-complete
polytree one three NP-complete
polytree one unbounded NP-complete
loopy one two NP-complete
loopy unbounded bounded NP-complete

(implicitly) that the maximum size of an optimal strategy be given as part of the
input. In fact, the use of finite-state controllers, which in the influence diagram
formalism corresponds to limited memory, has long been seen as a viable alter-
native in probabilistic planning for long- or infinite-horizon problems, especially
when teams are considered [2–6].

In many cases, however, limiting the agent’s memory resources does not
make the problem tractable, and computing optimal strategies even for struc-
turally very simple limids can be hard. We have shown in a previous work
that finding an optimal strategy for polytree-shaped limids is NP-hard even if
variables are ternary and there is only a single value node [7]. Also finding a
strategy whose expected utility is within a factor of 2p of the maximum expected
utility, where p denotes the number of numerical parameters in the model, is
NP-hard, even in polytree-shaped diagrams (with variables taking on arbitrar-
ily many values). On the other hand, we have shown that when the variable
cardinalities and the treewidth of the diagram are bounded, a fully polynomial-
time approximation scheme exists [8], and that optimal strategies can often be
obtained in feasible time [9]. For the remaining cases, efficiency can be achieved
at the expense of provably good accuracy by local search methods [1, 4] and
message-passing algorithms [10, 11], while branch-and-bound procedures can be
used for guaranteed accuracy [12, 13]. Table 1 summarizes the fixed-parameter
computational complexity of the decision version of finding optimal strategies
in limids of bounded treewidth with respect to topology, number of value nodes
and maximum variable cardinality.1 The first two rows contain novel results
presented here. The results in the remaining rows appeared in references [7]
and [8].

De Campos and Ji showed that the problem of selecting an optimal strategy
in limids with a single value node can be reduced to that of computing a (tight)
marginal probability bound in a credal network, and subsequently addressed by

1The decision version of the optimal strategy selection problem is to decide, for a given a
limid, whether there is a strategy whose expected utility exceeds a given rational number.
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credal network inference algorithms [12]. The reduction preserves the topology
of the graph and the cardinality of the variables; in particular, the reduction
maps polytree-shaped diagrams with binary variables into credal polytrees with
binary variables [14].

Credal networks are generalizations of Bayesian networks designed to cope
with set-valued specifications of the numerical parameters of the model [15].
Computing tight bounds on the marginal probability of some variable in a credal
network is NP-hard even when the network is polytree-shaped and variables
are ternary [16]. However, Fagiuoli and Zaffalon’s 2U algorithm [17] is able
to obtain tight marginal bounds in polynomial time in polytree-shaped credal
networks with binary variables. Therefore, we can find optimal strategies in
polytree-shaped limids with binary chance variables and a single value node by
running 2U in the corresponding credal network obtained by de Campos and Ji’s
reduction. This immediate and important result, which we discuss in Section 3,
has apparently not been noticed before in the literature.

When the diagram has multiple value nodes, the transformation of de Cam-
pos and Ji reduces the selection of an optimal strategy to the computation of
a tight bound for a sum of marginals of variables in a credal network, which
cannot be solved in polynomial time by standard inference algorithms for credal
networks and more specifically by 2U. A possible workaround is to apply a pre-
processing step that transforms any diagram into an equivalent diagram that
contains a single value node. However, known techniques to map a limid with
multiple value nodes into an equivalent limid containing a single value node do
not preserve the topology [8]. In particular, they map polytrees into multiply
connected graphs. Thus, while the mapping from limids into credal networks
enlarges the available toolset of algorithms for solving limids with that of credal
network inference, it does not help us in answering the question of whether
polytree-shaped diagrams with binary variables and multiple value nodes are in
fact NP-hard to solve.

In Section 4, we answer that question affirmatively by a reduction from the
partition problem. This result closes the fixed-parameter complexity analysis of
the optimal strategy selection problem in limids in what regards the topology of
the diagram, the number of values nodes, and the cardinality of the variables:
polytree-shaped limids with binary variables and a single value node can be
solved in polynomial time, and relaxing any of these assumptions leads to NP-
hard problems.

