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Abstract. Probabilistic graphical models such as Bayesian Networks
have been increasingly applied to many computer vision problems. Ac-
curacy of inferences in such models depends on the quality of network
parameters. Learning reliable parameters of Bayesian networks often re-
quires a large amount of training data, which may be hard to acquire and
may contain missing values. On the other hand, qualitative knowledge is
available in many computer vision applications, and incorporating such
knowledge can improve the accuracy of parameter learning. This paper
describes a general framework based on convex optimization to incorpo-
rate constraints on parameters with training data to perform Bayesian
network parameter estimation. For complete data, a global optimum so-
lution to maximum likelihood estimation is obtained in polynomial time,
while for incomplete data, a modified expectation-maximization method
is proposed. This framework is applied to real image data from a facial
action unit recognition problem and produces results that are similar to
those of state-of-the-art methods.

1 Introduction

Graphical models such as Bayesian Networks are becoming increasingly popu-
lar in many applications. During the last few years, the adoption of Bayesian
networks in areas of computer vision and pattern recognition has strongly in-
creased. Issues of the most important journals are dedicated to this matter, for
instance the Special Issue on Probabilistic Graphical Models in Computer Vi-
sion [1] of the IEEE Transactions on Pattern Analysis and Machine Intelligence
and the Special Issue on Probabilistic Models for Image Understanding [2] of the
International Journal of Computer Vision.

Latest research uses Bayesian networks for representing causal relationships
in facial expression recognition, active vision, image segmentation, visual surveil-
lance, pattern discovery, activity understanding, amongst others. For example,
Delage et al. [3] use Bayesian networks to automatically recover 3D reconstruc-
tions from single indoor images. Zhou et al. [4] apply Bayesian networks for visual
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tracking. Mortensen et al. [5] present a semi-automatic segmentation technique
based on a Bayesian network constructed from a watershed segmentation. Zhang
et al. [6] use Bayesian networks for modeling temporal behaviors of facial expres-
sions in image sequences. Tong et al. [7] present a Bayesian network to recognize
facial action units.

A Bayesian network encodes a joint probability distribution for its variables
in a very compact graph structure, relying on a factorization in local conditional
probability distributions for efficient inferences. Parameter learning is the prob-
lem of estimating probability measures of conditional probability distributions
given the structure of the network. Many parameter learning techniques depend
heavily on training data. Ideally, with sufficient data, it is possible to learn pa-
rameters by standard statistical analysis like maximum likelihood estimation.
In many real-world applications, however, data are either incomplete or scarce,
which can cause inaccurate parameter estimation. Incompleteness means that
some parameter values are missing in the data, while scarceness means that the
amount of training data is small. Most of computer vision problems just men-
tioned have to deal with scarce and incomplete data. Methods for improving
parameter learning will certainly benefit many of such applications.

When data are incomplete, Expectation-Maximization (EM) [8] algorithm is
often used. Even with incomplete and scarce data, qualitative knowledge about
parameters is usually available, and such knowledge might be employed to im-
prove estimations. In this paper, we propose a framework based on non-linear
convex optimization to solve the parameter learning problem by combining quan-
titative data and domain knowledge in the form of qualitative constraints. Many
types of qualitative constraints are treated, including range and relationship
constraints [9], influences and synergies [10,11], non-monotonic constraints [12],
weak and strong qualitative constraints [13,14].

Experiments with facial expression recognition and real image data show the
benefits that qualitative constraints can impose to parameter learning and clas-
sification accuracy. Facial expressions are very important in non-verbal human
communication [15]. Based on facial action units [16], it is possible to detect
and measure a large number of facial expressions by virtually observing a small
set of discernible muscular movements [15]. We employed a Bayesian network
where nodes are associated to action units and links describe relations among
them. Parameter learning is conducted using real image data and qualitative
relations from experts for both complete and incomplete datasets. Although we
use a simpler model and fewer training data than state-of-the-art algorithms do,
inferences with our networks display recognition rates that are comparable to
other results [7,17,18,19]. This indicates that our parameter learning procedure
achieves high accuracy. We emphasize that we employ the proposed methods to
a facial action unit recognition problem, but they are general and can be applied
to a wide range of problems, as long as qualitative knowledge is available and
data are scarce (it is also possible to work with large amount of data, but in
those cases a standard maximum likelihood might be enough).
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Section 2 comments on some related work. Section 3 introduces our notation
for Bayesian networks, describes the problem of parameter learning, and de-
tails the qualitative constraints, specified by domain experts, that can guide the
learning process. Then, for scarce but complete data, we describe a simple but
effective procedure to solve parameter learning by reformulating the problem
as a constrained convex optimization problem, which ensures global optimality
in polynomial time (Section 4). For incomplete data, we describe a constrained
EM idea by adding constraints to the maximization step, and iteratively solve
the learning problem. Section 5 presents some experiments with real image data
from a facial action unit recognition problem. Section 6 concludes the paper and
indicates paths for future work.

