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Abstract

This paper addresses the problem of learning Bayesian festroctures from data based on score
functions that are decomposable. It describes propehastrongly reduce the time and memory
costs of many known methods without losing global optirgaitarantees. These properties are
derived for different score criteria such as Minimum Desiion Length (or Bayesian Information
Criterion), Akaike Information Criterion and Bayesian hlet Criterion. Then a branch-and-
bound algorithm is presented that integrates structuradtcaints with data in a way to guarantee
global optimality. As an example, structural constraims ased to map the problem of structure
learning in Dynamic Bayesian networks into a correspondingmented Bayesian network. Fi-
nally, we show empirically the benefits of using the propgartivith state-of-the-art methods and
with the new algorithm, which is able to handle larger data #ean before.

Keywords: Bayesian networks, structure learning, properties of agumsable scores, structural
constraints, branch-and-bound technique

1. Introduction

A Bayesian network is a probabilistic graphical model that relies on a stagttlependency among
random variables to represent a joint probability distribution in a compate#itient manner. It
is composed by a directed acyclic graph (DAG) where nodes are assbtiarandom variables
and conditional probability distributions are defined for variables giveir fharents in the graph.
Learning the graph (or structure) of these networks from data is otteeahost challenging prob-
lems, even if data are complete. The problem is known to be NP-hard (Ghiglet al., 2003),
and best exact known methods take exponential time on the number ofleardeatal are applicable
to small settings (around 30 variables). Approximate procedures catiehianger networks, but
usually they get stuck in local maxima. Nevertheless, the quality of the steuptays a crucial
role in the accuracy of the model. If the dependency among variables Eaowrly learned, the
estimated distribution may be far from therrectone.

In general terms, the problem is to find the best structure (DAG) acaptdisome score func-
tion that depends on the data (Heckerman et al., 1995). There are me#issdsdn other (local)
statistical analysis (Spirtes et al., 1993), but they follow a completely diffexpproach. The re-
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search on this topic is active (Chickering, 2002; Teyssier and Koll®520samardinos et al., 2006;
Silander and Myllymaki, 2006; Parviainen and Koivisto, 2009; de Campa&,e2009; Jaakkola
et al., 2010), mostly focused on complete data. In this case, best exast(ideere it is guaran-
teed to find the global best scoring structure) are based on dynamiapmogng (Koivisto and
Sood, 2004; Singh and Moore, 2005; Koivisto, 2006; Silander antlymsgki, 2006; Parviainen
and Koivisto, 2009), and they spend time and memory proportional 26, wheren is the number
of variables. Such complexity forbids the use of those methods to a coupdaobf variables,
mainly because of the memory consumption (even though time complexity is alsor dssles).
Ott and Miyano (2003) devise a faster algorithm when the complexity of thetate is limited
(for instance the maximum number of parents per node and the degreprnafativity of a subja-
cent graph). Perrier et al. (2008) use structural constraintstifogean undirected super-structure
from which the undirected subjacent graph of the optimal structure mustshiegraph) to reduce
the search space, showing that such direction is promising when one twde&n structures of
large data sets. Kojima et al. (2010) extend the same ideas by using neh stategies that
exploit clusters of variables and ancestral constraints. Most methedsaaed on improving the
dynamic programming method to work over reduced search spaces. Garamifront, Jaakkola
et al. (2010) apply a linear programming relaxation to solve the problem, tgeith a branch-
and-bound search. Branch-and-bound methods can be effediie good bounds and cuts are
available. For example, this has happened with certain success in théirng&alesman Problem
(Applegate et al., 2006). We have proposed an algorithm that also tsmeshlkand bound, but em-
ploys a different technique to find bounds (de Campos et al., 2009s Ibéen showed that branch
and bound methods can handle somewhat larger networks than the dymagranpming ideas.
The method is described in detail in Section 5.

In the first part of this paper, we present structural constraints agyaavreduce the search
space. We explore the use of constraints to devise methods to learn spdoialigions of Bayesian
networks (such as naive Bayes and Tree-augmented naive Bakeg¢aeralized versions, such as
Dynamic Bayesian networks (DBNs). DBNs are used to model temporeégses. We describe
a procedure to map the structural learning problem of a DBN into a camesapy augmented
Bayesian network through the use of further constraints, so that thessamtigalgorithm we discuss
for Bayesian networks can be employed for DBNs.

In the second part, we present some properties of the problem thatloorsiderable improve-
ment on many known methods. We build on our recent work (de Campos 20@8) onAkaike
Information Criterion(AIC) andBayesian Information Criterio(BIC), and present new results for
the Bayesian Dirichlet (BD) criterion (Cooper and Herskovits, 1992)some derivations under a
few assumptions. We show that the search space of possible struciarbe ceduced drastically
without losing the global optimality guarantee and that the memory requiremeniggrsmall in
many practical cases.

As data sets with many variables cannot be efficiently handled (unless)PaBsired prop-
erty of a learning method is to produce anytimesolution, that is, the procedure, if stopped at
any moment, provides an approximate solution, while if kept running, its solutiproves until
a global optimum is found. We point out that the teamytimeis used to mean that the differ-
ence between best current solution and upper bound for the glotiadusp constantly decreases
throughout the algorithm’s execution (even though we cannot guareseter the improvement
happens because a better solution is found or because the upperi®stinghk). We describe an
anytime and exact algorithm using a branch-and-bound (B&B) appre@bhcaches. Scores are
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pre-computed during an initialization step to save computational time. Then Yegmpehe search
over the possible graphs iterating over arcs. Because of the B&B piegehe algorithm can be
stopped with a best current solution and an upper bound for the glpiatlom, which gives a
certificate to the answer and allows the user to stop the computation when bhké#ves that the
current solution is good enough. For example, such an algorithm candggdted with a structural
Expectation-Maximization (EM) method without the huge computational exgesfsether exact
methods by using the generalized EM (where finding an improving solutionoisgn, but still
guaranteeing that a global optimum is found if run until the end. Due to thisepty the only
source of approximation would regard the EM method itself. It worth noting ubmg a B&B
method is not new for structure learning (Suzuki, 1996). Still, that prevaeesdoes not constitute
a global exact algorithm, instead the search is conducted after a nagtangris fixed. Our method
does not rely on a predefined ordering and finds a global optimum steuztnsidering all possible
orderings.

The paper is divided as follows. Section 2 describes the notation anducgsdayesian net-
works and the structure learning problem based on score functioct$o158 presents the structural
constraints that are treated in this work, and shows examples on how thég esed to learn dif-
ferent types of networks. Section 4 presents important properties sftihe functions that consid-
erably reduce the memory and time costs of many methods. Section 5 detailameh4and-bound
algorithm, while Section 6 shows experimental evaluations of the propertgeesotistraints and the
exact method. Finally, Section 7 concludes the paper.

2. Bayesian Networks

A Bayesian network represents a joint probability distribution over a collectficandom variables,
which we assume to be categorical. It can be defined as a tdpl&, P), whereG = (Vg,Eg) is

a directed acyclic graph (DAG) witif; a collection ofn nodes associated to random variables
(a node per variable), arl; a collection of arcs® is a collection of conditional mass functions
p(X;|M;) (one for each instantiation &f;), wherell; denotes the parents ¥f in the graph {1; may

be empty), respecting the relationsi§. In a Bayesian network every variable is conditionally
independent of its non-descendants given its parents (Markov camditio

We use uppercase letters suchXasX; to represent variables (or nodes of the graph, which
are used interchanged), amdto represent a generic state Xf which has state spad®y =
{Xi1,%i2, - .., X%r, }, wherer; = |Qx| > 2 is the number of (finite) categories ¥f (| - | is the cardi-
nality of a set or vector, and the notatienis used to indicate a definition instead of a mathematical
equality). Bold letters are used to emphasize sets or vectors. For exampRy = xxexQx,
for X C X, is an instantiation for all the variables 1 Furthermorern, = |Qn,| = Mxen; It is
the number of possible instantiations of the parenfseif X;, and6 = (6;jk )vij« is the entire vec-
tor of parameters such that the elements@aie= p(xi|T;), withi € {1,....n}, j € {1,...,rn;},
ke {1,..,ri}, andm; € Qp,.

Because of the Markov condition, the Bayesian network representstjolmability distribu-
tion by the expressiop(x) = p(X1,...,%n) = [ P(Xi|T5), for everyx € Qx, where every; andTg
are consistent with.

