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Abstract

This paper explores the application of semi-qualitative probabilistic networks (SQPNs)
that combine numeric and qualitative information to computer vision problems. Our
version of SQPN allows qualitative influences and imprecise probability measures us-
ing intervals. We describe an Imprecise Dirichlet model for parameter learning and
an iterative algorithm for evaluating posterior probabilities, maximum a posteriori and
most probable explanations. Experiments on facial expression recognition and image
segmentation problems are performed using real data.

AMS Subject Classification: 68T37, 62F15, and 68T30.
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1 Introduction

Graphical models such as Bayesian Networks are becoming increasingly popular in
many applications. Such models provide compact structures to encode joint probabil-
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ity distributions for their variables, relying on a factorization of its conditional proba-
bility distributions. Qualitative probabilistic networks (QPNs) relax the precise prob-
ability values that are mandatory in Bayesian networks. No quantitative information
is demanded, and joint distributions are defined through qualitative relations among
variables and probability values (Druzdzel and Henrion, 1993; Wellman, 1990).

Semi-qualitative probabilistic networks (SQPNs) combine properties of standard
Bayesian networks and QPNs (Parsons and Dohnal, 1993; Renooij and van der Gaag,
2002; de Campos and Cozman, 2005a). The aim of this paper is to present an SQPN
formulation based on qualitative influences (Wellman, 1990) and probability intervals
(Walley, 1991), and to discuss its application to two computer vision problems: facial
expression recognition and image segmentation.

Although there are efficient algorithms for QPNs (Druzdzel and Henrion, 1993),
exact inferences in SQPNs are hard (de Campos and Cozman, 2005a). We introduce
an algorithm based on iterative search that converges to a local optimal solution. Pa-
rameter learning is also considered, when we want to estimate the probability measures
of conditional probability distributions given the structure of the network. We discuss
the ideas of de Campos and Cozman (2005a), where an SQPN prior is combined to
data through an Imprecise Dirichlet Model, and describe how to apply those ideas to
our computer vision domains.

Experiments on computer vision problems indicate the benefits of using the impre-
cise probabilities of SQPNs instead of the classical solutions. We show satisfactory
results while recognizing facial expressions and segmenting images. In both cases we
deal with real data and qualitative relations elicited by experts.

The paper is divided as follows. Section 2 reviews the basics of Bayesian net-
works and QPNs, and presents the definition of SQPN adopted in this work. Section
3 describes a fast and accurate algorithm for performing inferences, including poste-
rior probability queries, maximum a posteriori and most probable explanations, while
Section 4 explain the parameter learning procedure based on the Imprecise Dirichlet
Model. Computer vision experiments with real data are detailed in Section 5. Section
6 concludes the paper and indicates some paths for future work.

2 Semi-qualitative probabilistic networks

The objective of this section is to define our semi-qualitative probabilistic networks.
First, we review the ideas of Bayesian networks and QPNs that are used in the SQPNs.
Let X = {X1, . . . ,Xn} be a set of n categorical random variables such that Xi takes
values in the finite set {x1

i , . . . , x
ri
i }. For W ✓ X , the lowercase w represents a config-

uration for the variables in W, that is, w = {xki
i |Xi 2 W}, where indices ki are known.

We also assume an ordering for the categories of each variable, that is, for each Xi, we
have x

1
i < x

2
i < . . . < x

ri
i .

A Bayesian network is a pair (G,P), where: G = (VG, EG) is a directed acyclic
graph (DAG), with VG a collection of vertices associated to random variables of X
(a node per variable), and EG a collection of arcs; P is a collection of conditional
probability distributions p(Xi|PAi) where PAi are the parents of Xi in the graph (PAi

may be empty), respecting the relations of EG. In a Bayesian network every variable
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is conditionally independent of its non-descendants given its parents (Markov condi-
tion). This structure induces a single joint probability distribution by the expression
p(X ) =

Q
i p(Xi|PAi). For ease of expose, variables and nodes of the graph are used

interchanged, as there is an one-to-one relation between them.
A QPN is similar to a Bayesian network, but instead of probability distributions

p(Xi|PAi) we have a collection of qualitative constraints on probability values (no
numerical values are defined). The same Markov condition applies. Qualitative con-
straints are defined by influences and synergies (Wellman, 1990). In this paper we only
consider influences, as they are the most used type of qualitative constraint in the lit-
erature and they are easy to acquire from experts. Qualitative influences define some
knowledge about the category of a variable given the category of another.