2. Limited Memory Influence Diagrams

To help introduce the concepts and motivate the use of limited memory influ-
ence diagrams, consider the following illustrative example of a decision problem
under uncertainty.

Consider a system whose failure depends on statistically independent
events e1, . . . , en, which occur with known probabilities p1, . . . , pn, re-
spectively. Let Ei (i = 1, . . . , n) be a binary variable denoting whether

3



V1

D1

E1

V2

D2

E2

V3

D3

E3

V4

D4

E4

AND ORAND

C

Figure 1: Influence diagram representation of the intervention policy problem described in
the text.

ei occurs (Ei = 1 if ei occurs), and assume that the system failure is de-
termined by a logical function F (Ei, . . . , En) of the causing events (F =1
if the system fails). Suppose that at a given time, the system adminis-
trator can intervene to prevent any event ei from occurring at a cost vi.
Let Di denote the decision of intervening on event ei. The conditional
probability of the event ei given an intervention policy for the ith event
is given by P (Ei =1|Di =1) = 0 and P (Ei =1|Di =0) = pi. The cost of a
system failure is represented by a variable C. Thus, the expected cost of
a combination of intervention policies δ1, . . . , δn is given by∑

F,E1,...,En

E[C|F ]P (F |E1, . . . , En)

n∏
i=1

P (Ei|Di =δi) +

n∑
i=1

viδi .

The goal is to select the combination of policies that minimizes the ex-
pression above. Figure 1 shows the influence diagram representation of
the intervention problem where system failure is determined by F =
(E1 ∧ E2) ∧ (E3 ∨ E4).

As in the example above, the quantities in a decision problem can be par-
titioned into state (or chance) variables S = {S1, . . . , Sn}, action (or decision)
variables A = {A1, . . . , Am}, and value variables V = {V1, . . . , V`}. The state
variables represent the unknown quantities over which the agent has no con-
trol. The action variables enumerate the alternative courses of action. The
value variables assess the quality of decisions for a given state of the world. We
assume that variables take on finitely many values.

Influence diagrams are graph-based representations of structured decision
problems [18]. An influence diagram represents both the agent’s architecture
(i.e., what information is available to the agent at each decision stage of the
problem) and the environment by means of a directed acyclic graph where each
node is associated with exactly one variable of the problem. The nodes in the
graph are also partitioned into sets of state, action and value nodes, according
to the type of variable with which they are associated, and we refer to nodes
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and their associated variables interchangeably. An arc from a node X into an
action node A in the graph indicates that a different action A=a can be taken
for each possible value of X.

A strategy δ = (δ1, . . . , δm) is a vector of local decision rules, or policies,
one for each action variable in the problem. Each policy δj is a mapping from
the configurations of the values of the parents Pa(Aj) of Aj to values of Aj . A
policy for an action variable with no parents is simply an assignment of a value
to that variable. We assume that policies are encoded as tables. Hence, the size
of a policy is exponential in the number of parents of the corresponding action
variable, which in real scenarios force us to constraint the maximum number of
parents of an action node lest the implementation of a policy be not practicable.

The no-forgetting condition (a.k.a. perfect recall) assumes that all decisions
and observations are “remembered”. Graphically, it entails that if A and A′

are two action nodes such that A is a parent of A′, then all parents of A are
also parents of A′.2 An influence diagram is said to have limited memory if the
no-forgetting condition is not met. The least memory intensive strategy is the
one in which actions are taken unconditionally. It is graphically represented by
a limid whose action nodes have no parents.

An arc from a node X into a state node S indicates that S is (potentially)
stochastically dependent on X. State variables satisfy the Markov condition,
which states that any (state) variable is independent of its non-descendant non-
parents conditional on its parents. An arc entering a value node V from a node
X indicates that the variable V is a (deterministic) function of X. The value
variables are assumed to be associated to leaf nodes in the graph, and the overall
utility U is assumed to decompose additively in terms of the value variables [19],
that is, U(S,A)=V1(Pa(V1)) + · · ·+ V`(Pa(V`)).