2 Related Work

Domain knowledge can be classified as quantitative and qualitative, which de-
scribes the explicit quantification of parameters and approximate characteri-
zations, respectively. Both are useful for parameter learning, but quantitative
knowledge has been widely used while qualitative relations among parameters
have not been fully exploited in many domains. Here we focus our attention on
related work using qualitative relations. Parameter learning is a well explored
topic and we suggest Jordan’s book [20] for a broader view.

Concerning the use of qualitative relations, Wittig et al. [21] and Altendorf
et al. [22] present methods to integrate qualitative constraints by introducing
penalty functions to the log likelihood criterion. Weights for the penalty func-
tions often need be manually tuned, which strongly rely on human knowledge
about such weights. Feelders and Van der Gaag [23] incorporate some simple in-
equality constraints in the learning process, but they assume that all the variables
are binary. Niculescu et al. [9,24] derive closed form solutions for the maximum
likelihood estimation supposing some predefined types of constraints. However,
the constraints used in all those methods are restrictive in the number of parame-
ters and involvement of distinct distributions (usually there is no overlap between
parameters of different constraints and constraints are restricted to single distri-
butions). There are very restricted cases where parameters and constraints can
involve distinct distributions. Even simple cases such as influences of Qualitative
Probabilistic Networks [10] are not addressed. de Campos and Cozman [25] for-
mulate the learning problem as a constrained optimization problem. However,
they are restricted to complete datasets and apply non-convex optimization. We
describe a general learning procedure that deal with a wider range of constraints
and still find the global optimum solution in polynomial time.

3 Problem Definition

A Bayesian network (or BN) represents a single joint probability density over a
collection of random variables. We assume throughout that variables are cate-
gorical; variables are uppercase and their assignments are lowercase.
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Definition 1. A Bayesian network is a triple (G,X ,P), where: G = (VG, EG)
is a directed acyclic graph, with VG a collection of vertices associated to random
variables X (a node per variable), and EG a collection of arcs; P is a collection
of conditional probability densities p(Xi|PAi) where PAi denotes the parents of
Xi in the graph (PAi may be empty), respecting the relations of EG.

In a BN every variable is conditionally independent of its non-descendants given
its parents (Markov condition). This structure induces a joint probability dis-
tribution by the expression p(X1, . . . , Xn) =

∏
i p(Xi|PAi). We focus on pa-

rameter learning in a BN where structure is known in advance. Let ri be the
number of discrete categories of Xi, qi the number of distinct assignments to
PAi (that is, qi =

∏
Xt∈PAi

rt) and θ be the entire vector of parameters such
as θijk = p(xk

i |paj
i ), where i = 1, . . . , n, j = 1, ..., qi and k = 1, ..., ri. Each j

in paj
i defines a configuration to the parents of Xi. Whenever necessary and for

ease of expose, we use the notation θijk = θ
i{x

k1
i1

,...,x
kt
it

}k
meaning the parameter

p(xk
i |xk1

i1
, . . . , xkt

it
). We also define an order for the states of each variable Xi such

that x1
i < x2

i < . . . < xri

i (if necessary, we exchange positions of states).

3.1 Learning Parameters of a BN

Given a dataset D = {D1, . . . , DN}, with Dt = {xk1
1,t, . . . , x

kn
n,t} a sample of all

BN nodes, the goal of parameter learning is to find the most probable values
for θ. These values best explain the dataset D, which can be quantified by the
log likelihood function log(p(D|θ)), denoted LD(θ). Assuming that samples are
drawn independently from the underlying distribution and based on conditional
independence assumptions of BNs, we have LD(θ) = log

∏n
i=1

∏qi

j=1

∏ri

k=1 θ
nijk

ijk ,
where nijk indicates how many elements of D contain both xk

i and paj
i .