Definition 1 Let Xa, Xb be variables such that Xa 2 PAb (Xa is parent of Xb). We

say that Xa influences Xb positively if

8ka > k

0
a, kb = 1, . . . , rb � 1 :

X

k>kb

p(x

k
b |xka

a , pa

0
b) �

X

k>kb

p(x

k
b |x

k0
a

a , pa

0
b) + �, (1)

where � � 0 is a constant and pa

0
b ranges over all configurations of parents except for

Xa, that is, Equation (1) must hold for each configuration pa

0
b of PAb \ {Xa}.

This roughly means that observing a greater category for Xa makes more likely to
have greater categories in Xb. If these constraints hold for � > 0, this influence is said
strong with threshold � (Renooij and van der Gaag, 1999). Otherwise, it is said weak

for �. A negative influence is obtained replacing the inequality operator � by  and
the sign of � to negative. A zero influence is obtained replacing the inequality operator
� by an equality operator. When applied to binary variables, summations of Equation
(1) disappear and we have a simpler formulation: p(x

2
b |x2

a, pa

0
b) � p(x

2
b |x1

a, pa

0
b) + �,

for all pa

0
b (greater value of Xa leads to a greater value of Xb).

Besides standard influences, we may deal with non-monotonic relations (Renooij
and van der Gaag, 2000). They happen when constraints hold only for some config-
urations of parents (but not all of them). For example, suppose we have three binary
variables such that Xb has Xa and Xc as parents and that p(x

2
b |x2

a, x

1
c) � p(x

2
b |x1

a, x

1
c)

holds, but p(x

2
b |x2

a, x

2
c) � p(x

2
b |x1

a, x

2
c) can not be stated. Hence we do not have a

positive influence of Xa on Xb, because it would be necessary to have both constraints
to ensure that Xa influences Xb positively. In this case, the category of Xc (the other
parent of Xb concerning a possible influence from Xa) is relevant and determines when
the constraint holds. In this case, a non-monotonic influence of Xa on Xb that holds
when Xc is x

1
c (but not x

2
c) might be stated.

In SQPNs, we allow qualitative relations to co-exist with probability intervals. One
may define that the probability measure of a node given its parents is within some
range:

Definition 2 Let Xi be a network variable, x

k
i one of its categories, pai a configuration

of Xi parents, li(pai)k
and ui(pai)k

constant numbers. A range constraint for x

k
i given

pai is

li(pai)k
 p(x

k
i |pai)  ui(pai)k

. (2)
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The values p(x

k
i |pai) are the parameters of the network. Networks with impre-

cise probability parameters (including this interval case) are known as credal networks
(Cozman, 2000). Their nodes are associated to random variables and conditional prob-
ability distributions are specified using closed convex sets of probability measures. We
adopt a definition of SQPN that combines influences with probability intervals:

Definition 3 An SQPN is a pair (G, C), where: G = (VG, EG) is a DAG, with VG

a collection of vertices associated to random variables of X (a node per variable),

and EG a collection of arcs; C is a finite collection of qualitative influences and range

constraints defined over conditional probabilities p

�
x

k
i |pai

�
, where x

k
i is a category of

variable Xi and pai is a configuration of the parents of Xi in G.

An SQPN represents a set of joint probability distributions that satisfy all con-
straints in the network. We assume that every joint probability distribution in the
convex hull of this set satisfy the Markov condition: variables are conditionally in-
dependent of non-descendants given their parents in the graph, which results in the
same factorization as in Bayesian networks: p(X ) =

Q
i p(Xi|PAi). This concept is

known as strong independence in the theory of sets of probabilities (Couso et al., 1999;
Cozman, 2000). Our SQPN is in fact a sub-case of a credal network under strong in-
dependence. However, sets of conditional probability distributions are not separately
specified, as usually assumed in credal networks (da Rocha and Cozman, 2002). We
instead have influences that involve parameters of different distributions (although in
the same node).