An influence diagram specification consists of its graph, the tabular spec-
ification of each value variable as a function Vk(Pa(Vk)) of the values of its
parents, and the tabular specification of the conditional probability distribu-
tions P (Si|Pa(Si)) of each state variable Si. We assume that any numerical
parameter is given as a rational number.

Given an action variable Aj and a policy δj , we let P (Aj |Pa(Aj), δj) be
the collection of degenerate conditional probability distributions that assign all
mass to aj=δj(Pa(Aj)) (or the degenerate marginal distribution P (Aj |δj) that
places all mass on δj in case Aj has no parents). With this correspondence
between policies and (conditional) probability distributions, we can define a
joint probability distribution over the state and action variables for any given
strategy δ as

P (S,A|δ) =

n∏
i=1

P (Si|Pa(Si))

m∏
j=1

P (Aj |Pa(Aj), δ) . (1)

2We assume here that when no-forgetting is satisfied the “remembered” arcs are explicitly
represented in the diagram.
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The expected utility of a strategy δ is then

E[U |δ] =
∑̀
k=1

E[Vk|δ] =
∑
S,A

(∑̀
k=1

Vk(Pa(Vk))

)
P (S,A|δ) . (2)

The optimal strategy selection problem consists in finding a strategy δ∗ such
that E[U |δ∗] ≥ E[U |δ] for all δ, and to compute E[U |δ∗].

2.1. Polytrees, Treewidth and Minimality

The complexity of finding optimal strategies is greatly affected by the shape
of the diagram. We say that a limid is polytree-shaped if the undirected graph
obtained by dropping arc directions is a tree. For example, the limid in Figure 1
is polytree-shaped. A limid that is not polytree-shaped is said to be loopy. An
important graph-theoretic measure of the complexity of a limid is its treewidth,
which measures its resemblance to a(n undirected) tree. Polytree-shaped limids
have treewidth given by the maximum in-degree of a node in the graph.

Not all the information in a limid is necessarily relevant to the computation
of optimal strategies, and the complexity of the problem can be drastically
reduced by removing nodes and arcs that do not affect the expected utility
of any strategy. A state or action node is called barren if it either has no
children or all of its children are barren. Barren nodes have no influence on
any value node and thus no impact on the selection of an optimal strategy [20].
Further irrelevances can be found by applying the concept of nonrequisiteness.
A parent X of an action node A is nonrequisite to A if X is d-separated from
all the value nodes that descend from A given Pa(A) ∪ {A} \ {X}. The arc
from X to A is then said to be a nonrequisite arc. Nonrequisite arcs indicate
that variable X is irrelevant to selecting an optimal policy for A, and its removal
leaves the expected utility of the optimal strategy unchanged. A variable that is
nonrequisite to all its children can be safely removed from the diagram without
affecting the expected utility of an optimal strategy.3 Thus, the exponential
growth of policies can be avoided if all memory arcs (that is, arcs from parents
of a parent action node into an action node) are nonrequisite. This is the case,
for instance, when state variables form a chain of observable variables in the
graph.

We say that a limid is minimal if it contains no nonrequisite arcs or barren
nodes. Given a limid we can obtain its corresponding minimal form in polyno-
mial time by repeatedly removing nonrequisite arcs and barren nodes [1].

In polytree-shaped diagrams, all arcs entering action nodes are by definition
nonrequisite. Hence, minimal polytree-shaped limids are the least memory-
intensive architecture, since in this case a strategy simply prescribes a value for
every action variable.