Given a complete data sé& = {D1,...,Dn} with N instances, wher®, = x, € Qx is an
instantiation of all the variables, the goal of structure learning is to find a GABat maximizes a
given score function, that is, we look fgj* = argmax,. ; so(G), with G the set of all DAGs with
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nodesxX, for a given score functioss (the dependency on data is indicated by the subsBjiptin
this paper, we consider some well-known score functions: the Bayedg@miation Criterion (BIC)
(Schwarz, 1978) (which is equivalent to thitnimum Description Lengdhthe Akaike Information
Criterion (AIC) (Akaike, 1974), and the Bayesian Dirichlet (BD) (Coopad Herskovits, 1992),
which has as subcases BDe and BDeu (Buntine, 1991; Cooper askiodiés, 1992; Heckerman
et al., 1995). As done before in the literature, we assume parameter mudeE@e and modularity
(Heckerman et al., 1995). The score functions based on BIC and &€ dnly in the weight that
is given to the penalty term:

BIC/AIC:  55(G) =maxLgp(6) ~t(G) w

wheret(G) = Si4(rm, - (ri — 1)) is the number of free parametevs— 'O%N for BIC andw = 1 for
AIC, Lg p is the log-likelihood function with respect to ddieand graphg:

n rI'Ii I
Lep(8) =lo ik
G,D( ) gil:ljljlklzll ijk

wheren;jk indicates how many elementsDfcontain bothxx andrg;. Note that the value@jx )vij
depend on the grapg (more specifically, they depend on the parent$edf eachX;), so a more
precise notation would be to ue%i instead ofjjx. We avoid this heavy notation for simplicity un-
less necessary in the context. Moreover, we know@hat (6f;, )vijx = (r;]i—iij")Vijk =argmayLg p(0),
with Nij = >k nijk.2

In the case of the BD criterion, the idea is to compute a score based on teaqrgsrobability
of the structurg(G|D). For that purpose, the following score function is used:

B:  so(g)—log (P(G)- [ p(DIG.6)-plEIG)de).

where the logarithmic is often used to simplify computation@| G) is the prior off for a given
graphg, assumed to be a Dirichlet with hyper-parameters (0 )vijx (which are assumed to be
strictly positive):

nom ajjk—1

p(8|G) = |‘“‘Lr i) 17 "(';”k),

WhereO(IJ = Sk Qijk. Hyper-parameter&;jx )vijx also depend on the gragh and we indicate it by
”k if necessary in the context. From now on, we also omit the subderip¥e assume that there
is no preference for any graph, 0G) is uniform and vanishes in the computations. Under the

assumptions, it has been shown (Cooper and Herskovits, 1992) timatifitnomial distributions,

n (i) r(aljk+nljk)

=lo
grlr|1r (otij +nij) ¢ I (aijk)

The BDe score (Heckerman et al., 1995) assumesithat= o* - p(6ijk| G), wherea* is the hyper-
parameter known as the Equivalent Sample Size (ESS)péhgt|G) is the prior probability for

1. In case of many optimal DAGs, then we assume to have no preéeagtargmax returns one of them.
2. If njj = 0, thenn;jx = 0 and we assume the fracti(%éjﬁ to be equal to one.
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(Xik A TGj) given G (or simply givenlT;). The BDeu score (Buntine, 1991; Cooper and Herskovits,
1992) assumes further that local priors are such mjatbecomes% anda* is the only free
hyper-parameter. '

An important property of all such criteria is that their functions are decaaiple and can be
written in terms of the local nodes of the graph, thasis;) = ;s (M;), such that

BIC/AIC: s(IM) :meaani(ei)—ti(l‘li)w, Q)

wherelLn, (6;) = Z?ll ZE:l Nijk l0g6ijk, andt;(M;) = rp, - (ri — 1). And similarly,

= aij +n I (aijk)

In the case of BIC and AIC, Equation (1) is used to compute the globaé smfoa graph using
the local scores at each node, while Equation (2) is employed for BD,@&deBDeu, using the
respective hyper-parameters

3. Structural Constraints

A way to reduce the space of possible DAGs is to consider some constreouidgul by experts.

We work with structural constraints that specify where arcs may or mapa&dtcluded. These
constraints help to reduce the search space and are available in many rsstudtioreover, we

show examples in Sections 3.1 and 3.2 of how these constraints can be usathtetructures

of different types of networks, such as naive Bayes, tree-augohertee Bayes, and Dynamic
Bayesian networks. We work with the following rules, used to build up thettral constraints:

e indegre¢X;,k,op), whereop € {It,eq} andk an integer, means that the nodemust have
less than(whenop = It) or equal to(whenop = eq)k parents.

e arc(X;, Xj) indicates that the nod§ must be a parent of;.

e Operatorsor (V) andnot (—) are used to form the rules. Thad operator is not explicitly
used as we assume that each constraint is in disjunctive normal form.

The structural constraints can be imposed locally as long as they involve $irsgjle node and
its parents. In essence, parent sets of a ngdéat do violate a constraint are never processed
nor stored, and this can be checked locally when one is about to computedéhscore. On the
other hand, constraints such @sc(X1, X2) V arc(Xz, X3)) cannot be imposed locally, as it defines
a non-local condition (the arcs go to distinct variables, nariglgndXs). In this work we assume
that constraints are local. Besides constraints devised by an experpightuse constraints to
force the learning procedure to obtain specialized types of networke. n€kt two subsections
describe (somewhat non-trivial) examples of use of constraints to |&&eredt types of networks.
Specialized networks tend to be easier to learn, because the searehisspteady reduced to
the structures that satisfy the underlying constraints. Notwithstandinge#uers who are only
interested in learning general Bayesian networks might want to skip thefrésis section and
continue from Section 4.

667



DE CAMPOS AND JI

3.1 Learning Naive and TAN structures

For example, the constraint§..c j.c —arc(X;,X;) andindegre¢X.,0,eq) impose that only arcs
from nodeX. to the others are possible, and thatis a root node, that is, a Naive Bayes structure
will be learned. A learning procedure would in fact act as a featuretsaheprocedure by letting
some variables unlinked. Note that the symlgust employed is not part of the language but
is used for easy of expose (in fact it is necessary to write down ewarsti@int defined by such
construction). As another example, the constraifjis indegre€X;, 3,t), indegre¢Xc,0,eq), and
Vjxc indegre€X;,0,eq) v arc(Xc, Xj) ensure that all nodes havg as parent, or no parent at all.
BesidesX;, each node may have at most one other parentXarsl a root node. This learns the
structure of a Tree-augmented Naive (TAN) classifier, also performikigd of feature selection
(some variables may end up unlinked). In fact, it learns a forest of, tesese have not imposed
that all variables must be linked. In Section 6 we present some experimesit#ts which indicate
that learning TANs is a much easier (still very important) practical situation.

We point out that learning structures of networks with the particular merjpé building a clas-
sifier can be also tackled by other score functions that consider coraditicatributions (Pernkopf
and Bilmes, 2005). Here we present a way to learn TANs considering tifetie joint distribution,
which can be done by constraints. Further discussions about leatassgifiers is not the aim of
this work.

3.2 Learning Dynamic Bayesian Networks

A more sophisticated application of structural constraints is presented inetttiors where they
are employed to translate the structure learning in Dynamic Bayesian Net(aBkés) to a cor-
responding problem in Bayesian networks. While Bayesian networkaairdirectly related to
time, DBNs are used to model temporal processes. Assuming Markoviastaiwhary properties,
DBNs may be encoded in a very compact way and inferences are edeptiokly. They are built
over a collection of sets of random variablgs®, x*,..., X7} representing variables in different
times Q1,..., T (we assume that time is discrete). A Markovian property holds, which easoat
p(XL X0 .. XY = p(xt+1x), for 0<t < T. Furthermore, because the process is assumed to
be stationary, we have thatx'+1|xt) is independent of, that is, p(X'1|X!) = p(xt+1|x) for
any 0<t,t’ < T. This means that a DBN is just as a collection of Bayesian networks that gtear
same structure and parameters (apart from the initial Bayesian netwdiknéozero). IfX! € X
are the variables at time a DBN may have arcs between nodésof the same time and arcs
from nodeint*1 (previous time) to nodeX! of timet. Hence, a DBN can be viewed as two-slice
temporal Bayesian network, where at time zero, we have a standardi8ayetwork as in Section
2, which we denot&°, and for slices 1 t@ we have another Bayesian network (calfiexdhsitional
Bayesian network and denoted simmy defined over the same variables but where nodes may
have parents on two consecutive slices, thaBiprecisely defines the distributiopg x| x*), for
any 0<t <T.

To learn a DBN, we assume that many temporal sequences of data arblavdilaus, a com-
plete data seb = {D1,...,Dy} is composed oN sequences, where eabhy is composed of in-
stanceD}, = x|, = {X,1,---,Xyn}, fOr t =0,..., T (whereT is the total number of slices/frames
apart from the initial one). Note that there is an implicit order among the elernéagehD,. We
denote byD® = {DY: 1 < u < N} the data of the first slice, and 1B = {(D!,,D}; %) : 1<u<N},
with 1 <t < T, the data of a slicé (note that the data of the slite- 1 is also included, be-
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cause it is necessary for learning the transitions). As the conditiondhpilidy distributions

for time t > 0 share the same parameters, we can unroll the DBN to obtain the factorization
p(XET) = 1 P2(X°IN?) M=, i POXY MY, wherep®(X0|MP) are the local conditional distributions

of 8, X! andM! represent the corresponding variables in timend p(X!|MN!) are the local distri-
butions of B.