3 Inferences in SQPNs

A belief updating in an SQPN can be formulated as a multi-linear programming prob-
lem. The goal is to minimize/maximize a marginal or joint probability subject to influ-
ences and ranges.

Definition 4 Let X be the set of variables in an SQPN, Xq ✓ X be a set of query

variables with xq as its configuration, and Xe ✓ X \ Xq be the set of observed vari-

ables with xe as the observations. The belief updating query is the task of finding

argmin minp p(xq|xe) and argmax maxp p(xq|xe), where p is a probability distribu-

tion constrained by the SQPN.

In words, we want to find one joint probability distribution that satisfy all SQPN
constraints and that minimizes the probability of xq given xe (the same idea for the max-
imization). This query can be written using a multi-linear expression1 from Bayesian
network theory:

p(xq|xe) =

p(xq, xe)

p(xe)
=

P
Xi /2Xq[Xe

Q
i p

⇣
x

ki
i |pai

⌘

P
Xi /2Xe

Q
i p

⇣
x

ki
i |pai

⌘
, (3)

1We assume that the probability of evidence is greater than zero so as Equation (3) can be multiplied by
p(xe) to obtain a multi-linear equation.
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where x

ki
i and pai must comply with the corresponding xq and xe. Expression (3) to-

gether with influences and ranges constraints of the SQPN form a multi-linear program-
ming problem. Given the potentially huge number of multi-linear terms in Expression
(3) (the number of terms is exponential on the size of the network) and the fact that
probability values p(x

ki
i |pai) are not precisely known but defined through linear con-

straints of the SQPN, exact inferences are NPPP-complete (de Campos and Cozman,
2005b) and will eventually fail to obtain an answer in reasonable time.

One idea to solve this inference problem is to treat an SQPN as a (potentially large)
set of Bayesian networks over the same graph (but with distinct probability values)
and locally search into this set for the best configuration (da Rocha et al., 2003). Sup-
pose we want to maximize Expression (3), that is, maxp p(xq|xe), subject to the SQPN
constraints (p must comply with the SQPN constraints). If we fix the probabilities in
each conditional distribution of each node of the SQPN, we obtain a Bayesian network
and Expression (3) can be evaluated using standard Bayesian network techniques. The
maximum value over all such choices is the global optimum solution. However, the
number of Bayesian networks that an SQPN represents is huge and it is not possible to
look at all of them.

A simple but accurate idea is to perform an iterative local search (ILS). Start from
an initial feasible guess (it is possible to use linear programming to take a collection
of conditional distributions p(xi|pai) that satisfy the SQPN constraints) and evalu-
ate the query using any Bayesian network inference method (this is the initial value).
Now, choose a node (using some deterministic criterion like running cyclically amongst
nodes) and for the distributions of this node, allow the probability values p(xi|pai) to
vary (still according to the SQPN constraints) and take the best solution. Note that,
when we fix all distributions but those of a single node, Expression (3) becomes a
division of linear functions, because probability values of a single node never appear
multiplied together. As constraints (influences and ranges) are already linear, we can
apply fractional linear programming (there is no need to enumerate vertices). This is
particularly important when many constraints are specified, as the number of vertices
may be exponential in the number of constraints. So, we keep a current best solution
and each time a better value is locally found, we update the current solution. We stop
the process when there is no possible improvement among all nodes (taken one at a
time). The ILS algorithm finitely converges to a local optimum solution of the belief
updating query, as the feasible region induced by the network is a polytope (although
the objective function is multi-linear, all constraints are linear) and there are a finite
number of vertices (note that ILS walks through vertices). Taking care of ties in the
linear programs, the characteristics of the multi-linear program imply that the solution
is a local optimum (Lukatskii and Shapot, 2001).

