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Abstract. A credal network is a graph-theoretic model that represemisre-
cision in joint probability distributions. An inference & credal net aims at
computing an interval for the probability of an interest etze The algorithms
for inference in credal networks can be divided into exaal approximate.
The selection of such an algorithm is based on a trade off ploaiders how
much time someone wants to spend in a particular calculagainst the qual-
ity of the computed values. This paper presents an algoritathed IDS, that
combines exact and approximate methods for computingeinéess in polytree-
shaped credal networks. The algorithm provides an appréadtade time and
precision when making inferences in credal nets.

Resumo. Uma rede credaé um formalismo baseado em grafos que representa
imprecigio em distribuifes conjuntas. Uma inféncia em uma rede credal
objetiva o ®mputo de um intervalo de probabilidades para um eventot@e-in
esse. Os algoritmos para infancia em redes credais podem ser classificados
como exatos ou aproximados. A sdéege um algoritmo exige uma alise

de custoxbenefcio que pondera quanto tempo se deseja gastaraiouto de

um intervalo em rela&o a qualidade das aproximéaes. Este artigo apresenta
um algoritmo, chamado IDS, que combin&todos exatos e aproximados no
computo de infekncias em redes com topologia em polytree e queépuona
estraggia para limitar o esforco computacional empregado em infexéncia.

1. Introduction

The formalism ofBayesian networkeffers a graph-theoretic model that compactly en-
codes joint distributions [Pearl, 1988]. In a Bayesian meky every probability value
must be exact. This constraint is useful computationally lesds to efficient algorithms
for computation of marginal and conditional probabilitielowever, sometimes practical
and theoretical difficulties are in the way of exact prokipdpecification [Walley, 1991];

it has motivated the development of several approacheptesent probabilistic impreci-
sion in Bayesian networks [Fertig and Breese, 1990, Ha 1288, Wellman, 1990]. In
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this work we consider the formalism efedal networkgFagiouli and Zaffalon, 1998,
Cozman, 2000]. More particularly, we are interestedeitensionsof credal net-
works that encode a specific type of independence relatibedcstrong independence
[Couso et al., 1999]. Annferencein a credal network is a computation that produces
a lower/upper probability for an interest event. Recergfficient inference algorithms
have been proposed that can handle credal networks comgaituzens of variables
[Campos and Cozman, 2004]. However, it is still impossiblebtain exact inferences
in large networks. Naturally one is led to consider alganisifor approximate inference
[Cano and Moral, 1999, Rocha et al., 2003, Tessem, 1992].

In this paper we present a new algorithm called IDS (InfeedmcDecomposition
in Subnetworks) that combines approximate and exact gtestéo compute outer bounds
for the extreme values of a probability interval in polytsteaped credal networks. The
idea of combining different inference algorithms is not neviBayesian networks but is
has not been explored in connection with credal networkse ddntral idea of IDS is
rather simple: divide a network in parts, and run exact amq@pmate algorithms on
different parts of the network, looking for a trade-off beem time and quality of results.

The article is organized as follows. Section 2 presents ef beview of credal
networks and inference algorithms. Section 3 describedX8ealgorithm, and Section 4
discusses an example. Section 5 presents our final comments.

2. Background

A credal setK (X) for random variableX is a set of probability distributions foX
[Levi, 1980]. In this paper we deal only with categorical imbtes, and we consider
only credal sets that can be represented by the convex hdithicgly many distribu-
tions. Credal sets may contain either joint, conditionatnarginal distributions. Given
a set of random variableX = {X;, X, ..., X,,}, a joint credal sef{(X) contains joint
distributionsp(X). For any variableX; € X, the marginal credal set’(X;) can be
computed by marginalizing each extreme distributionkdfX) and by taking the con-
vex hull of the marginalized distributions. Similarly, g the evenf{X; = z;.},
for X; € X, it is possible to calculate a conditional credal $&tX \ {X;}|z;.) =
X\ A{Xi}Hzie) - pe(X N\ { X, }zie)} from K (X). We only need to conditidrev-
ery extreme point of(X) on {X; = z;.} and take the convex hull of the previously
calculated distributions.

Let Y and Z be two proper and disjoint subsets ®f. The conditional in-
formation of Y given Z can be represented in many ways [Moral, 1999]. Here we
assume that this information is given as collectionseparately specifiedredal sets
Q(Y|Z) = {K(Y]|z),...,K(Y]|z)}. Note that we have a collection of conditional
credal sets; there is a credal set definedvofor every joint event,, € Z, and the con-
straints that define these credal sets have no relation toather.

Given a marginal credal séf(.X,) it is possible to compute the probability inter-
val of any categoryt, ; of X, just by computing the minimum and the maximum proba-
bility of {X, = z,,} over all distributions in the credal set. These values diectwer
andupperprobabilities and are defined & X, = x,;) = minyx )ex(x,) P(Xq = q4,)
andP (X, = x,;) = maxy x,)ek(x,) P(Xq = 74,), respectively. Such interval results can
be useful for classification [Zaffalon, 1998] and robusswsalysis [Cozman, 1997].