Unfortunately learning a DBN is at least as hard as learning a Bayesiaonke because the
former can be viewed as a generalization of the latter. Still, we show thatries@thod used for
Bayesian networks can be used to learn DBNs. With complete data, leaanizaggters of DBNs
is similar to learning parameters of Bayesian networks, but we deal withtsoginfor both 5°
andB. The counts related tB° are obtained from the first slice of each sequence, so thend are
samples overall, while counts fé are obtained from the whole time sequences, so ther afe
elements to consider (supposing that each sequence has the sameTlefaytiease of expose).
The score function of a given structure decomposes between thefgootien of 8° and the score
function of B (because of the decomposability of score functions), so we look fphgrsuch that

(G".6") = arg%ﬂ;é%spo(go) +5pur () = (arggrpaﬁoo(go), argmaxpr(6), ()

whereGP is a graph overx® and G’ is a graph over variablex®, X'~ of a generic slicé and

its predecessdr— 1. Counts are obtained from data sets with time sequences separately for the
initial and the transitional Bayesian networks, and the problem reduces teaming problem in

a Bayesian network with some constraints that force the arcs to respézBiiie stationarity and
Markovian characteristics (of course, it is necessary to obtain théxfrom the data in a particular
way). We make use of the constraints defined in Section 3 to develop a simpfotraation of the
structure learning problem to a corresponding structure learning pnablan augmented Bayesian
network. The steps of this procedure are as follows:

1. LearnB° using the data s@°. Note that this is already a standard Bayesian network structure
learning problem, so we obtain the gragf for the first maximization of Equation (3).

2. Suppose there is a Bayesian netwdk= (G', X', P') with twice as many nodes ag°.
Denote the nodes &X,..., X, X],...,X;). Construct a new data sbt that is composed by
N-T elements{D?,...,DT}. Note thatD’ is precisely a data set oven 2ariables, because
it is formed of pairs(D}1,D!,), which are complete instantiations for the variablesBaf
containing the elements of two consecutive slices.

3. Include structural constraints as follows:

Vi<i<n arc(X, X/), (4)
VlSiSn indegreéXi,O, eQ)- (5)

Equation (4) forces the time relation between the same variable in consdoutvelices (in

fact this constraint might be discarded if someone does not want tocendéach variable to
be correlated to itself of the past slice). Equation (5) forces the variahles., X, to have

no parents (these are the variables that are simulating the previous slieethehvariables
X' are simulating the current slice).
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4. Learn®’ using the data sdd’ with an standard Bayesian network structure learning proce-
dure, capable of enforcing the structural constraints. Note that tlempsets ofXy, ..., X,
are already fixed to be empty, so the output graph will maximize the scomsatesl only to
nodesX”: argmav spi7(G')) =

argmax| $ s pur (M) + Y sy pur (M) | = argmaxy sy par (M7).

G <.z o .Z | G .z !

This holds because of the decompaosability of the score function among,meai¢hat the
scores of the nodes,, ..., X, are fixed and can be disregarded in the maximization (they are
constant).

5. Take the subgraph af’ corresponding to the variable§, ..., X, to be the graph of the
transitional Bayesian network. This subgraph has arcs amoX§ ..., X/, (which are arcs
correlating variables of the same time slice) as well as arcs from the preslicasto the
nodesXy, ..., X,.

Therefore, after applying this transformation, the structure learninglgmoin a DBN can be
performed by two calls to the method that solves the problem in a Bayesian ketwiar point
out that an expert may create her/his own constraints to be used durilggthiang, besides those
constraints introduced by the transformation, as long as such constraints diolate the DBN
implicit constraints. This makes possible to learn DBNs together with expemwlkdge in the
form of structural constraints.

4. Properties of the Score Functions

In this section we present mathematical properties that are useful whgyutiag score functions.
Local scores need to be computed many times to evaluate the candidate whaphae look for
the best graph. Because of decomposability, we can avoid to computéusietions several times
by creating a cache that contaigél1;) for eachX; and each parent sél;. Note that this cache
may have an exponential size npas there are2?! subsets ofXy,..., X} \ {X} to be considered
as parent sets. This gives a total space and tim@(of 2" - v) to build the cache, whereis the
worst-case asymptotic time to compute the local score function at eaclt hostead, we describe
a collection of results that are used to obtain much smaller caches in many greasies.

First, Lemma 1 is quite simple but very useful to discard elements from the chelaeh node
X;. It holds for all score functions that we treat in this paper. It wasiptesly stated in Teyssier and
Koller (2005) and de Campos et al. (2009), among others.

Lemma 1 Let X be a node of;’, a candidate DAG for a Bayesian network where the parent set of
X is M{. Supposél; C M} is such that §M;) > s(M}) (where s is one of BIC, AIC, BD or derived
criteria). Thenl{ is not the parent set of;¥h an optimal DAGG*.

Proof This fact comes straightforward from the decomposability of the scoretims. Take a
graphg that differs fromG’ only on the parent set of, where it hag1; instead of1{. Note thatg

3. Note that the time to compute a single local score might be large depeoditfte humber of parents but still
asymptotically bounded by the data set size.
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is also a DAG (ag7 is a subgraph off’ built from the removal of some arcs, which cannot create
cycles) ands(G) = 3 j4isj(M) +s(Mi) > ¥ 5j(M) +s(Nf) =s(G’). Any DAG G’ with parent
setl; for X; has a subgraply with a better score than that @f’, and thud1;{ is not the optimal
parent configuration foX; in G*. |

Unfortunately Lemma 1 does not tell us anything about supersdi, dhat is, we still need
to compute scores for all the possible parent sets and later verify whittewf can be removed.
This would still leave us witm- 2" - v asymptotic time and space requirements (although the space
would be reduced after applying the lemma). The next two subsectiorenprresults to avoid all
such computations. BIC and AIC are treated separately from BD andatiees (reasons for that
will become clear in the derivations).

4.1 BIC and AIC Score Properties

Next theorems handle the issue of having to compute scores for all posaielet sets, when one
is using BIC or AIC criteria. BD scores are dealt later on.

Theorem 2 Using BIC or AIC as score function, suppose that'X are such that i, > & 'Ogr' f
M} is a proper superset df;, thenl! is not the parent set of;X an optimal structure.

Proof 4 We know that'l; contains at least one additional node, thaflisp M; U {Xc} andXe ¢ ;.
Becausdl; C M}, Li(MN{) is certainly greater than or equal te(1;), andt;(MN{) will certainly be
greater than the corresponding valu€l;) in G. The difference in the scores $§M{) — s (M),
which equals to (see the explanations after the formulas):
maxLi (M7) — i (M7) — (maxLi (M) — (M) <
— maxLi(I‘Ii) —(M) +4(M) =

Zn.,( ; I.J,klogr:nj> — (M) +t() <

I'|'|I

anj el] ni)"‘rti(ni)g

I’|'|i

D nijlogri —rn; - (re—1)- (i —1) - w<
=1

I'|'|i

=

The first step uses the fact tHa{}) is negative, so we drop it, the second step uses the fact that
ik = ?;'k, with nij = Si"; nij, the third step uses the definition of entrdpy:) of a discrete distri-
bution, and the fourth step uses the fact that the entropy of a discretbutisin is less than the log

of its number of categories. Finally, the last equation is negatie if(r; — 1) - w > Nlogr;, which

4. Another similar proof appears in Bouckaert (1994), but it leadsctlir to the conclusion of Corollary 3. The
intermediate result is algorithmically important.
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is exactly the hypothesis of the theorem. Heg¢El)) < si(M;), and Lemma 1 guarantees thigt
cannot be the parent setXfin an optimal structure. |

Corollary 3 Using BIC or AIC as criterion, the optimal grapdi has at most QlogN) parents per
node.

Proof AssumingN > 4, we hav% < 1 (becausevis either 1 or'o%'\'). Take a variable and

a parent sefl; with exactly [log,N| elements. Because every variable has at least two states, we
know thatrp, > 2N >N > %'rf’ﬂri and by Theorem 2 we know that no proper supersét;afan
be an optimal parent set. |

Theorem 2 and Corollary 3 ensures that the cache stores ao@gjgz“” (";1)) elements for
each variable (all combinations up ftog, N| parents). Next lemma does not help us to improve
the theoretical size bound that is achieved by Corollary 3, but it is quiteluseoractice because
it is applicable even in cases where Theorem 2 is not, implying that fewenpsets need to be
inspected.

Theorem 4 Let BIC or AIC be the score criterion and let Be a node witH1; N/ two possible
parent sets such tha(f1}) + s(M;) > 0. ThenM{ and all superset§l > I} are not optimal parent
configurations for X

Proof We have that;i(MN}) + s (M) > 0= —ti(M}) — s(M;) < 0, and becausk;(-) is a negative
function, it implies

= (Li(M7) —t(N7)) —s(Mi) < 0= (M) < s(M).