3We use the definition of nonrequisiteness given in Ref. [21] for the single value node case
and extended to multiply value nodes in Ref. [1]. Similar (but not completely equivalent)
definitions of nonrequisiteness appeared in Refs. [22–24].
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3. The 2U Algorithm

A credal network is a concise representation of a set of Bayesian networks,
all sharing the same set of variables and graph structure. Formally, a credal
network is a directed acyclic graph over a set of state variables, where for each
variable and each configuration of its parents there is an associated set of condi-
tional probability distributions. Marginal inference in credal networks consists
in computing the upper and lower marginal probabilities of a target variable
on the set of Bayesian networks represented by the credal network. The 2U
algorithm performs marginal inference in polynomial time in credal polytrees
with binary variables.

A limid can be interpreted as a concise description of the set of Bayesian
networks that represent the joint distributions P (S,A|δ) induced by strategies
δ. Additionaly, as noted by Cooper [25], the expected utility of any strategy
δ in a limid with a single value variable V can be reduced to the computation
of the marginal probability P (V ′= 1) in the Bayesian network that represents
P (V ′,S,A|δ) = P (V ′|Pa(V ))P (S,A|δ), where V ′ is a binary state variable with
the same parent set of V , and P (V ′= 1|Pa(V )) ∝ V (Pa(V )). De Campos and
Ji’s reduction makes use of these two facts to reduce the computation of the
maximum expected utility in limids with single value nodes into a marginal
inference in a credal network. The reduction leaves state nodes unchanged,
converts the value variable V into a state variable V ′, and turns each action node
into a state node associated with the set of policies of the corresponding action
variable. The maximum expected utility of a limid is equal to the upper marginal
probability of V ′ according to the corresponding credal network. Hence, we can
transform any polytree-shaped limid with binary variables and a single value
node into a credal polytree over binary variables, and solve the optimal strategy
problem by running 2U in such a credal network.

Instead of performing this two-step procedure, we can adapt 2U to work
directly on the limid formalism. The pseudo-code in Algorithm 1 implements
2U in the language of limids. The function b(y, r) in the algorithm is defined for
binary y and real r as b(0, r) = 1− r and b(1, r) = r. Given a polytree-shaped
limid with binary variables and a single value node, the algorithm returns the
maximum expected utility of a strategy. An optimal strategy can be obtained
by a small modification to the algorithm that retrieves the arguments of each
optimization performed. The algorithm operates only on ancestors of the value
variable, as the non-ancestor nodes are barren. The numbers pX and qX for state
and value nodes can be computed each by enumerating the 2|Pa(X)| combinations
of values of rY , Y ∈ Pa(X), followed by |Pa(X)|2|Pa(X)| arithmetic operations,
taking a total time of O(|Pa(X)|22|Pa(X)|) per state or value node. Since the
limid in the input contains the specification of P (X|Pa(X)), which requires at
least 2|Pa(X)| numbers, computing each pX and qX takes time polynomial in the
input size. The total running time of algorithm for a limid with n variables and
treewidth w is O(nw22w), which is polynomial in the input size.
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Algorithm 1 Pseudo-code of the 2U algorithm adapted for solving limids.

Remove non-ancestors of the value variable
for each variable X in topological order do

if X is a state variable then
pX ← min{∑Pa(X) P (X=1|Pa(X))

∏
Y ∈Pa(X) b(Y, rY ) : rY = pY , qY }

qX ← max{∑Pa(X) P (X=1|Pa(X))
∏
Y ∈Pa(X) b(Y, rY ) : rY = pY , qY }

else
if X is an action variable then

pX ← 0, qX ← 1
else

return max{∑Pa(X)X(Pa(X))
∏
Y ∈Pa(X) b(Y, rY ) : rY =pY , qY }

end if
end if

end for

4. Strategy Selection in Polytree-Shaped Limids with Binary Vari-
ables is NP-Hard

In this section we show that the optimal strategy selection problem is NP-
hard in polytree-shaped limids with binary variables (and multiple value nodes)
by a many-one reduction from the partition problem, which can be stated as
follows.

Given positive even integer numbers z1, . . . , zn, is it possible to par-
tition them into two sets of equal sum?