This procedure is similar to the method proposed by da Rocha et al. (2003), but
our version is more general: we do not need to enumerate vertices neither assume
that sets of conditional distributions are separately specified. We also note that this
procedure works even with qualitative synergies as well as credal networks in general
(the only eventual change is to replace linear programming by convex programming if
non-linear convex constraints are used, but that does not change the characteristics of
the procedure as the latter shares all important features of the former).
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Another possible implementation of the ILS algorithm is obtained using a sym-
bolic variable elimination, where one collects all generated multi-linear constraints to
use in a multi-linear solver (de Campos and Cozman, 2004). Prior to the iterative pro-
cess, a symbolic variable elimination is executed supposing all probability values are
unknown. Then the procedure iteratively chooses nodes (one at a time) and replaces
the unknown probability values of the multi-linear program by fixed values, except
for values of the chosen node (that remain unknown and will be optimized). Now,
the only unfixed/unknown probability values pertain to a single node, which implies
that the multi-linear program becomes linear and can be solved as before. Eventually
we converge to a local optimum. The advantage of this implementation is that a sin-
gle symbolic variable elimination is performed, and then the multi-linear program is
reused at each iteration to create the local linear programs that are solved.

Now suppose we want to find the categories of variables in Xq that maximizes their
joint probability given observations xe:

Definition 5 Let X be the set of variables in an SQPN, Xq ✓ X be a set of query

variables, and Xe ✓ X \Xq be the set of observed variables with xe as the observations.

The maximum a posteriori query is the task of finding argmax max

Xq maxp p(Xq|xe),

where p is constrained by the SQPN.

We call this problem MPE (most probable explanation) when Xq = X (maximum
a posteriori or MAP is the general case). The ILS algorithm can also be used to solve
MAP and MPE queries. We just need to apply a simple reformulation (which we
call MAP-reformulation): for each Xi 2 Xq, create a new binary node Yi with Xi

as its sole parent such that
P

Xi
p(y

1
i |Xi) = 1 (this is the only constraint besides

simplex constraints that restrict the imprecise probabilities of node Yi). Although the
reformulated network has constraints

P
Xi

p(y

1
i |Xi) = 1 that are not influences neither

ranges, they are still linear and involve only probability values inside a single node.
Thus we use ILS to solve the query maxp p(yq|xe), where yq is the set {y1

i |Xi 2 Xq}. In
the solution of this belief updating query, p(y

1
i |Xi), for all i, act as indicator functions

of which categories the variables in Xq take (p(y

1
i |Xi) = 1 exactly when Xi takes the

desired MAP category, and zero otherwise).

Lemma 6 The belief updating query after a MAP-reformulation maxp p(yq|xe), where

yq = {y1
i |Xi 2 Xq}, also solves the MAP problem argmax max

Xq maxp p(Xq|xe).

Proof. First suppose we have a solution of maxp p(yq|xe) where some p(y

1
i |Xi) does

not concentrate in a single category of Xi, that is, there are x

j
i and x

k
i such that both

p(y

1
i |x

j
i ) > 0 and p(y

1
i |xk

i ) > 0. Now, note that p(yq|xe) =

P
Xi

p(y

1
i |Xi) · p(Xi, yq \

{y1
i }|xe), where the second factor of this multiplication does not depend on Yi. Hence,

if p(y

1
i |Xi) (which sums 1 over all Xi) does not concentrate on the greatest value of

p(Xi, yq \ {y1
i }|xe), then it is possible to find a greater value for the query p(yq|xe)

by concentrating p(y

1
i |Xi) on that value, which would be a contradiction. So the only

possible explanation is that p(x

j
i , yq \{y1

i }|xe) = p(x

k
i , yq \{y1

i }|xe), that is, xj
i and x

k
i

achieve the same result. In this case, the solution that concentrates on either p(y

1
i |x

j
i ) or

p(y

1
i |xk

i ) can be used (both obtain the same maximum), and without loss of generality,
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we assume that it concentrates on p(y