Using Lemma 1, we have thBk is not the optimal parent set f&§. The result also follows for any
M’ > N, as we know that (M) > t;(MN{) and the same argument suffices. [ |

Theorem 4 provides a bound to discard parent sets without even timgpdeem. The idea is
to verify the assumptions of Theorem 4 every time the score of a parelfit sétX; is about to be
computed by taking the best score of any subset and testing it againstdinerth Only subsets that
have been checked against the structural constraints can be usés,atlsabset with high score but
that violates constraints cannot be used as the “certificate” to discargéssets (in fact, it is not
a valid parent set at first). This ensures that the results are valid etlesm imesence of constraints.
Whenever the theorem can be appli€li,is discard and all its supersets are not even inspected.
This result allows us to stop computing scores earlier than the worst-eageimg the number of
computations to build and store the cachk.is also checked against Lemma 1 (which is stronger
in the sense that instead of a bounding function, the actual scoresectdydiompared). However
Lemma 1 cannot help us to avoid analyzing the supersdis.of

4.2 BD Score Properties

First note that the BD scores can be rewritten as:

S(nl)—jezi<|Ogr(0ij+nij)+k€z|<ijlog F (aijk) >
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whereJ; = Ji'_'i ={1<j<rp : mj # 0}, because;; = 0 implies that all terms cancel each other.
In the same mannen;jx = 0 implies that the terms of the internal summation cancel out, so let
Kij = KiTi ={1<k<ri: nj # 0} be the indices of the categories Xfsuch than;jc # 0. Let

Ki'_Ii = LJJ-KiTi be a vector with all indices corresponding to non-zero counts$lfanote that the

symbolU must be seen as a concatenation of vectors, as we Kliﬂjvvo have repetitions). The
countsnijk (and consequently; = S nijk) are completely defined if we know the parent Bet
Rewrite the score as follows:

s(Mi) = };.(f(KHv(Gnk)VK)*‘9((”UK)Vk7(GHk)Vk))v

J

with

f(Kij, (dijk)vk) = logl (atij) — » logrl (aijk),

keKij
9((Nijk vk, (Qtijk)vi) = —logT (atij +ij) + > logl (ijk +Mijk)-
keKjj
We do not need;; as argument ofj(-) because the set of non-zamg is known from the counts

(nijk )k that are already available as argumentg(ef. To achieve the desired theorem that will be
able to reduce the computational time to build the cache, some intermediate resuksessary.

Lemmab Let N; be the parent set of i X(ajj)vijk > O be the hyper-parameters, and integers
(nijk)vijk > 0 be counts obtained from data. We have thétngk)vk, (Cijk)vk) < —logl (v) =
0.1214if njj > 1, where v= argmax. o —logl(x) ~ 1.4616 Furthermore, §(niji vk, (QXijk )vk) <
—Iogaij +Iogaijk — f(Kij , (Gijk)Vk) if |Kij| =1.

Proof We use the relation (x+ Syax) > ' (x+1) [Tkl (&), for x> 0, Vkax > 1 andy cax > 1 (note
that it is valid even if there is a single element in the summation). This relation coamedtie Beta
function inequality:

rerey) o x+y
Fx+y) = xy

= Fx+1)r(y+1) <r(x+y+1),

wherex,y > 0. Applying the transformatiop+ 1 = 3 a (which is possible becausg a; > 1 and
thusy > 0), we obtain:

F&+Z®2FW+DWZMZFW+DHF@%
t

(the last step is due tey > 1 for all t, so the same relation of the Beta function can be overall
applied, because(x+ 1) (y+1) <T'(x+y+1) < (x+1+y+1)).
With the relation just devised in hands, we have
Faij+mj) T (Tacker (Yijk +Nijk))

Mkek; T (ijk + i) Mkeky; T (ijk + Nij)

T (kg i Zk%K.,( uk ijk)) ST Y g,
[kek;; I (Qijk + Nijk) erd
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obtained by renaming= Y kek;; dijk anday = ajjk + nijk (we have tha{keKij (Qjjk +nij) >nij > 1
and eactax > 1). Thus

(aij +1ij)
< —logl(1+ Qijk)-
[Mkek;; T (Qijk + Nij) ( k¢zKi,- i)

9((Nijk Jvk, (Qlijk)vk) = —log

Becauser = argmax. o —logr (x), we have—logl (1+ ¥ gk, Qijk) < —logl (v).
Now, the second part of the lemma.|;| = 1, then letK;; = {k}. We know thaty; > 1 and
thus

9((Nijk )k, (Qijk)vk) = —log

(o +nij) _ _log ( I (aij) nij—1 (ajj +1) >

I (ijk +nij) I (aij) tDJ (Qlijk +1)
nij—1
oij (@i +1)
f(KIja(aljk)Vk) log Qe t; log (Gijk+t) < —logai; +|Ogaljk f(Kljp(aljk)Vk)a
becausq(gi‘j{(%tt)) > 1 for everyt. ]

Lemma 6 Let I; be the parent set of;X(aij)vik > O be the hyper-parameters, and integers
(nijk )vijk > 0 be counts obtained from data. We have thihgk vk, (Qijk )vk) < 0if nijj > 2.

Proof If njj > 2, we use the relatiofl (X + Syax) > I'(x+2) [kl (&), for x> 0, Vkax > 1 and
Skak > 2. This inequality is obtained in the same way as in Lemma 5, but using a tighter Beta
function bound:

B(xy) < X+y <(x+1)(y+1

-1
Xy XTy 1 )> = Tx+2)F(y+2) <T(x+y+2),

and the relation follows by using+2 = 5 & and the same derivation as before. Now,

Cloi4+mj) T (Y1<ker (Qijk +Nijk))

Miek;; T (i M) Mkek,; T (e + Nijk)

r - Qjik + - (Qjik + Nijk
_ T3k, itk Ty (G + i) >T(2+ Y dijk),
Mkek; T (ijk =+ Mijic) erd

obtained by renaming = > ketk; Slijk andax = Qjj + Nijk, as we know thatzkeK”. (Qjjk + Nijk) >
nij > 2 and eacla, > 1. Finally,

I (aij +nij) < —logF(2+ djjk) <0,

9((Niji) vk, (Qijic)vk) g Mkek; T (Qijk + Nijk) KeKij

becausé (2+ ¥ kg, Qijk) > 1. |
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Lemma 7 Given a BD score and two parent sﬂ§ andl1; for a node Xsuch thaﬂ'li0 c M, if

M

a..

M; M; K’
s(M°) > Z FKE (i) + Z log—H-,
! 4 o

jed jed ™ 1]

Ky >2 Ky =1
thenl; is not the optimal parent set for X

Proof Using the results of Lemmas 5 and 6,

(M) = 3 (F(k7 (@0 + ol (o))

J

< (£ (a0 + 9 (o)) ) +
jedk |K;'[>2

+ z (— Iogcxi"j'i + |oga!_j'|i(,>

jEJini: ‘Kil;li‘:l
ol
M T ijk’
= Z FOKG (atijivie) + Z log—5-,
jed kg =2 jeaiKkt =1 ij

which by the assumption of this lemma, is less tsdf®). Thus, we conclude that the parent set
I'Ii0 has better score thdm;, and the desired result follows from Lemma 1. [ |

Lemma 8 Given the BDeu scorég;jx )vijk > 0, and integergnjjk )vijk > 0 such thato;; < 0.8349
and|Kijj| > 2for a given j, then K, (aijk)vk) < —|Kij| - logr;.

Proof Usingaij < aij < 0.8349 (for allk), we have
a..

f(Kj» (0t ) = logT (atj) — [K; logT (=)
|

a.. a..
— logl (aij) — |Kij|logr(%+1)+‘Kij“Ong_J
I |

M(<E+1)
= logl (ajj) — |Kij|log#— |Kij|logr;
i]
r(q--)l/‘Kin--
= |Kij|logw — |Kij|logri.

fi

Now, I (atjj )Y/ Kiilay; < F(“r—‘ij +1), because; > 2, |Kjj| > 2 anda;j; < 0.8349 (this number can be
computed by numerically solving the inequality for= |K;;| = 2). We point out that 8349 is a
bound foraj; that ensures this last inequality to hold whee= |K;j| = 2, which is the worst-case
scenario (greater values gfand |K;;| make the left-hand side decrease and the right-hand side in-
crease). Becauseof each node is known, tighter bounds might be possible according to tlee nod

675



DE CAMPOS AND JI

Theorem 9 Given the BDeu score and two parent s@fsandr; for a node Xsuch that1? c M;
andaj]' < 0.8349for every j, if $(N°) > —|K{"|logr; then neither; nor any supersefll; > M,
are optimal parent sets for; X

Proof We have that

s(MP) > —|K"logri= Y —[K'[logri+ §  —logr;,
jedi: K{T|>2 jed: KT |=1

which by Lemma 8 is greater than or equal to

M M
FOKG" s (ot )vk) + > —logri.
jed: KiT|>2 jed: KT=1

all

Now, Lemma 7 suffices to show thidf is not a optimal parent set, becaustgr; = Ioga'—r‘,‘j for any
i

k. To show the result for any supers$ét> I;, we just have to note th#t(ini| > |Ki”‘| (because the
overall number of non-zero counts can only increase when we include paoents), and:_jli (for
all j’) are all less than.8349 (because thes can only decrease when more parents are included),
thus we can apply the very same reasoning to all supersets. |