The problem is well-known to be NP-complete [26].4 As usual, we assume
that the instances of the partition problem are “reasonably” and “concisely”
encoded as bit-strings of length b = 2(

∑n
i=1dlog2 zie + n − 1).5 Any partition

of the numbers into two sets can be represented as an n-dimensional binary

vector (δ1, . . . , δn) ∈ {0, 1}n. Let z
def
= 1

2

∑n
i=1 zi. The partition problem is

equivalent to deciding whether there is a binary vector (δ1, . . . , δn) such that∑n
i=1 ziδi =

∑n
i=1 zi(1 − δi) = z. A binary vector satisfying that equality is

said to be a yes-solution of the problem, otherwise it is called a no-solution. In
either case, the vector is called a solution and the quantity

∑n
i=1 ziδi is called its

value. Since the input numbers are even, also the value of a solution is an even
number. Moreover, since only yes-solutions have value z, and z is an integer
number, the value of any no-solution (δ1, . . . , δn) satisfies |z −∑n

i=1 ziδi| ≥ 1.

4The standard definition of the problem does not require numbers to be even. This con-
straint however does not alter the complexity of the problem, as an instance of the partition
problem with odd numbers admits a yes-solution if and only if the problem instance obtained
by doubling each number admits a yes-solution.

5The usual encoding of an instance of the partition problem is a binary string
s101s201 · · · 01sn, where each substring si is the binary representation of the number zi with
every digit duplicated. For example, the encoding of the problem z1 = 2 and z2 = 3 is
1100011111.
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Figure 2: Influence diagram used to solve the partition problem.

To show that the optimal strategy selection problem is NP-hard, we shall
design a family of polytree-shaped limids over binary variables such that for
each instance z1, . . . , zn of the partition problem there is a limid in the family
whose size is polynomial in b (the size of the partition problem) and satisfies
maxδ E[U |δ] ≥ 0 if and only if

∑n
i=1 ziδi/z = 1 for some solution δ.

Given an instance of the partition problem we build a limid whose graph
structure is shown in Figure 2. For i = 1, . . . , n, the action variable Di is binary
and denotes in which of two sets the number zi is inserted. Thus, a strategy
δ = (δ1, . . . , δn) ∈ {0, 1}n represents a partition of the input numbers into two

sets. The value variables V1, . . . , Vn are set so that Vi
def
= −ziDi/z. Hence,∑

iE[Vi|δ] = −∑n
i=1 ziδi/z, which equals minus one if and only if the strategy

δ is a yes-solution to the partition problem. The state variables are binary and
take values in {0, 1}. For i = 1, . . . , n, the conditional probabilities of Si given

its parent Di are specified such that P (Si=1|Di=0)
def
= 1 and

P (Si=1|Di=1)
def
= min

{
1,

12b∑
k=0

(−1)k
[zi/z]

k

k!

}
.

The second argument in the minimization above is, by Lemma 4 in the appendix,
always positive, and can be computed by O(12b) arithmetic operations (used to
obtain the terms [zi/z]

k), plus O(12b) operations that compute the factorials k!,
k = 0, . . . , 12b. Hence, the right-hand side of the identity above is a number be-
tween zero and one computed in time polynomial in b. The variables S′1, . . . , S

′
n

are deterministic, and satisfy S′1
def
= S1 and S′i

def
= S′i−1Si, i = 2, . . . , n. A simple

inductive argument on i = 1, . . . , n shows that S′n = S1S2 · · ·Sn, so that for any
strategy δ we have that

E[S′n|δ] =
∑

S1,...,Sn

P (S′n=1|S1, . . . , Sn)P (S1, . . . , Sn|δ)

=
∑

S1,...,Sn

S1S2 · · ·Sn
n∏
i=1

P (Si|Di=δi) =

n∏
i=1

P (Si=1|Di=1)δi . (3)
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Finally, we specify the value variable R as

R
def
= 2−9b + 2− qS′n , where q

def
=

12b∑
k=0

1

k!
.