1
i |x

j
i ). Hence, because p(y

1
i |Xi) concentrates

in a single category of Xi (for all i), we have maxp p(yq|xe) = maxp p(xq|xe) =

max

Xq maxp p(Xq|xe), where xq is the solution of the MAP problem. 2

4 Learning with SQPNs and empirical data

In this section we briefly describe the learning procedure of de Campos and Coz-
man (2005a). Suppose we want to combine a domain knowledge elicited by an ex-
pert using an SQPN with a complete training data set. Let N be an SQPN convey-
ing the expert’s prior beliefs and D = {D1, . . . ,DN} a complete data set, where
Dt = {xk1

1,t, . . . , x
kn
n,t} is a sample of SQPN variables.

Our goal is to estimate the parameters of multinomial distributions on Xi|pai us-
ing both N and data. The Dirichlet distribution is a natural prior for p(Xi|pai), be-
cause it is conjugate with the multinomial distribution. A possible parameterization is
p(Xi|pai) /

Q
k p

�
x

k
i |pai

�s⌧ijk�1 for s � 0 and 8ij
P

k ⌧ijk = 1, where the hyper-
parameter s controls dispersion and hyper-parameters ⌧ijk control location (Walley,
1996). The proposal is to view the content of N as constraints on the hyper-parameters

⌧ijk of Dirichlet distributions, that is, ⌧ijk = pN (x

k
i |pai), with j = pai, subject to

SQPN constraints of N . This process is usually referred to as the Imprecise Dirichlet

Model (IDM) (Bernard, 2005; Walley, 1996). Using expectation as estimation, we have

p

�
x

k
i |pai

�
=

s⌧i(pai)k
+ ni(pai)k

s +

P
k ni(pai)k

, (4)

where ni(pai)k
are the counts from the data set, that is, ni(pai)k

is the number of samples
in D that contains both x

k
i and pai. As Equation (4) is linear on parameters p(x

k
i |pai)

and ⌧i(pai)k
, the result is a posterior credal network on which parameters p(x

k
i |pai)

must satisfy both Equation (4) and constraints of N (de Campos and Cozman, 2005a).
We do not have a posterior SQPN because, according to our definition of SQPN, Equa-
tion (4) is neither an influence nor a range constraint. Nevertheless, the inference al-
gorithms of Section 3 can be directly applied to this posterior credal network. Note
that we are globally dealing with constraints and parameters (Cano et al., 2007), as we
do not estimate “local” bounds for p(x

k
i |pai) but keep all relevant information in the

model, which is then processed during inferences.

5 Computer Vision Applications

In this section we present two applications of SQPNs to computer vision problems.
Both examples involve real data and indicate the benefits of using SQPNs in such do-
mains. First we describe a recognition problem of facial expressions, where an SQPN
models expert’s prior beliefs. Parameter learning and belief updating queries are per-
formed to achieve recognition results. Then we present an image segmentation problem
where an SQPN is used to obtain a most probable explanation of edges and vertices that
segment the image.
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5.1 Facial Expression Recognition

Consider a problem of recognizing facial expressions from real image data (Pantic and
Rothkrantz, 2000; Fasel and Luettin, 2003). The Facial Action Coding System (Ekman
and Friesen, 1978) is the most commonly used system for facial behavior analysis.
Based on this system, facial expressions can be decomposed into a set of Action Units
(denoted as AUs), which are related to contractions of specific sets of facial muscles.
An automatic system for facial AU recognition has applications in human behavior
science, human-computer interaction, interactive games, entertainment, and psychiatry.
In this work, we intend to recognize 14 commonly occurring AUs.1 Details about AUs
and their definitions can be found in (Ekman and Friesen, 1978).

Based on the study in (Tong et al., 2007), there are semantic relationships among
AUs. On the one hand, some AUs may always happen together to show a meaningful
facial expression. For example, AU6 (cheek raiser) tends to occur together with AU12

(lip corner puller) when someone is smiling. On the other hand, some AUs may be
mutually exclusive. For instance, AU25 (lips part) never happens simultaneously with
AU24 (lip presser) since they are activated by same facial muscles but their motion
directions are opposite. Instead of recognizing each AU individually, a probabilistic
network can be employed to explicitly model relationships among AUs.