Theorem 9 provides a bound to discard parent sets without even fimgpdtem because of
the non-increasing monotonicity of the employed bounding function when evedse the number
of parents. As done for the BIC and AIC criteria, the idea is to check thdityaof Theorem 9
every time the score of a parent $&tof X; is about to be computed by taking the best score of
any subset and testing it against the theorem (of course using ontstibat satisfy the structural
constraints). Whenever possible, we discBrdand do not even look into all its supersets. Note
that the assertion;; < 0.8349 required by the theorem is not too restrictive, because as gatent
grow, as ESS is divided by larger numbers (it is an exponential decdabeas). Hence, the
valuesaij become quickly below such a threshold. FurthermDiigs also checked against Lemma
1 (although it does not help with the supersets). As we see later in théraepes, the practical size
of the cache after the application of the properties is small even for coabigiéarge networks, and
both Lemma 1 and Theorem 9 help reducing the cache size, while Theorksm Bed#p to reduce
computations. Finally, we point out that Singh and Moore (2005) havadreorked on bounds to
reduce the number of parent sets that need to be inspected, but M@prevides a much tighter
bound than their previous result, where the cut happens only afﬂéﬂ'}&llgo below two (or using
their terminology, wheronfigurations are pufe

5. Constrained B&B Algorithm

In this section we describe the branch-and-bound (B&B) algorithm usiakthe best structure of
the Bayesian network and comment on its complexity and correctness. Thghatguses a B&B
search where each case to be solved is a relaxation of a DAG, that igsé®may contain cycles.
At each step, a graph is picked up from a priority queue, and it is veiifieés a DAG. In such
case, it is a feasible structure for the network and we compare its scairestithe best score so
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far (which is updated if needed). Otherwise, there must be a directéelioythe graph, which is
then broken into subcases by forcing some arcs to be absent/presehtsubease is put in the
gueue to be processed (these subcases cover all possible sshgiapdd to the original case, that
is, they cover all possible ways to break the cycle). The procedurs sten the queue is empty.
Note that every time we break a cycle, the subcases that are createdegerident, that is, their
sets of graphs are disjoint. We obtain this fact by properly breaking ttlesyo avoid overlapping
among subcases (more details below). This is the same idea as in the inckdimsiem principle
of combinatorics employed over the set of arcs that formed the cycle andtesnthat we never
process the same graph twice, and also ensures that all subgrapbsexres.

The initialization of the algorithm is as follows:

C: (X,Mj) — R is the cache with the scores for all the variables and their possible parent
configurations. This is constructed using a queue and analyzing Eatsrdccording to the
properties of Section 4, which saves (in practice) a large amount oé ggattime. All the
structural constraints are considered in this construction so that only pat@ht sets are
stored.

G is the graph created by taking the best parent configuration for eaewithout checking

for acyclicity (so it is not necessarily a DAG), asds the score of5. This graph is used as
an upper bound for the best possible graph, as it is clearly obtainedafn@laxation of the

problem (the relaxation comes from allowing cycles).

H is an initially empty matrix containing, for each possible arc between nodes kastating
that the arc must be present, or is prohibited, or is free (may be praseat)o This matrix
controls the search of the B&B procedure. Each branch of the seasch# that specifies
the graphs that still must be searched within that branch.

Qs a priority queue of triple§G, #H , s), ordered bys (initially it contains a single triple with
G, # ands as mentioned. The order is such that the top of the queue contains aleays th
triple of greatess, while the bottom has the triple of smallest

(Ghest Sest) keeps at any moment the best DAG and score found so far. The vabggsof
could be set te-, but this best solution can also be initialized using any inner approximation
method. For instance, we use a procedure that guesses an orderthg f@riable, then
computes the global best solution for that ordering, and finally runs alhilbing over

the resulting structure. All these procedures are very fast (givesrttadl size of the pre-
computed cache that we obtain in the previous steps). A good initial solutiosigraficantly
reduce the search of the B&B procedure, because it may give a lowedlntoser to the upper
bound defined by the relaxatidiy, #,s).

iter, initialized with zero, keeps track of the iteration numbimttomis a user parameter that
controls how frequent elements will be picked from the bottom of the questedad of the
usual removal from the top. For example, a value of 1 means to pick afwayghe bottom,
a value of 2 alternates elements from the top and the bottom evenly, and adargenakes
the algorithm picks always from the top.

The main loop of the B&B search is as follows:
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e While Q is not empty, do

1. Incrementiter. |If b(i)tt?cr)m is not an integer, then remove the top @fand put into
(Geur, Heur, Seur)- Otherwise remove the bottom Qfinto ( Geur, Heur, Seur) - If Seur < Soest
(worse than an already known solution), then discard the current elemdrstart the

loop again.

2. If Geur is @ DAG, then updatéGpest, Soest) With (Geur, Scur), discard the current element
and start the loop again (fcur came from the top of, then the algorithm stops—no
other graph in the queue can be better tiGan).

3. Take a cycle ofgc,r (0ne must exist, otherwise we would have not reached this step),
namelyv = (Xa;, — Xa, = ... = Xag.1)» With & = ag,1.
4. Fory=1,...,q9,do

(a) Mark on#g,, that the arcXa, — Xa,., is prohibited. This implies that the branch
we are going to create will not have this cycle again.

(b) Recomputég,s) from (Geur, Scur) such that the new parent setXyf , in G com-
plies with this new/ . This is done by searching in the cad@Xa,, ;,Ma,,,) for
the best parent set. If there is a parent set in the cache that satigfiethen

— Include the triple( G, Heyr, S) into Q.5

(c) Mark on H, that the arcXs, — Xa,,, Must be present and that the sibling arc
Xa ., — X, Is prohibited, and continue the loop of step 45tep 4c forces the
branches that we create to be disjoint among each gther.

There are two considerations to show the correctness of the methodweirsted to guarantee
that all the search space is considered, even though we do not explgitighsthrough all of it.
Second, we must ensure that the same part of the search space iscaesispd more than once, so
we do not lose time and know that the algorithm will finish with a best globallgrajpe search is
conducted over all possible graphs (not necessarily DAGs). Theegdeontains the subspaces (of
all possible graphs) to be analyzed. A triplg, #, s) indicates, througtt{, which is this subspace.
H is a matrix containing an indicator for each possible arc. It says if an aliovgeal (meaning it
might or might not be present), prohibited (it cannot be present), or giéed(it must be present) in
the current subspace of graphs. Thtiscompletely defines the subspacésands are respectively
the best graph insid& (note thatG might have cycles) and its score value (which is an upper bound
for the best DAG in this subspace).

In the initialization stepQ begins with a triple wherg{ indicates that every arc is allow&do
all possible graphs are within the subspace of the infiialn this moment, the main loop starts and
the only element o is put into( Geur, Heur, Scur) @Ndseyr is compared against the best known score.
Note that asjeyr is the graph with the greatest score that respgggs, any other graph within the
subspace defined b, will have worse score. Therefore sf, is less than the best known score,
all this branch represented b, may be discarded (this is thmundstep). Certainly no graph
within that subspace will be worth checking, because their scores arthbas.,,.

5. One may check the acyclicity of the graph before including the triple in tleeies We analyze this possibility later
on.

6. In fact, the implementation may sef with possible known restrictions of arcs, that is, those that are known to be
demanded or prohibited by structural constraints may be included in thé iHitia
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If Geur has score greater thages;, then the graplte,, is checked for cycles, as it may or may
not be acyclic (all we know is thag,, is a relaxed solution within the subspagg,;). If it is
acyclic, thenGe, is the best graph so far. Moreover, if the acydllg, was extracted from the top
of Q, then the algorithm may stop, as all the other elements in the queue have lone(tbés is
guaranteed by the priority of the queue). Otherwise we restart the lsape &annot find a better
graph within this subspace (the acyclig,, is already the best one by definition). On the other
hand, if Geur is cyclic, then we need to divide the spaélg, into smaller subcases with the aim of
removing the cycles ofjcy (this is thebranchstep). Two characteristics must be kept by the branch
step: (i) Hcur must be fully represented in the subcases (so we do not miss any gragh()i) the
subcases must be disjoint (so we do not process the same graph mooa¢kanA possible way
to achieve these two requirements is as follows: let the ayeléXa, — Xa, — ... = Xa,,,) b€ the
one detected i, We createy subcases such that

e The first subcase does not contaiy) — Xa, (but may contain the other arcs of that cycle,
that is, we do not prohibit the others).

e The second case certainly contaias — Xa,, butXa, — X, is prohibited (so they are disjoint
because of the difference in the presence of the first arc).

¢ (And so on such that) Theth case certainly contair)s,y — Xay,, for all y < yand prohibits
Xa, — Xa,,,- This is done until the last element of the cycle.

This is the same idea as the inclusion-exclusion principle, but applied heeedochof the cycle. It
ensures that we never process the same graph twice, and also thatwvaltthe graphs, as by the
union of the mentioned sets we obtain the origifial Because of that, the algorithm runs at most
i IC(X)| steps, wheréC(X;)| is the size of the cache fof (there are not more ways to combine
parent sets than that number). In practice, we expedidbadstep to be effective in dropping parts
of the search space in order to reduce the total time cost.