An argument similar to that of the numbers P (Si = 1|Di = 1) shows that R is
computed in time polynomial in b. The expected utility of any strategy δ is

E[U |δ] = E[R|δ] +

n∑
i=1

E[Vi|δ]

= 2−9b + 2− q
n∏
i=1

P (Si=1|Di=1)δi − 1

z

n∑
i=1

ziδi . (4)

To understand the rationale of the reduction, consider the asymptotic ex-
pected utility of a strategy as the size of the partition problem goes to infinity:

lim
b→∞

E[U |δ] = lim
b→∞

(
2−9b + 2− q

n∏
i=1

P (Si=1|Di=1)δi − 1

z

n∑
i=1

ziδi

)

= 2−
(

lim
b→∞

12b∑
k=0

1

k!

)
n∏
i=1

lim
b→∞

(
12b∑
k=0

(−1)k
[zi/z]

k

k!

)δi
− 1

z

n∑
i=1

ziδi ,

which, since limb→∞
∑12b
k=0(−1)k[zi/z]

k/k! = e−zi/z and limb→∞
∑12b
k=0 1/k! = e,

= 2− exp

(
1− 1

z

n∑
i=1

ziδi

)
− 1

z

n∑
i=1

ziδi . (5)

The last expression can be regarded as a function of sδ
def
=
∑n
i=1 ziδi/z, which

is a variable that takes values in [0, 2] and equals the value of strategy δ up to
the factor z. The graph of that expression as a function of a continuous variable
s in the range [0, 2] is depicted in Figure 3. As we can see from its graph
(and more rigorously by analyzing its derivatives), the function is concave, and
achieves a maximum value of zero uniquely at s = 1. Since sδ = 1 if and only
if the partition problem admits a yes-solution, we can decide a hypothetical
instance of the partition problem of infinite size by verifying the sign of the
maximum expected utility of a strategy in the corresponding limid. For any
finite b, the expected utility of a strategy (given by (4)) differs from (5), and
the value of the expected utility of yes-solution depends on the numbers in the
partition problem in the input. We shall show that this difference is bounded
by a sufficiently small function of the size b of the partition problem, so that
yes- and no-solutions can be distinguished in the finite case (i.e., b <∞) by the
sign of their corresponding expected utility.

The next lemma shows that for any partition problem the expected utility
of a strategy differs from (5) by at most 2−9b.
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Figure 3: Asymptotic expected utility of strategies as b→∞.

Lemma 1. Consider the continuous function

f(s) = 2−9b + 2− exp(1− s)− s . (6)

It follows for any strategy δ that 0 < f
(∑n

i=1 ziδi/z
)
− E[U |δ] < 2−9b .

Proof. It follows immediately from (4) and (6) that f
(∑n

i=1 ziδi/z
)
−E[U |δ] =

qE[S′n|δ]− exp
(
1−∑n

i=1 ziδi/z
)
. According to Lemma 4 in the appendix (with

x = zi/z and M = 12b), we have for i = 1, . . . , n that P (Si = 1|Di = 1) =
e−zi/z + εi, where 0 < εi < 2−12b < 2−2−10b. It follows that E[S′n|δ] =∏n
i=1(e−zi/z + εi)

δi >
∏n
i=1(e−zi/z)δi = exp

(
−∑n

i=1 ziδi/z
)
. By an argu-

ment similar to Lemma 4, we have that e < q < e + 2−2−9b, from which
it follows that qE[S′n|δ] > eE[S′n|δ] > exp

(
1 − ∑n

i=1 ziδi/z
)
, and therefore

qE[S′n|δ]− exp(1−∑n
i=1 ziδi/z) > 0.

It remains to show that the upper bound holds. According to the Multivari-
ate Binomial Theorem, we have that

E[S′n|δ] =

n∏
i=1

(e−zi/z + εi)
δi =

∑
k∈C

n∏
i=1

e−ziki/zεδi−kii

= exp

(
−

n∑
i=1

ziδi/z

)
+

∑
k∈C,k 6=δ

n∏
i=1

e−ziki/zεδi−kii ,

where C = {(k1, . . . , kn) ∈ {0, 1}n : ki ≤ δi, i = 1, . . . , n}. Each term inside the
sum on the right-hand side of the equation above contains at least one factor
equal to εi for some i = 1 . . . , n. Since the sum contains at most 2n terms,
n ≤ b, 0 < e−ziki/z ≤ 1, and εi < 2−2−10b < 1, it follows that

E[S′n|δ]− exp

(
−

n∑
i=1

ziδi/z

)
<

∑
k∈{0,1}n

max
i
εi < 2−2−9b .