Figure 1: Network for the AU recognition problem.

We use an SQPN network with 28 binary nodes. Figure 1 depicts its structure.
There are 14 gray nodes associated to AUs, and 14 bright nodes associated to computer
vision measurements (one measurement node for each AU node). The category au

2
i is

the true category, meaning that AUi is active (or present), while au

1
i is false (AUi is in-

active or absent). Note that every link between AU nodes has a sign, which is provided
by a domain expert. The sign indicates if there is a positive or negative qualitative influ-
ence between the corresponding AUs. For example, it is difficult to do AU2 (outer brow
raiser) without AU1 (inner brow raiser), but we can do AU1 without AU2. Thus there is

1
AU1 (Inner brow raiser), AU2 (Outer brow raiser), AU4 (Brow lowerer), AU5 (Upper lid raiser), AU6

(Cheek raiser and lid compressor), AU7 (Lid tightener), AU9 (Nose wrinkler), AU12 (Lip corner puller),
AU15 (Lip corner depressor), AU17 (Chin raiser), AU23 (Lip tightener), AU24 (Lip Presser), AU25 (Lips
part), and AU27 (Mouth stretch).
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a positive influence of AU2 on AU1. We also extract some generic constraints provided
by domain experts: AU27 is not usual, so P (au

2
27)  0.5; if a node AUi has more than

one parent node and all of them have positive influence, then P (au

2
i |pa

2
i ) � 0.8, where

pa

2
i is the configuration where all parents are active; if a node AUi has more than one

parent node and all of them have negative influence, then P (au

2
i |pa

2
i )  0.2.

Real data from the DFAT-504 database (Kanade et al., 2000) are used for training.
This data set contains more than 8000 frames that are manually labeled into AU la-
bels (presence or absence), frame by frame. Hence, we have 14 AU labels for each
frame. Besides the manually coded AU labels, we also obtain the measurements of
AUs using the computer vision techniques of Bartlett et al. (2006), which delivers 14
AU measurements for each frame. 500 frames are randomly selected from the data set
for testing. From the remaining frames, two sample sets are taken, where 100 and 1000
frames are randomly chosen for training. With small amount of data, AU recognition
tends to be harder. Thus, we can verify how effective is the SQPN in these challenging
environments.

First, we use a Bayesian network with the same structure of our SQPN and we
learn parameters using a standard maximum likelihood estimation. Standard inference
techniques are performed for each AU in each frame of the testing set. We evaluate the
probability of each AU given the observations from computer vision measurements.
Then, our SQPN is employed on the same scenarios. The learning idea of Section 4
is followed by the inference procedure described in Section 3. For each AUi of each
frame, we find interval probabilities [minp p(au

k
i |o),maxp p(au

k
i |o)] for the presence

(k = 2) and for the absence (k = 1) given the computer vision measurements o. Only
cases with interval dominance are analyzed, that is, the maximum probability of pres-
ence is lesser than the minimum probability of absence (or vice-versa). In such cases,
it is possible to decide between presence or absence without further considerations.
The results for the Bayesian network are presented in Table 1, as well as results for
the SQPN. Column 2 shows the percentage of cases in the testing set that the SQPN
inference achieves interval dominance. Positive rate (columns 3 and 5) indicate the per-
centage of well recognized active AUs, while negative rate (columns 4 and 6) show the
percentage of well classified inactive AUs. We must note that cases are partitioned by
the SQPN inference into interval-dominance cases and uncertain cases (where the de-
cision using the intervals generated by the SQPN is harder and depends on the strategy
we choose). Results on interval-dominance cases show that recognition rate is better
when the SQPN is employed, which can be viewed as the following: the SQPN infer-

ence gives a measure of certainty about its answer. In cases where inference is “sure”

(interval dominance happens), the result is generally better than that of a Bayesian

network. A study about cases where interval dominance does not hold and the best
strategy to take is left for future work.