If the dataset D is complete, Maximum Likelihood (ML) estimation method
can be described as a constrained optimization problem, i.e. maximize LD(θ)
subject to simplex equality constraints: ∀i=1,...n∀j=1...qi gij(θ) =

∑ri

k=1 θijk −
1 = 0, where gij(θ) = 0 imposes that distributions defined for each variable
given a parent configuration sums one over all variable states. This problem has
its global optimum solution at θijk = nijk

nij
, where nij =

∑
k=1,...,ri

nijk.

3.2 Qualitative Constraints

Standard likelihood estimations are usually enough if we have enough data.
However, when small amount of data is available, the likelihood function may
not produce reliable estimations for the parameters.

Example 2. Suppose a BN with three binary variables (with categories x1
i , x

2
i )

and the following simple graph: X1 → X2 ← X3. Suppose further that we have
the dataset D = {D1, D2}, with D1 = {x1

1, x
1
2, x

1
3} and D2 = {x2

1, x
2
2, x

2
3}. Using

the ML estimation, we have the posterior probabilities θ101 = θ102 = θ301 =
θ302 = 0.5 and θ2j11 = θ2j22 = 1, with j1

.= {x1
1, x

1
3}, j2

.= {x2
1, x

2
3}, j3

.=
{x2

1, x
1
3}, j4

.= {x1
1, x

2
3}. Posterior probability distributions θ2j3k and θ2j4k can

not be estimated as no data about such configurations are available.
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Situations like in Example 2 could be alleviated by inserting quantitative prior
distributions for the parameters. However, acquiring such quantitative prior in-
formation may not be an easy task. An incorrect quantitative prior might lead
to bad estimation results. For example, standard methods apply quantitative
uniform priors. In this case, if no data are present for a given parameter, then
the answer would be 0.5, which may be far from the correct value. A path to
overcome this situation is through qualitative information. Qualitative knowl-
edge is likely to be available even when quantitative knowledge is not, and tends
to be more reliable. For example, someone hardly will make a mistake about the
qualitative relation between sizes of the Earth and the Sun; almost everyone will
fail to specify a quantitative ratio (even approximate).

Example 3. Suppose, in addition to Example 2, that the following two con-
straints are known: θ302 + θ2j31 ≤ 0.7 and θ2j11 ≤ θ2j42. With this knowledge, it
is likely that θ2j31 ≤ 0.2 and θ2j42 = 1, reducing the space of possible parameter-
izations and alleviating the problem with scarce quantitative data.

We define a very general constraint as basis for our methods: linear relationship
constraints define linear relative relationships between sets of weighted parame-
ters and numerical bounds.

Definition 4. Let θA be a sequence of parameters, αA a corresponding sequence
of constant numbers and α also a constant. A linear relationship constraint is
defined as

h(θ) =
∑

θijk∈θA

αijk · θijk − α ≤ 0, (1)

that is, any linear constraint over parameters can be expressed as a linear rela-
tionship constraint. We describe some well-known constraints that can be spec-
ified through linear relationship constraints:

– Qualitative influences of Qualitative Probabilistic Networks [10]: they define
some knowledge about the state of a variable given the state of another,
which roughly means that observing a greater state for a parent Xa of a
variable Xb makes more likely to have greater states in Xb (for any parent
configuration except for Xa). Although influences over non-binary variables
can be described by linear relationship constraints, we use a simple binary
case to illustrate: θbj22 ≥ θbj12 + δ, where jk

.= {xk
a, paj∗

b } and j∗ is an index
ranging over all parent configurations except for Xa. In this case, the greater
state is 2, and observing x2

a makes more likely to have x2
b . Note that if these

constraints hold for δ > 0, the influence is said strong with threshold δ [14].
Otherwise, it is said weak for δ. A negative influence is obtained by replacing
the inequality operator ≥ by ≤ and the sign of the δ term to negative. A
zero influence is obtained by changing inequality to an equality.