The B&B algorithm as described alternately picks elements from the top amdfi@bottom of
the queue (the percentage of elements from the bottom is controlled by theanametebotton).
In terms of covering all search space, we have to ensure that all eleofiimésqueue are processed,
no matter the order we pick them, and that is enough to the correctness tfdhthan. However,
there is an important difference between elements from the top and the botpmletoents im-
prove the upper bound for the global score, because we know thgtabal score is less than or
equal to the highest score in the queue. Still, the elements from the top éamumove the lower
bound, as lower bounds are made of valid DAGs, and the first found D& the top is already
the global optimal solution (by the priority of the queue). In order to updatetae lower bound,
elements from the bottom can be used, as they have low score with (usuallyssbspaces, mak-
ing easier to find valid DAGs. In fact, we know that an element from the botitbnut a DAG,
will generate new elements of the queue whose subspaces have uppédrdgore less than that of
the originating elements, which certainly put them again in the bottom of the gUélig means
that processing elements from the bottom is similar to perform a depth-fansttsevhich is likely
to find valid DAGs. Hence, we guarantee to have both lower and upperdsatonverging to the
optimal solution.

In the experiments of Section 6, we have chosen the parainetirmsuch that one in three
iterations picks an element from the bottom of the queue. This choice h&ageottuned and has
been taken with the aim of increasing the chance of finding valid DAGs. Nateettery element

679



DE CAMPOS AND JI

from the top will certainly decrease the upper bound, while the elementstirerbottom may or
may not increase the lower bound. There is no obvious choice here:usa&ewer elements from
the bottom, then we improve the upper bound faster, but we possibly haeesa Wower bound,
which implies in less chance bbundingregions of the search space (which would help to improve
the upper bound in a faster way as well); on the other hand, if we use nemerts from the
bottom, then we increase the chance (even if there is no guarantee) ofingptioe lower bound,
but we spend less time improving the upper bound, which ultimately has to be gghtertil it
meets the lower bound. In other words, if the current best solution isdgireay good (in the sense
of being optimal or almost optimal—note that we do not know it when the methodisng),
then it is useless to pick elements from the bottom. Therefore, a possiblés{lt@approach is
to adaptively select the percentage of elements to pick from the bottom: in théeginning of
the algorithm, more elements are picked from the bottom. As time passes, as ¢ndappd gets
closer to the best current solution (it also becomes less likely to find bettgioss because the
chance that the current solution is already good gets higher with time), perttentage of elements
picked from the bottom should keep reducing until it reaches zero (orsilpewo). Currently we
have not implemented any strategy to modify the percentage of elements tipitkae from top
and bottom of the queue.

Two other ideas are worth mentioning regarding the B&B algorithm: (i) if we plcaly
perform local searches within subspaces using distinct starting poiatkvieer bound can be im-
proved (still this has its own computational cost, so it must be selectively) g@iné we do check
for acyclicity in the step 4b before inserting the triple into the queue, then itdsiiple to update
the current best solution earlier, and the algorithm still works. In this,cep 2 is unnecessary
because DAGs will never be inserted into the queue (given that we dhiaekinitial graph is not
already a DAG before starting the main loop). Still, we need to find the cycle tsée in step 3,
so to save computations we need to spend memory to store the cycle (preftaunlyin step 4b)
together with the triples of the queue. Hence, this idea trades some computtitiengr memory
usage) by a speed-up in finding some DAGSs to improve the lower bound.tiNdt{én most cases,
the graph that is checked in step 4b will not be a DAG anyway. While this matdit benefits the
improvement of the lower bound by spending some additional computation/mesoang prelim-
inary experiments have not shown any significant gain. However, thisl imde better analyzed,
as it may vary depending on implementation details.

The B&B can be stopped at any time and the current best solution as welugpar bound for
the global best score are available. This stopping criterion might be basagmber of steps, time
and/or memory consumption, percentage of error (difference betwgaer @and lower bounds).
This is an important property of this method. For example, if we are just lodkingn improving
solution, we may include in the loop ahto check if the current best solution is already better
than some threshold, which would save computational time. Still, if we run it untiide we are
ensured to have a global optimum solution.

The algorithm can also be easily parallelized. We can split the content ofitrgypgueue into
many different tasks. No shared memory needs to exist among tasks breatias its own version
of the cache. The only data structure that needs consideration is the, guléoh from time to time
must be balanced between tasks. With a message-passing idea that aimaidscis the gain of
parallelization is linear in the number of tasks.

Some particular cases of the algorithm are worth mentioning. If we fix arriogdéor the
variables such that all the arcs must link a node towards another noeder in the ordering (this
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is a common idea in many approximate methods), the proposed algorithm doesrfooin any
branch, as the ordering implies acyclicity, and so the initial solution is alreadpeht (only for
that ordering—recall that the number of possible orderings is expohentix The performance
would be proportional to the time to create the cache. Another important cagersame limits
the maximum number of parents of a node. This is relevant for hard problmmany variables,
as it would imply in a bound on the cache size.

ESS| adult breast car letter lung mush nurse wdbc zoo
01| 6.2 0.0 01 37 16996 75 09 2212 04
Memory 1 6.2 0.0 0.1 37 11501 5.9 08 2046 04
(in MB) 10 6.3 0.0 01 38 812.3 5.4 0.7 206.2 0.3
BIC | 1.8 0.0 00 23 0.3 0.5 0.4 5.3 0.1
0.1 | 89.3 00 00 4294 2056 3579 07 2891 1.7
Time 1 | 916 00 0.0 4404 1398 2787 0.7 2692 1.7
(in sec.) 10 | 91.6 00 00 4381 1098 2689 0.7 2763 1.7
BIC| 674 00 0.1 859.6 1.3 72.1 14 351 0.3

0.1 [ 2T74 2105 288 201 308 2240 plIZ2 2279 2I98
Number 1 2174 2105 2838 2201 2302 2236 2112 22738 2197
of Steps 10 217A4 210.4 28.8 220.1 229.8 2235 21]_2 227.9 219.6
BIC 2148 27.3 28.4 219.0 215.4 217A 1 210.9 220.7 213. 1
Worst-case 2179 2123 2838 2201 2311 2265 2112 2284 2201

Table 1: Memory, time and number of steps (local score evaluations) usedddhe cache. Re-
sults for BIC and BDeu with ESS varying from 0.1 to 10 are presented.

6. Experiments

We perform experiments to show the benefits of the reduced cacheaetl space. Later we show
some examples of the use of constramtBirst, we use data sets available at the UCI repository
(Asuncion and Newman, 2007). Lines with missing data are removed atidwous variables are
discretized over the mean into binary variables. The data set@dudt (15 variables and 30162
instances)breast(10 variables and 683 instancesgr (7 variables and 1728 instancdsiter (17
variables and 20000 instanceking (57 variables and 27 instances), mushroom (23 variables and
1868 instances, denoted byush), nursery (9 variables and 12960 instances, denotexluibyg,
Wisconsin Diagnostic Breast Cancer (31 variables and 569 instareested bywdbq, zoo (17
variables and 101 instances). The number of categories per variables from 2 to dozens in
some cases (we refer to UCI for further details).

Table 1 presents the used memory in MB (first block), the time in secondsn@édock) and
number of steps in local score evaluations (third block) for the cachstreation, using the prop-
erties of Section 4. Each column presents the results for a distinct datans#iffetent lines we
show results for BDeu with ESS equals to 0.1, 1, 10, and for BIC. Thewinist-casepresents
the number of steps to build the cache without using Theorems 4 (for BIG/&i@ 9 (for BDeu),
which are the theorems that allow the algorithm to avoid computing every sofgsatents. As we
see through the log-scale in which they are presented, the reduction irenafréteps has not been

7. The software is available online in the web addietps/www.ecse.rpi.edu/ ~ cvrl/structlearning.html
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exponential, but still saves a good amount of computations (roughly heieofrork). In the case
of the BIC score, the reduction is more significant. In terms of memory, trgeudaarly increases
with the number of variables in the network (lung has 57 and wdbc has &bies).