If we have a large number of variables to handle, it may be hargpresent a
joint credal set. First, it is hard to represent each one@jdhmt distributions over a large

We assume throughout that any conditioning even has lovedratility larger than zero.



number of variables. Second, the number of extreme disioifisi in a joint credal set
may be huge. Credal networks offer a compact representttadrcan mitigate some of
these hurdles. LeX be the set of random variables; we take a credal netwbdver X
to consist of:

e a directed acyclic graptx in which every node represents a single random vari-
able inX and the every arc represents a direct dependency betweaahlear and
wherep(X;) andx(X;) denote respectively the parents and childreXpin G.

e each nodeX; is associated with a collection of separately specifiedairedts

Q(Xi[p(Xi)).

The Figure 1 shows a simple network with two binary variabdsand X,. This
network has two collections of separately specified creet: sone collectionQ(X}),
contains just one marginal credal; the other collectiQX,|.X;), contains conditional

credal sets.
@ Q(X1) = {K(X1) = cc((0.5;0.5), (0.3;0.7)) }
Q(X2|X1) = {K(Xa|r11) , K(X2|z12)}

@ with
K(Xs|xy,1) = cc((0.5; )>( 3;0.7))
K(X2|$172) = CC((O. 2 .8

Figure 1: A simple credal net.

We assume that a credal network satisfies the folloviitagkov condition ev-
ery variable isstrongly independent of its hondescendants nonparents given its par
ents. Note that we adopt the concept stfong independence Two variablesX,
and X, are strong independent if for every vertice of their joinédal set we have
P(Xy =24, Xp =xj) = P(X,=12,,;) - P(X, =m:,), for all events ofX, and Xj.
Two variablesX, and X, are strong independent conditional on a variaklewhen
P(X, = x4y jver) = P(X, = za4|zcr), for all events in the sample space &,
X, and X.. A credal network iolytree-shapedf there is only one path between any
two nodes in the underlying undirected graph.

An extensiorof a credal network is a joint credal set that can be assatiaiin
the network and that satisfies all constraints in the netfy@deman, 2000]. Thetrong
extensions the largest credal set that agrees with the strong indkgree assumptions
explicited in the credal net. This extension is given by tbhavex hull of all distribu-
tions that satisfy[], p(X;|p(X;)), where each distributiop(X;|p(X;)) is selected from
the extremes points of the local credal 88tX;|p(X;)) € Q(X;|p(X3)])-

Let{X, = z,,} be the event of interest in a credal netwatkThe first algorithms
aiming at computation of lower/upper probabilities {oxX, = z,;} employed exhaustive
procedures that verified all potential vertices of the gjrextension [Tessem, 1992]. For
each one of these joint distributions, it is then necessacpimpute:

D oX\{ Xy X5} Xg=tqi [1a p(Xalp(Xa))
>x\x La p(Xalp(Xa))

This exhaustive search can be expressed using messageggiiopa schemes
[Moral, 1999, Tessem, 1992]; we review this type of schemepfalytree-shaped net-
works in Section 3. Such schemes generalize similar algostfor inference in Bayesian
networks [Verma and Pearl, 1988]; in fact, one of the adwgedeof strong extensions
is that they entail the samd-separationrelations that exist in Bayesian networks
[Cozman, 1998, Verma and Pearl, 1988]. In spite of its elegamessage propagation

P<Xq = xq,i‘E> =

(1)



schemes for strong extensions are still exhaustive mettidscan only handle very
small networks. The only exact algorithm that can deal wailyé networks is the 2U
algorithm, that is otherwise restricted to polytree-sithpetworks with binary variables
[Fagiouli and Zaffalon, 1998].

The limitations of exhaustive methods have motivated metean exact al-
gorithms which do not use enumerative techniques — for exantphe branch-and-
bound techniques of Rocha and Cozman (geared towards eeigtraped networks)
[Rocha and Cozman, 2003], and the multilinear programmp@ach of Campos and
Cozman [Campos and Cozman, 2004]. This last algorithm caappéed to general
credal networks, and it is probably the most efficient exdgbrdghm currently avail-
able. Still, exact algorithms cannot handle large netwoirk$act even relatively small
networks can offer unsurmountable challenges, dependinth® characteristics of the
network. The computational cost of inference depends omrakvactors, such as the
number of variables and credal sets in the network, the numibeategories of each
variable, the number of vertices in each credal set and ttveomnie topology.

This situation has led to the proposal of algorithms for agpnate infer-
ence — that is, algorithms to approximate the upper and |gwebabilities. We
say that an approximation is aouter one if it encloses the probability interval
of the event of interest. An approximation is amer one if the approximated
interval is enclosed by the exact interval. Several alporg for approximate infer-
ence are available [Cano etal., 1994, Cano and Moral, 19%60 @nd Moral, 2002,
Cano and Moral, 1999, Campos and Cozman, 2004, Ide and Co20@¢h,
Rocha et al., 2003, Tessem, 1992].