– Additive synergies of Qualitative Probabilistic Networks [10]: they define
a conjugate influence from two parents acting to influence the child. This
means that observing the same configuration for the parents Xa and Xc of
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the variable Xb makes more likely to have a greater state in Xb. An example
over binary variables is: θbj1,12 + θbj2,22 ≥ θbj1,22 + θbj2,12 + δ, where jka,kc

.=
{xka

a , xkc
c , paj∗

b } and j∗ ranges over all parent configurations not including Xa

nor Xc, and δ ≥ 0 is a constant. This forces the sum of parameters with equal
configurations for Xa and Xc to be greater than the sum of parameters with
distinct configurations, for all other parent configurations. Again we have
exemplified using a binary case, but synergies involving non-binary variables
are also linear relationship constraints. Negative and zero additive synergies,
as well as strong and weak versions are obtained analogously.

– Non-monotonic influences and synergies [26]. They happen when constraints
hold only for some configurations of the parents. For example, suppose three
binary variables such that Xb has Xa and Xc as parents and that θb{x2

a,x1
c}2 ≥

θb{x1
a,x1

c}2 holds, but θb{x2
a,x2

c}2 ≥ θb{x1
a,x2

c}2 can not be stated. Hence we do
not have a positive influence of Xa on Xb, because it would be necessary
to have both constraints valid to ensure that influence. In fact we might
realize that the state of Xc is relevant for the influence. In this case, we may
state a non-monotonic influence of Xa on Xb that holds when Xc is x1

c but
not when it is x2

c . Situational signs [13] and context-specific signs [27] are
some examples of non-monotonic constraints that can be encoded as linear
relationship constraints.

– Range, intra- and inter-relationship constraints [9]. Range constraints hap-
pen when θA has only one parameter θijk and αijk = 1. In this case the
constraint becomes a upper bound constraint for θijk (we can obtain a lower
bound using negative αijk and α). If all parameters involved in a linear re-
lationship constraint share the same node index i and parent configuration
j, the constraint is called intra-relationship constraint. Otherwise, it is a
inter-relationship constraint.

4 Learning through Convex Optimization

Constraints of previous section can be used to describe our knowledge. As the
log likelihood function is concave (a positive sum of concave functions is also
concave) and we need to maximize it, our problem is in fact a constrained convex
minimization program [28]:

min
θ
−

∑

i,j,k

nijk · log θijk subject to (2)

∀t=1,...,m ht(θ) ≤ 0
∀i=1,...n∀j=1...qi gij(θ) = 0

where m is the number of linear relationship constraints, and gij are the sim-
plex constraints. To exactly solve such a convex minimization program, there
are many optimization algorithms. We can use specialized interior point solvers
[29] or even some general optimization ideas [30], because convex programming
has the attractive property that any local optimum is also a global optimum.
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Furthermore, such global optimum can be found in polynomial time in the size
of input [28]. We employ the Mosek software [29] to solve our convex programs.
In fact non-linear convex constraints are also allowed, as convex optimization
will still find the global optimum in polynomial time. On the other hand, non-
convex constraints imply in losing such properties. Hence, we allow as general
constraints as possible while keeping the problem tractable.

4.1 Incomplete Data

Incomplete data means that some fields of the dataset are unknown. If the
dataset is D = {D1, . . . , DN}, then each Dt ⊆ {xk1

1,t, . . . , x
kn
n,t} is a sample of

some BN nodes. We say that ut is the missing part in tuple t, that is, ut∩Dt = ∅
and ut ∪ Dt is a complete instantiation for all BN nodes. Let U be the set of
all missing data. In this case, the likelihood function log(p(D|θ)) is not a simple
product anymore, and the corresponding optimization program is not convex.

A common method to overcome this situation is standard EM algorithm [8],
which starts from some initial guess, and then iteratively takes two types of
steps (E-steps and M-steps) to get a local maximum of the likelihood function.
Particularly for discrete nodes, E-step computes the expected counts for all pa-
rameters, and M-step estimates the parameters by maximizing log likelihood
function, given the counts from E-step, just like would be done with a complete
dataset. EM algorithm converges to a local maximum under very few assump-
tions [31].

Assume θ0 is an initial guess for the parameters, and θt denotes the estimation
after t iterations, t = 1, 2, .... Then, each iteration of EM can be summarized as
follows:

– E-step: compute expectation of the log likelihood given observed data D and
current estimation of parameters θt: Q(θ|θt) = Eθt [log p(U ∪D|θ)|θt, D].