5.2 Image Segmentation

Image segmentation is a difficult low level problem in computer vision. It aims to
partition an image into constituent regions of interest. Many approaches have been
proposed to deal with this problem. Most of them are data-driven deterministic ap-
proaches, which may fail to produce satisfactory segmentation when there are shadow,
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Dataset Interval Bayesian network SQPN
Size Dominance Positive Negative Positive Negative
100 49.2% 51.9% 98.1% 61.5% 97.4%
1000 54.8% 57.7% 99.4% 69.1% 99.8%

Table 1: Comparison between Bayesian network/max. likelihood and SQPN/Imprecise
Dirichlet Model for AU recognition. Positive and negative rates are reported.

occlusion, cluttering, and/or noise in the image data (Gonzalez and Woods, 2002). We
focus on edge-based segmentation methods that exploit edge information to partition
the image (Caselles et al., 1997; Kass et al., 1988).

We present a framework based on SQPNs where image segmentation is performed
using a most probable explanation inference. The SQPN considers uncertainties in the
information that are not captured by other approaches. We use a two-layer SQPN based
on edge and vertex information obtained with an over-segmented edge map. This edge
map consists of edge segments and vertices, where a vertex is a position where three
or more edges intersect each other. Figure 2(a) describes a simple case of edge map.
The SQPN structure of Figure 2(b) is constructed from that edge map: parents of a
vertex node are the edges that intersect to form the vertex. Edges are denoted by Ej

(the whole set of edges is E) and vertices are denoted by Vt (the whole set is V). The
shadowed nodes are related to computer vision measurements and have as parent the
corresponding edges and vertices. They are denoted by MEj and MVt .

(a) Small edge map. (b) SQPN for the edge map.

Figure 2: Edge map showing the relation between edges and vertices and the corre-
sponding SQPN structure that is derived from the edge map.

Every node in our SQPN is binary: e

2
j means the edge belongs to the object bound-

ary that we are looking for, and e

1
j means it does not. v

2
t and v

1
t have the same meaning

for vertices. So, e2
j and v

2
t are the true categories, and e

1
j and v

1
t are the false categories

with respect to the boundary pertinence. Furthermore, shadowed nodes of Figure 2(b)
are image measurements obtained from computer vision techniques for both edge and
vertex nodes. The average intensity gradient magnitude is used as measurement for
edge segments (nodes MEj ) and the corner detector of Harris and Stephens (1988) is
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employed to measure vertices (nodes MVt). The vertex measurement nodes are dis-

cretized according to the corner response. If the corner response is above a threshold
and it is a local maximum, a corner is detected and the measurement node MVt is
observed as m

2
Vt

. Otherwise it is set to m

1
Vt

.
Conditional probability distributions p(MVt |Vt) describe the uncertainty between

the category of a vertex Vt and its measurement MVt . They are defined as p(m

2
Vt
|v2

t ) =

0.99 and p(m

2
Vt
|v1

t ) = 0.1. This roughly means that if a corner is detected, the corre-
sponding vertex node Vt has a high probability of being v

2
t (which means it belongs to

the boundary). Still a detected corner may not be part of the desired boundary.
In general, the boundary of an object should be simply connected, i.e., an edge

segment should intersect with at most one edge segment at its end points. This con-
straint is imposed on conditional probability distributions between the edge nodes and
the related vertex nodes as follows:

p(v

2
t |paVt

) =

8
<

:

� 0.5, if exactly two parent nodes are true;
0.3, if none of the parent nodes are true;
0, otherwise,

(5)

where paVt
represents a configuration for the parents of Vt. In words, if a corner is

detected, the measurement MVt is m

2
Vt

(meaning that it is in the boundary). According
to the conditional probability distribution of MVt given Vt, the vertex node has a high
probability of being v

2
t (belonging to the boundary). In such a case, it is most likely

that exactly two parent nodes are true. This implies the simple connectivity of edges
at this vertex. We set the value of p(v

2
t |paVt

) to 0.3 when vertices are detected in the
background. In such a case, it is possible that none of the parent edge segments are true
boundary. However, the conditional probability for this case shall be smaller than the
case that exactly two parent nodes are true. On the other hand, if no corner is detected,
then the vertex node Vt has a high probability to be false and it gives no additional
information to infer the category of the parent edges.