ESS| adult breast car letter lung mush nurse wdbc Z00
Max. 01 |21(4) 1.0(1) 0.71) 45() 01(2) 41(5) 1.23) 1.32) (@4
Number 1 | 24(4) 1.01) 1.002) 52(6) 04(2) 44(7) 1.7(3) 1.7(3) (@9
of Parents 10| 3.3(5) 1.0(1) 1.9(2) 5.9(6) 3.0(4) 4.8(8) 2.1(3) 3.1(4) (34

BIC | 2.8(5) 1.0(1) 13(2) 6.3(7) 2.1(3) 4.1(4) 1.83) 27(3) (38
Worst-case 14.0 9.0 6.0 16.0 610 22.0 8.0 8.0 16.0
Final Size 0.1 24.2 21.5 21.1 28.2 20.2 28.5 21.9 23.6 23.3
of the 1 24.8 21.9 21.6 29.0 20.8 28.9 22.4 24.9 24.4
Cache 10 26.3 23.3 23.0 210.5 210.7 29.8 23.5 212.1 28.9

BIC 29.3 24.7 24.5 215.3 211.5 213.0 25.6 212.9 210.9
Worst-case 217.9 212.3 28.8 220.1 231.1* 226.5 211.2 228.4* 220.1
Implled 0.1 254.1 213.3 26.3 2129.0 28.2 21757 211.6 290.3 239.3
Search 1 2621 2171 283 21448 2331 21860 2154 21327 2603
Space 10| 2916 2332 2206 21761 26120 22218 227.3 23751 21507
(approx.) BIC 271 223 210 2188 2330 2180 217 2216 2111
Worst-case 2210 290 242 2272 21441* 2506 272 2727* 2272

Table 2: Final cache characteristics: maximum number of parents (avésagode; between
parenthesis is presented the actual maximum number), actual cachensizepproxi-
mate) search space implied by the cache. Worst-cases are preseictad parison (those
marked with a star are computed using the constraint on the number of piraintsas
applied tolung andwdbq. Results of BIC and BDeu with ESS from 0.1 to 10 are pre-

sented.

The benefits of the application of these results imply in performance gain fioy adgorithms
in the literature to learn Bayesian network structures, as long as they asdlytaavork over the
(already precomputed) small cache. In Table 2 we present the fina¢ characteristics, where
we find the most attractive results, for instance, the small cache sizesowhgrared to the worst
case. The first block contains the maximum number of parents per naglaged over the nodes,
and the actual maximum between parenthesis). The worst-case is the totsmef nodes in the
data set minus one, apart frdomg (where we have set a limit of at most six parents) amtbc
(with at most eight parents). The second block shows the cache sieadbrdata set and distinct
values of ESS. We also show the results of the BIC score and the wekstsalues for comparison.
We see that the actual cache size is smaller (in orders of magnitude) thaorgtecase situation.
It is also possible to analyze the search space reduction implied by thedts ®slooking the
implications to the search space of structure learning. We must point oubyhsgarch space
we mean all the possible combinations of parent sets for all the nodestuBirgrsome of these
combinations are not DAGs, but are still being counted. However, threréng considerations:
(i) the precise counting problem is harder to solve (in order to give thet esemrch space size),
and (ii) many structure learning algorithms run over more than only DAGsusecthey need to
look at the graphs (and thus combinations of parents) to decide if theyyehkceor not. In these
cases, the actual search space is not simply the set of possible DAGgheugh the final solution
will be a DAG. Still, some algorithms might do a better job by using other ideas oflsieg for
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the best structure instead of looking to possible DAGs, which might imply in a smeadlest-case
complexity (for instance, the dynamic programming method runs over sulfseisables, which

are in number 9.

B&B DP oS HC
network Score gap time | score time| score time| score time
adult -286902.8 5.5% 150.3 0.0% 0.77| 0.1% 0.17| 0.5% 0.30
breast -8254.8 0.0% 0.01| 0.0% 0.01] 0.0% 0.01] 0.0% 0.00
car -13100.5 0.0% 0.01| 0.0% 0.01| 0.0% 0.01| 0.2% 0.00

O letter -173716.2 8.1% 574.1 -0.6% 22.8| 1.0% 0.75| 3.7% 0.30
o lung -1146.9 25% 907.1 Fail Fail | 1.0% 0.13] 0.7% 0.05
mushroom| -12834.9 15.3% 239.8 Fail Fail | 1.0% 0.12| 4.8% 0.05
nursery -126283.2 0.0% 0.04| 0.0% 0.04| 0.0% 0.04| 0.03% 0.06
wdbc -3053.1 13.6% 333.5| Fail Fail | 0.8% 0.13| 0.9% 0.02
Z00 -773.4 0.0% 52 | 0.0% 35| 1.0% 0.03] 0.6% 0.00
adult -288591.2  0.0% 92.1| 0.0% 0.75| 0.1% 0.21| 0.3% 0.32
breast -8635.1 0.0% 0.02| 0.0% 0.01] 0.0% 0.01] 0.0% 0.00
o car -13295.0 0.0% 0.01| 0.0% 0.00/ 0.0% 0.00| 0.1% 0.01
CHD' letter -1819415 57% 375.75-01% 7.6 | 0.1% 0.27| 21% 0.27
g)) lung -1731.9 0.0% 0.22| Faill Fail | 0.0% 0.11| 0.0% 0.05
W mushroom| -12564.2 14.7% 382.4 Fail Fail | 0.2% 0.15| 53% 0.05
nursery -126660.4  0.0% 0.06| 0.0% 0.04] 0.0% 0.04] 0.1% 0.06
wdbc -3558.6 44% 4941 Fal Fail | 1.4% 0.05| 1.3% 0.01
Z00 -1024.5 0.0% 0.09| 0.0% 31| 0.8% 0.01] 1.0% 0.00
adult -286695.2 4.5% 203.0 0.0% 0.76| 0.1% 0.22| 0.3% 0.34
breast -8254.3 0.0% 0.02| 0.0% 0.01] 0.0% 0.01] 0.0% 0.00
car -13145.3  0.0% 0.01| 0.0% 0.00| 0.0% 0.00| 0.05% 0.00
T letter -178635.2 6.7% 520.2 -0.7% 9.9 | 0.0% 0.34| 2.1% 0.27
% lung -1249.7 0.0% 0.61| Faill Fail | 0.1% 0.12| 0.1% 0.05
W mushroom| -12097.0 16.7% 381.5 Fail Fail | 0.2% 0.19| 42% 0.05
nursery -126212.7 0.0% 0.06| 0.0% 0.04| 0.0% 0.04] 0.1% 0.05
wdbc -3175.9 11.2% 471.1) Faill Fail | 0.7% 0.06| 1.0% 0.02
Z00 -794.1 0.0% 14 | 00% 34| 1.1% 0.02) 87% 0.00
adult -285014.5 11.8% 213.8 -0.1% 0.88| 0.04% 0.24| 0.5% 0.33
breast -8130.2 0.0% 0.04| 0.0% 0.01] 0.0% 0.00] 0.3% 0.00
o car -13038.6  0.0% 0.03| 0.0% 0.00| 0.0% 0.00| 0.03% 0.00
T letter -174111.8 8.7% 1250| -0.4% 22.3| 0.1% 0.84| 1.8% 0.32
8 lung -957.2 11.7% 2118| Fail Fail | 3.3% 1.38| 23% 0.1
W  mushroom| -11924.0 22.7% 587.8 Fail Fail | 0.1% 0.43| 24% 0.07
nursery -125846.5 0.0% 0.14| 0.0% 0.04| 0.0% 0.04| 0.1% 0.06
wdbc -2986.2 22.2%  1938| Fail Fail | 0.6% 28| 1.4% 0.23
Z00 -697.2 13.2% 367.7 -03% 50| 1.4% 01| 0.9% 0.00

Table 3: Comparison of scores among B&B, DP, OS and F@l.means that it could not solve the
problem within 10 million steps or because of memory limit (4GB). DP, OS and ldf&sc
are in percentage w.r.t. the score of B&B (positive means worse than B&Biegative
means better). Each entry with @@ means that the result, in that instance, was exactly
equal to the B&B result (in terms of the score). Times are given in seconds.
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An expected but important point to emphasize is the correlation of the priorthéttime and
memory to build the cache. It would be expected that, as larger ESS (anthéhpsor towards
the uniform) as slower and more memory consuming is the method. That is besrmosthing
the different parent sets by the stronger prior makes harder to seeddigrences in scores, and
consequently the properties that would reduce the cache size areféesivef However, this is not
quite evident from the results, where the relation between ESS and time/memotryclear. Yet it
must be noted that the two largest data sets in terms of number of varialiigadwdbg were
impossible to be processed without setting up other limits such as maximum nungaenfs or
maximum number of free parameters in the node (we have not used any lithiefother data sets).
We used an upper limit of six parents per nodelfmrg and eight fowdbce This situation deserves
further study so as to clarify whether it is possible to run these computatiolzsge data sets and
large ESS. It might be necessary to find tighter bounds if at all possildejghstronger results
than Theorem 9 to discard unnecessary score evaluations earlier ontipgitations. Nevertheless,
the main goal of this present work is not to study the impact of ESS on learingo present
properties that improve the performance of learning methods.

In Table 3, we show results of four distinct algorithms: the B&B describedeictiSn 5, the
dynamic programming (DP) idea of Silander and Myllymaki (2006), the hill-cligi§itC) method
starting with an empty structure, and an algorithm that picks variable orderamglomly and then
find the best structure satisfying that ordering, that is, DAGs whereragpect the ordering of the
variables (there is no arc connecting a node to its predecessors in #ringjd This algorithm
(named OS) is similar to K2 algorithm with random orderings, but it is alwaygbbecause a
global optimum is found for each ordering (we use one million of orderirgsje that OS performs
better than HC in almost all test cases. We have chosen to analyze the@#S fgiven that the
properties have provided greater reduction in the search space in selsarad BDeu with ESS
equals to 0.1, 1 and 10. It is clear from the results of ESS equals to 10 ¢hBi&B procedure
struggles with very large search spaces, and the same might happearfdasger ESS.