– M-step: find new parameter θt+1, which maximizes expected log likelihood
computed in E-step: θt+1 = argmax

θ
Q(θ|θt).

We propose to extend EM with the formulation of Program (2), that is, the M-
step is performed using convex programming. So, θt+1 is argmax

θ
Q(θ|θt), subject

to linear relationship and simplex constraints, and a polynomial time algorithm
solver can be employed. Because the parameter space is convex and the enhanced
M-step produces a global optimum solution for the current parameter counts,
this modified EM shares convergence and optimality properties of the standard
EM algorithm [31]. Although the modified EM is more time expensive than the
standard EM (but still polynomial) as each M-step requires the solution of a
convex optimization program (standard EM may use closed form solution for
ML), we argue that, just as in standard EM where an improving solution is
enough instead of an optimum one (called Generalized EM), we might stop the
convex programming as soon as an improving solution is found.
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5 Experiments

In order to test the performance of our method against standard ML estimation
and standard EM algorithm given scarce and incomplete data, we use random
generated networks, take one network parametrization as our “truth”, and then
generate samples from that network. After training the models, we apply the
Kullback-Leibler (KL) divergence criterion to measure the difference between
joint probability distributions induced by generated networks and distributions
of true networks. We conduct experiments for datasets with 100 and 1000 sam-
ples, using random linear relationship constraints from 2 to 8 terms in summa-
tions. The constraints are created using the true network (so they are certainly
correct) in number at most equal to the number of probability distributions in
the corresponding network. For each configuration, we work with twenty random
sets of data and qualitative constraints. Our results show that in most part of
the cases the divergence is substantially reduced (almost 40% average reduc-
tion in the divergence) when constraints are employed, which show that they
are actively used during learning. Most importantly, harder problems are most
benefited: scarce incomplete data and constraints performed better than large
sample sets without constraints: we could verify decrease factors greater than
100 times in the amount of data needed to achieve the same accuracy results.

We now consider the problem of recognizing facial action units from real image
data [18]. Based on the Facial Action Coding System [16], facial behaviors can be
decomposed into a set of action units (denoted as AUs), which are related to con-
tractions of specific sets of facial muscles. In this work, we intend to recognize 14
commonly occurring AUs.1 We have chosen these AUs because they appear often
in the literature, so it is possible to properly compare our methods with others.
There are semantic relationships among them. Some AUs happen together to
show a meaningful facial expression: AU6 (cheek raiser) tends to occur together
with AU12 (lip corner puller) when someone is smiling. On the other hand, some
AUs may be mutually exclusive: AU25 (lips part) never happens simultaneously
with AU24 (lip presser) since they are activated by the same muscles but with
opposite motion directions. Instead of recognizing each AU individually, a proba-
bilistic network can be employed to explicitly model relationships among AUs [7].

A BN with 14 hidden nodes is employed, where each node is associated to an
AU. States of AUs are 1 (activated) and 0 (deactivated). Figure 1 depicts the
structure of the BN. Note that every link between nodes has a sign, which is
provided by a domain expert. Signs indicate whether there is positive or negative
qualitative influence between AUs and will be commented later. For example, it is
difficult to do AU2 (outer brow raiser) alone without performing AU1 (inner brow
raiser), but we can do AU1 without AU2. Hence, a positive influence from AU2

to AU1 is stated. Furthermore, 14 measurement nodes (unshaded in Figure 1,

1 AU1 (inner brow raiser), AU2 (outer brow raiser), AU4 (brow lowerer), AU5 (upper
lid raiser), AU6 (cheek raiser and lid compressor), AU7 (lid tightener), AU9 (nose
wrinkler), AU12 (lip corner puller), AU15 (lip corner depressor), AU17 (chin raiser),
AU23 (lip tightener), AU24 (lip presser), AU25 (lips part), and AU27 (mouth stretch).
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Fig. 1. Network for the AU recognition problem

one for each AU) represent classification results derived from computer vision
techniques. Links between AU and measurement nodes represent uncertainties
in classifications. To obtain the measurement for each AU, first the face and
eyes are detected in the images, and the face region is extracted and normalized
based on the detected eye positions. Then each AU is detected individually by
a two-class AdaBoost classifier with Gabor wavelet features [32]. The output of
the AdaBoost classifier is employed as the AU measurement in the BN model.