The probability distributions p(MEj |Ej) are continuous, but are always observable.
We have learned Gaussian distributions from training images and their manual labeling,
where we classified edge segments into two sets: boundary edges and non-boundary
edges. We fit a Gaussian distribution for the distribution of edge measurements in
each set. We do not discuss further on these measurements nodes, as we focus on
the advantages of employing SQPN against the standard Bayesian approach, and the
same procedure was performed in both cases. Nevertheless, we note that all continuous
nodes are observable and we can easily obtain a similar discrete model.

Given the SQPN constructed as in Figure 2(b) and its parameters, the goal of im-
age segmentation may be achieved by inferring the most probable categories of the
variables given the observations (measurements), that is, we look for the categories of
E, V, ME , MV that maximizes

max

p
p(E, V, ME , MV ) =

Y

t

p(Vt|paVt
)p(MVt |Vt)

Y

j

p(Ej)p(MEj |Ej).

The most probable categories can be found using the algorithm of Section 3. Figure 3
shows the segmentation results obtained after applying the SQPN described here (right
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column). On the left column of Figure 3, the solution with standard Bayesian networks
is presented for comparison. In those cases, the probability measure p(v

2
t |paVt

) was set
to 1 if exactly two parent nodes are true, because we want to force continuous contours
for images (we were not sure if 1 was the best value for that measure. That is one of
the motivation for the use of SQPNs). Although the decision of which result is better
might be subjective, we visually consider that the solution with SQPN is superior to
the solution with a Bayesian network. In the fish image, the contour of the fish is better
detected. The SQPN used for this image has 84 nodes, of which 16 are vertex nodes,
26 are edge nodes and others are measurement nodes. In the cow image, the contour
of the cow is closed and less edges are produced by the SQPN version. The employed
SQPN has 280 nodes, of which 56 are vertex nodes, 84 are edge nodes, and others are
measurement nodes. In the mushroom image, the segmentation result using the SQPN
has also less edges and induced regions, so it is smoother. The SQPN used for the
mushroom image has 440 nodes, of which 85 are vertex nodes, 135 are edge nodes
and others are measurement nodes. Finally, we note that the only distinction between
the model we employed here and a standard Bayesian network approach relies on the
definition of interval probabilities in some nodes. We have kept our model close to the
standard network to clearly show the difference in the results. Further investigation on
other constraints and intervals is intended in a future work.

6 Conclusion

We present a definition of SQPN where range constraints are allowed together with
usual qualitative influences. We permit monotonic and non-monotonic relations, and
although we have not worked with other usual qualitative constraints found in the lit-
erature such as synergies, their inclusion is straightforward. For instance, no changes
are needed to described learning and inference methods.

An inference algorithm for belief updating, most probable explanations and maxi-
mum a posteriori queries is discussed. It converges to a local optimum solution and has
achieved good empirical results. We have also explored the combination of SQPNs and
empirical data, an issue of clear practical importance. Two computer vision problems
are treated. First, a facial action unit recognition where learning and reasoning are per-
formed using an SQPN. Recognition rates have improved when compared to a standard
Bayesian network in cases of interval dominance. Then, an SQPN is constructed for
image segmentation. The segmentation is solved using a most probable explanation,
and visual results indicate benefits of this approach.

We emphasize that the application of SQPNs to computer vision problems is the
most important contribution of this work. Although the experiments conducted here
were far from real computer vision challenges, good results obtained for the two prob-
lems indicate that the use of imprecise probability techniques such as SQPNs in real
computer vision is promising. As future work, we intend to improve the models for
recognition and segmentation, increasing the use of qualitative relations. Furthermore,
SQPNs can be applied to other computer vision problems, such as object and human
body tracking. Future research is also considered in this direction.
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Figure 3: The left column contains the solutions of image segmentation using Bayesian
networks. The right column contains the corresponding solutions with SQPNs.
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