Consequently, we have that
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qE[S′n|δ]− exp

(
1−

n∑
i=1

ziδi/z

)
=

qE[S′n|δ]− q exp

(
−

n∑
i=1

ziδi/z

)
︸ ︷︷ ︸

<q2−2−9b

+

≤2−2−9b︷ ︸︸ ︷
[q − e] exp

(
−

n∑
i=1

ziδi/z

)
︸ ︷︷ ︸

≤1

,

which, since q < 3, is strictly smaller than 2−9b. �

According to the lemma above, the absolute difference between the expected
utility of a strategy δ and the value of the function f evaluated at the point∑
i ziδi/z is less than 2−9b. Moreover, f(

∑
i ziδi/z) is an upper bound on the

expected value of any strategy δ. The next result builds on these two facts
to show that yes- and no-solutions can be distinguished by the sign of their
expected utilities.

Proposition 2. The partition problem admits a yes-solution if and only if the
maximum expected utility of a strategy is nonnegative.

Proof. According to Lemma 1, for any strategy δ we have that E[U |δ] >
f(
∑n
i=1 ziδi/z)−2−9b. Thus, if a yes-solution exists then maxδ E[U |δ] > f(1)−

2−9b = 0. To show that any no-solution has non-positive expected utility, con-
sider the function f in Equation (6), whose graph is the curve in Figure 3 up
to the small additive constant 2−9b. Its first and second derivatives are, respec-
tively, f ′(s) = exp(1− s) − 1 and f ′′(s) = − exp(1− s). Thus, the function is
strictly concave, increases for s < 1, decreases for s > 1, and has a maximum
at s = 1. This implies that f is maximized by a strategy whose scaled value
sδ=

∑n
i=1 ziδi/z is the closest to one (over all values sδ induced by strategies).

If a yes-solution δ exists, then its scaled value sδ maximizes f .
Recall that if the partition problem has no yes-solution then any strategy

δ satisfies |z −∑i ziδi| ≥ 1, from which it follows that either sδ =
∑
i ziδi/z ≥

1 + 1/z or sδ =
∑
i ziδi/z ≤ 1 − 1/z. Thus, the maximum value of f over

scaled values of no-solutions is either at 1− 1/z (the scaled value closest to and
smaller than one) or at 1 + 1/z (the closest to and bigger than one). Since, by
Lemma 1, f(sδ) is an upper bound on the expected utility of any strategy δ, if
a yes-solution does not exist then maxδ E[U |δ] < max{f(1 + 1/z), f(1− 1/z)}.
Consider the difference f(1+1/z)−f(1−1/z) = − exp(−1/z)+exp(1/z)−2/z.
By analyzing its first and second derivatives, one can show that the difference
is a strictly convex function of z whose infimum is zero. Hence, the difference is
positive (i.e., f(1+1/z) > f(1−1/z)), and it suffices for the result to show that
f(1+1/z) is negative for any positive integer z. For any instance of the partition
problem, we have that 2z ≤ 2b, from which it follows that 2−9b < z−3/8. By
definition, f(1+1/z) = 1−e−1/z−z−1 +2−9b < 1−e−1/z−z−1−z−3/8, which
according to Lemma 5 in the appendix is negative for any instance. �

We finally get to the desired hardness result.
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Theorem 3. Given a polytree-shaped limid of bounded treewidth over binary
variables, deciding whether there is a strategy whose expected utility exceeds a
given rational number is NP-complete.