To parametrize the BN, training data is needed. However, it may be difficult
to get enough training data to learn these parameters. The effort for training
human experts and manually labeling the AUs is expensive and time consuming,
and the reliability of manually coding AUs is inherently attenuated by the subjec-
tivity of human coder. Furthermore, some AUs rarely occur. Thus, the training
data can be incomplete, biased and scarce, which may cause low learning accu-
racy. Even though quantitative data are very important, combining them with
qualitative knowledge may improve learning accuracy. Sometimes it is easier to
derive qualitative relations between AUs than to fully label the data.

Parameter learning is performed using qualitative influences obtained from
experts. They are described in Figure 1 (positive and negative signs mean posi-
tive and negative influences, respectively) and processed using linear relationship
constraints. They are mainly based on physiological aspects:

– Mouth stretch increases the chance of lips apart; it decreases the chance of
cheek raiser and lid compressor and lip presser.

– Cheek raiser and lid compressor increases the chance of lip corner puller.
– Outer brow raiser increases the chance of inner brow raiser.
– Upper lid raiser increases the chance of inner brow raiser and decreases the

chance of nose wrinkler.
– Nose wrinkler increases the chance of brow lowerer and lid tightener.
– Lip tightener increases the chance of lip presser.
– Lip presser increases the chance of lip corner depressor and chin raiser.

We further extract some generic constraints: AU27 has small probability of
happening, so p(AU27 = 1) ≤ p(AU27 = 0); if AUi has more than one parent
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Fig. 2. Difference between unconstrained and constrained percentage rates of false
negative and false positive alarms for AU recognition with complete data (but with
possible mislabeling). 100 samples were used in the left graph and 1000 samples in the
right graph.

node and all of them have positive influence, then p(AUi = 1|pa(AUi) = 1) ≥ 0.8,
where pa(AUi) = 1 means the configuration where all parents are present; if
AUi has more than one parent node and all of them have negative influence,
then p(AUi = 1|pa(AUi) = 1) ≤ 0.2. Note that these numerical assessments
are conservative, as we expect the real probabilities to be greater than 0.8 (or
0.2, respectively). Conservative assessments are much more likely to be valid.
Furthermore, a domain expert provide ranges (usually tight) for p(Oi = 1|AUi =
1) and p(Oi = 0|AUi = 0), which represent accuracy of classifiers.

The 8000 images used in experiments are collected from Cohn and Kanade’s
DFAT-504 database [33]. We work with three datasets: one generated from com-
puter vision measurements (used as evidence for testing) and two from human
labeling (used for training), where one is complete (but with possible incorrect
labels) and other is incomplete (uncertain labels were removed). Thus, in some
sense, incomplete data is more precise. We consider training data with 100 and
1000 samples. Testing is performed over 20% of the data (not chosen for train-
ing). This database was chosen because of its size and the existence of results in
the literature, so as our approach can be fully compared to others and amongst
different amounts of data.

Figure 2 shows the recognition results for complete data. For each AU, black
bars indicate the percentage difference between false negative rates of standard
and constrained ML (a positive result means that the constrained version is
better). White bars are differences between false positive percentages. The accu-
racy using qualitative constraints is improved, specially with scarce data. For 100
samples, the average false negative using standard ML is 28%, with an average
false positive of 6.5%. The constrained version obtains 17.8% of false negative,
with 6.6% of false positive. We have a 10.2% improvement in the false negative
rate, without considerable increase in the false positive rate. With 1000 samples,
standard ML has 20.8% of false negative and 6.7% of false positive, while the
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constrained version has 16.8% and 6.4%, respectively. The decrease is 4% in false
negative, with also decrease in the false positive rate. Moreover, we emphasize
that more than 3000 samples (without constraints) are needed to achieve the
same average results as those of 100 samples and constrains (reduction greater
than 30 times in the amount of data).