The scores obtained by each algorithm (in percentage against the Wahireeal by B&B) and
the corresponding time are shown in Table 3 (excluding the cache caimtju@ limit of ten mil-
lion steps is given to each method (steps here are considered as the ofigumies to the cache).
It is also presented the reduced space where B&B performs its searglellaas the maximum
gap of the solution. This gap is obtained by the relaxed version of the pnotWée can guarantee
that the global optimal solution is within this gap (even though the solution foundeoB&B may
already be the best, as it happens, for example, in the first line of the.tstb)the reduced cache
presented here, finding the best structure for a given orderingyidagt; so it is possible to run OS
over millions of orderings in a short period of time. Some additional commentsath. DP could
not solvewdbcor lung even without the limit in number of steps, because it has exhausted 16GB
of memory. Hence, we cannot expect to obtain answers in larger ¢dsegver, it is clear that (in
a worst case sense) the number of steps of DP is smaller than that of B&Bhiarbehavior can
be seen in data sets with small number of variables. Nevertheless, B&B allgftounds some
regions without processing them, provides an upper bound at eactioiterand does not suffer
from memory exhaustion as DP. It is true that B&B also uses memory incrdagfitigere are not
good bounds, but this case can be tackled by (automatically) switchingdrethve described B&B
and a full depth-first sear¢hThis makes the method applicable even to very large settings. When

8. Our implementation is able to stop the B&B and to switch to a full depth-fimtche but this behavior was not
necessary in the experiments because the memory requirementsoiviare imtense.
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n is large (more than 35), DP will not finish in reasonable time, and hence wilprovide any
solution, while B&B still gives an approximation and a bound to the global optimunoufBS, if
we sample even more orderings, then its results improve and the global optinfiommdsalso for
theadultdata set. Still, OS provides no guarantee or estimation about how far is tla gptlomum
(here we know that the optimum has been achieved because of the solutienexact methods).
It is worth noting that both DP and OS are also benefited by the smaller cattheugh we are
discussing only four algorithms, performance gain from the applicationeopthperties in other
algorithms is expected as well.

network time(s) cache size space
adult 0.26 114 39
car 0.01 14 52
letter 0.32 233 51
lung 0.26 136 51
mushroom| 0.71 398 88
nursery 0.06 26 32
wdbc 361.64 361 »
Z00 8.4 1697 211

Table 4: B&B procedure learning TANs using BIC. Time (in seconds) totiedglobal optimum,
cache size (number of stored scores) and (reduced) space feswttoh s

The last part of this section is dedicated to some test cases with constraibks.4Tshows the
results when we employ constraints to force the final network to be a Tigreented Naive Bayes.
Here the class variable is isolated in the data set and constraints are incdudkestebed in Section
3. Note that the cache size, the search space and consequently the titve thesproblems have
substantially decreased. Finally, Table 5 has results for random dataitetredefined number
of nodes and instances using the BIC score. A randomly created Bayesti&ork with at most
3n arcs (wheren is the number of nodes) is used to sample the data. Because of that, wéeare ab
to generate random structural constraints that are certainly valid fotrttéBayesian network
(approximatelyn constraints for each case). The table contains the total time to run the praistem
the size of the cache, together with the results when using constraints. Botieeltode was run in
parallel with a number of tasks equalsrtootherwise an increase by a factorroimust be applied
to the results in the table. Each line contains the mean and standard deviationesketeitions
(using random generated networks) for time and cache size with and witbiestraints (using the
same data sets in order to compare them). We can see that the gain is teouaibcases. The
B&B method was able to find a global optimal solution in all but the cases with omérbd nodes,
where it has achieved an approximate solution with error always less thé# (€his amounts to
40% of the test cases with 100 nodes). We point out that the other extiwidnge have analyzed
based on dynamic programming cannot deal with such large networksdsecBboth memory and
time costs. There is an increase in computational time from 30 to 100 nodesydsutmore from
100 to 500 instances (considering the data sets with 70 and 100 nodéeshappens because the
properties that reduce the cache size and search space are mucHfeuineeainder small-sized
data sets. However, we are not considering the improvement in acoubey using constraints,
but just the computational gain. Itis not trivial to measure the quality of aéshbstructure, because
the target of the methods is the underlying probability distribution, and distincitares may lead
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to good results in fitting such distribution. For instance, comparing number whing arcs has
only meaning if one is interested in the structure by itself, and not in the fitidhe anderlying
distribution. This topic deserves attention, but it would bring us far fronfdbes of this study.

unconstrained constrained

nodesq)/ time(sec) cache size time(sec) cache size
instances| mean std.dev| mean std.dev] mean std.dev| mean std.dev.
30/100 0.07 0.02 | 49.6 9.1 0.04 0.01 | 44.3 8.98
30/500 3.70 1.18 | 75.6 16.6 2.33 0.73 | 61.4 17.7
50/100 0.31 0.08 | 77.9 9.6 0.20 0.04 | 66.1 6.71
50/500 37.1 10.8 | 102.5 23.0 23.2 6.86 | 83.0 17.7
70/100 1.91 0.82 | 127.5 18.1 0.97 0.32 | 108.3 13.6
70/500 | 293.3 995 | 137.3 22.2 | 176.3 62.6 | 111.8 14.5
100/100 85.0 29.3 | 2534 27.7 4.44 1.06 | 199.5 21.1
100/500 | 2205.6 534.4| 204.6 32.1 | 14148 419.2| 168.0 21.3

Table 5: Results on ten data sets per line generated from random net®otksnean and standard
deviation of time to solve (with an upper limit of 20 million steps) and size of the c@che
number of scores) are presented forleemalunconstrained case and for the constrained
cases (over the same data sets).

7. Conclusions

This paper describes novel properties of decomposable score fumttidearn Bayesian network
structure from data. Such properties allow the construction of a cachelvibssible local scores
of nodes and their parents without large memory consumption, which carb&atesed by search-
ing algorithms. For instance, memory consumption was a bottleneck for sonréhatgoin the
literature, see, for example, Parviainen and Koivisto (2009). This impliascionsiderable reduc-
tion of the search space of graphs without losing the global optimal stay¢hat is, it is ensured
that the overall best graph remains in the reduced space. In factdhees memory and search
space potentially benefits many structure learning methods in the literatunegamal/e conducted
experiments with some of them.

An algorithm based on a branch-and-bound technique is describéch imkegrates structural
constraints with data. The procedure guarantees global optimality withotélpescore function. It
is an anytime procedure in the sense that the error of the current solutimmsantly reduced either
by finding a better solution or by reducing the upper bound for the glgigchom. If stopped early,
the method provides the current solution and its maximum error. This carebd ii®ne wants to
integrate it with an expectation-maximization (EM) method to treat incomplete datasdtsuch
characteristic is usually not present in other exact structure learning dsethothe EM method,
the global structure learning procedure ensures that the maximization stepeistrapped by a
local solution, and the anytime property allows the use of a generalized Eddit@e considerably
the computational cost.

Because of the properties and the characteristics of the B&B method, it isefimient than
dynamic programming state-of-the-art exact methods for large domainsh@Methrough exper-
iments with randomly generated data and public data sets that problems with umtal&$ can
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be exactly processed in reasonable time, and problems with 100 nodesndiechwithin a small
worst-case error. Dynamic programming methods are able to treat lessitharigbles. Described
ideas may also help to improve other approximate methods and may have intepeatitical ap-
plications. We show through experiments with public data sets that requirenfemismory are
small, as well as the resulting reduced search space. Of course we expect to exactly solve
problems for considerably large networks, still the paper makes a rélstgm towards solving
larger instances. We can summarize the comparison with the dynamic prograidesngs fol-
lows: if the problem has few variables, dynamic programming is probablyatest method (the
branch-and-bound method will also be reasonably fast); if the probdesmmiedium size, the branch-
and-bound method might solve it exactly (dynamic programming will mostly fail soven); finally,
if the problem is large, the branch-and-bound method will eventually givepwroximation (and
its worst-case error), while the standard dynamic programming idea will fail.

There is certainly much further to be done. One important question is whbndounds of
the theorems in Section 4 (more specifically Theorem 9) can be improved.owaoare actively
working on this question. Furthermore, the experimental analysis cartdredex to further clarify
the understanding of the problem, for instance how the ESS affects thitsrds is clear that, for
considerably large domains, none of the exact methods are going tedufftbemselves. Besides
developing ideas and algorithms for dealing with large domains, the comparfistructures and
what define them to be good is an important topic. For example, accur#uy génerated networks
can be evaluated with real data. On the other hand, it does not ensuneettaae finding the
true links of the underlying structure, but a somehow similar graph thatupesda close joint
distribution. For that, one could use generated data and compare therssuagainst the one data
were generated from it. A study on how the properties may help fast xippate methods is also a
desired goal.
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