Proof. Since the diagram is polytree-shaped, we can compute the expected
utility of any strategy in polynomial time by e.g. variable elimination, which
shows membership in NP. According to Proposition 2, for any instance of the
partition problem we can build in polynomial time a polytree-shaped influ-
ence diagram of bounded treewidth with only binary variables and such that
the partition problem has a yes-solution if and only the optimum strategy has
non-negative expected utility. Hence, deciding whether the maximum expected
utility of a strategy exceeds any given threshold solves the partition problem,
and is thus NP-hard. �

5. Conclusion

Finding an optimal strategy for limited memory influence diagrams is known
to be NP-hard even for polytree-shaped diagrams with ternary variables and a
single value node [7]. When the diagram has a single value node, the problem
can be mapped into one of computing marginal probability bounds in a properly
designed credal polytree [12]. We showed here that this correspondence between
influence diagrams and credal networks allow us to solve polytree-shaped dia-
grams with binary variables and a single value node in polynomial time, as this
is the case for computing marginal probability bounds in credal polytrees [17].
The mapping however does not work on diagrams that contain multiple value
nodes (even if variables are binary), and the theoretical complexity of the strat-
egy selection problem in polytree-shaped diagrams with binary variables and
multiple value nodes was until now unknown.

In this paper, we showed by a reduction of the partition problem that se-
lecting optimal strategies in polytree-shaped influence diagrams with binary
variables and multiple value nodes is NP-hard. This result closes the fixed-
parameter complexity analysis of planning with limited memory influence dia-
grams in what concerns the topology of the underlying graph and the cardinal-
ity of the variables. In summary, selecting optimal strategies in polytree-shaped
limids with binary variables and a single value node is polynomial-time solvable,
and relaxing any of these conditions leads to NP-hard problems.
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Appendix A. Supplementary Results

The following lemma is used to prove Lemma 1.

Lemma 4. Let 0 < x ≤ 2 be a real number, M ≥ 12 be an even integer, and
r =

∑M
k=0(−1)kxk/k! . It follows that e−x < r < e−x + 2−M .
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Proof. According to Taylor’s theorem, the number e−x can be approximated
by M -th order Taylor expansion of the exponential function around zero, that
is,

e−x =

M∑
k=0

(−1)k
xk

k!
+RM (x) ,

where the term RM (x) denotes the approximation error and is called the resid-
ual. Note that the first term on the right is by definition the number r. The
residual RM (x) is well-known to satisfy

RM (x) = (−1)M+1e−ξ
xM+1

(M + 1)!
,

for some 0 < ξ < x. Since M is even, the factor (−1)M+1 = −1 and RM (x) < 0,
whence r > exp(−x). Using the inequality e−ξ < 1 (valid for any ξ > 0), we
find that

|RM (x)| < xM+1

(M + 1)!
.

Since x ≤ 2, and (k/3)k < k! (for any positive integer k), the right-hand side of
the inequality above satisfies

xM+1

(M + 1)!
<

2M+1

([M + 1]/3)M+1
=

2M+13M+1

(M + 1)M+1
,

and because M ≥ 12 = 22 · 3, we have that

2M+13M+1

(M + 1)M+1
<

2M+13M+1

22(M+1)3M+1
=

1

2M+1
<

1

2M
.

The result follows from r = e−x −RM (x). �

The following result is used to prove Proposition 2.

Lemma 5. For any positive integer z and real r < 1/3, it follows that

1− e−1/z − 1

z
+

r

z3
< 0 .

Proof. Consider the second-order Taylor expansion of e−x around zero given

by T2(x)
def
= 1− x+ x2/2, whose residual satisfies

R2(x)
def
= e−x − T2(x) = −x3e−ξ/6 > −x3/6 ,

for some number ξ between 0 and x. Hence, −e−x < x3/6− T2(x), from which
it follows that

1− e−1/z − 1

z
+

r

z3
< 1 +

[
1

6z3
− T2(1/z)

]
− 1

z
+

r

z3
,

which equals r/z3 − 1/(2z2) + 1/(6z3) = (2r − z + 1/3)/(2z3) < 0. �
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