Figure 3 shows results for incomplete data, using standard and constrained
EM. Black bars indicate differences between false negative rates while white bars
are differences between false positive rates. Again, the constrained version ob-
tains better overall results. For 100 samples, average false negative rate using
standard EM is 16.7%, with a false positive of 7.1%. The constrained version
obtains false negative rate of 15.3%, with 6.8% of false positive. So, we have a
1.4% improvement in the false negative rate, with also improvement in the false
positive rate. With 1000 samples, standard EM has 16.6% of average false neg-
ative and 6.4% of average false positive, while the constrained version obtains
14.8% and 6.5%, respectively. This represents an overall recognition rate (per-
centage of correctly classified cases) of 93.7%. These last results are comparable
to state-of-the-art results. For instance, Tong et at. [7] use more sophisticated
models such as Dynamic Bayesian networks and employ more data for training,
achieving an overall recognition rate of 93.3%. Bartlett et al. [17] reports 93.6%,
and other state-of-the-art methods [32,34,35] have results with slight variance,
even using more data for training. We further emphasize some points: 1) al-
though the average rate gain is not large, we have a great gain in AU9, because
it has many missing data and constraints are fully exploited; 2) overall accuracy
with incomplete data is better than that with complete data because removed
labels were uncertainly labeled by human experts, so the chance of labeling error
in such cases is high, and incomplete data have no such errors, which justifies
the better accuracy; 3) our methods are general learning procedures that can be
straightforward applied in other problems. Still, they produce results as good as
those of state-of-the-art methods for the AU recognition problem.

Fig. 3. Difference between unconstrained and constrained percentage rates of false
negative and false positive alarms for AU recognition with incomplete data. 100 samples
were used in the left graph and 1000 samples in the right graph.
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We also have explored spontaneous facial expression recognition. The problem
is usually much hard, as people are not posing to the camera and data are even
more scarce. We have collected 1350 complete samples for training and 450 sam-
ples for testing from Belfast natural facial expression database [36] and internet
repositories (e.g. Multiple Aspects of Discourse Research Lab at the Univer-
sity of Memphis, http://madresearchlab.org/). Using an automatically learned
structure, constrained version obtains 28.4% of average false negative (decrease
of 6.2% with respect to unconstrained version), with a considerably low 5.9%
of average false positive (small increase of 0.6% with respect to unconstrained
version). Although the relationships learned from posed facial expressions may
bias the recognition for the spontaneous problem and there is a clear need to
refine the system and correct some constraints by using spontaneous data, initial
experiments seem promising. A deeper exploration of qualitative constraints in
spontaneous datasets is left for future work.

6 Conclusion

This paper presents a framework for parameter learning when qualitative knowl-
edge is available, which is specially important for scarce data. Even with enough
data, qualitative constraints may help to guide the learning procedures. For com-
plete data, we directly apply convex optimization to obtain a global optimum
of the constrained maximum likelihood estimation, while for incomplete data,
we extend the EM method by introducing a constrained maximization in the
M-step. We have applied our methods to a real world computer vision problem
of recognizing facial actions. For this study, constraints were elicited from do-
main experts. The results show that with some simple qualitative constraints
from domain experts and using only a fraction of the full training data set, our
method can achieve equivalent results to conventional techniques that use full
training data set only. This not only demonstrates the usefulness of our work for
a real world problem but also indicates its practical importance since for many
applications it is often difficult to obtain enough representative training data.

Our experiments show one important application, but these techniques cer-
tainly have practical implications on other computer vision problems. Hence,
future work may apply the ideas on other datasets with spontaneous facial ex-
pressions for action recognition and also on other problems such as image seg-
mentation and body tracking. Besides that, we plan to explore other properties
of the problem structure to develop and improve learning ideas based on non-
linear optimization procedures. Although the idea of using convex optimization
for solving parameter learning with qualitative constraints may seem simple, we
know no deep investigation of such properties has been conducted. We see the
simplicity of the methods as an important characteristic, because they can be
promptly applied to many real problems. While many proposals in the litera-
ture try to find specialized methods that only deal with specific constraints, we
propose to use convex programming as a systematic framework for parameter
learning that deals with a wide range of constraints. Finally, some words about
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feasibility and the use of wrong constraints are worth mentioning: if constraints
are valid, unfeasible problems never happen. We have assumed that constraints
are valid, which is reasonable as we have worked with very general constraints.
A systematic study of possible wrong constraints is left for future work.
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