3. Inference by Decomposition in Subnetworks

In this section we explore decomposition schemes for infegen polytree-shaped credal
networks — the idea is to divide a credal network in subnéetaosuch that these sub-
networks can be processed independently with differemtetctfs between time and
quality. Such a divide-and-conquer strategy is not new endbntext of Bayesian net-
works, for two reasons. First, inference in large, denselynected Bayesian networks
may be very complex. Second, there has been interest incapiphs of Bayesian
networks in embedded systems with very little memory and fowcessing power
[Ramos et al., 2000]. These challenges have led to combisabf exact and approx-
imate algorithms; for example, the use of Gibbs samplingdanslustering algorithms
[Kjaerulff, 1994], the combination of clustering and stastic approximations in dy-
namic models [Doucet et al., 2000], the use of conditionimgde variable elimination
algorithms [Dechter., 1996]. Decomposition schemes haen lperfected in the course
of that work [Darwiche, 2001]. Recently a synthesis of deposition schemes and com-
binations of algorithms has been proposed throughattegptive conditioningalgorithm
[F.T.Ramos and F.G.Cozman, shed].

Even though decomposition/combination schemes have #&asimotivation for
Bayesian and credal networks, there are significant diffsze between these networks.
For one thing, credal networks are harder to handle exatttlg it makes sense to have
some subnetworks processed exactly, and some processediapgiely — whereas in
Bayesian networks we can consider exact algorithms foualhstworks, as long as they
are “small” enough. Secondly, polytree-shaped credal odsvare already difficult to
process, while polytree-shaped Bayesian networks arerggnéivial objects from a
computational point of view.

In this paper we focus on decomposition schemes that conelsexe and approx-



imate methods across subnetworks. The IDS (Inference bymeaosition in Subnet-
works) is a direct translation of this proposal: the aldoritdivides a polytree in several
simpler polytrees; one of these subnetworks contains teeyqrariable, and this subnet-
work receives more computational effort than the other stborks. Each subnetwork
can be viewed as an independent processor that computetearaifbased probabilistic
message and sends it to the main subnetwork or to anotheetsudrk. At the end of
this message propagation scheme, the main subnetworklhafahation that it needs
to compute an approximation to the probability intervalraerest.

3.1. Set and interval messages in polytree-shaped credaltnerks

The IDS algorithm exploits the set-based message propagalgorithm discussed by
Moral [Moral, 1999]; we first present a very short review oétlalgorithm, just to fix
notation and terminology. For now we consider full-fledgetisased messages; later we
will consider the use of interval messages.

(1) The message propagation algorithm starts when the query Kpdequests
that its parents and children send messages to conip(t& |E). After receiving an-
swers, the processor associated withcalculates the upper and lower probabilities of
{X, =24} givenE in K(X,|E).

(2) A parent nodeX,, calculates the credal sét(.X,|E,) — taking into account
evidenceE, that.X,, d-separates from the nodg, that requested a message. This credal
set is then associated with a message denotedibyX),), and sent toX,. To calculate
this last messageX,, needs some information stored in the branches of the pelytrat
it separates fronX,. Node.X, requests to its children and parents nodes, ex&gpthe
necessary messages. Those messages are obtained rgcbysleeal computation and
message propagation.

(3) A children nodeX. calculates a message containing a set of likelihood func-
tionsp(E.| X;). HereE, denotes the evidence thdt d-separates fronX ;. This message
is denoted by\§ (X,) and computed with a procedure that, initially, requestsverye
X, € p(X.)\ {X,} and everyX, € x(X.) send messages; (X,) and\§, (X.), respec-
tively. After receiving these messag&s integrates them i|;\§c(Xs).

Note that this propagation scheme essentially sends setibmessages across
arcs of a credal network. Therefore, since we intend to applgcomposition procedure
in credal networks, we must investigate what happens if wa&”“an arc when decom-
posing a network — in polytree-shaped Bayesian networkg,aan divides a network,
and the messages that would flow across the arc carry all fberiation between the
subnetworks [Peot and Shacter, 1991]. The same obsenaipies to polytree-shaped
credal networks with strong independence:

Theorem 1 Let C be a polytree credal network that can be divided in two sulboeks

C; and C; by removing the arc connecting a variablg € C; to a variableX; € C; in

the original network. Furthermore, I€f; and E; be the evidence sets related to nodes in
C; andC;j, respectively, andX, be the query variable. If the query variable is@, we
can compute the messagéj (X;) in the first subnetwork and send it to the nallgin

C;, and to obtain tight intervals i;. If the query variable is irC;, we can compute the
messaga§j (X;) in the second subnetwork and send ifg and to obtain tight intervals

in C,.

Proof: Given the propagation message scheme described preyiousl
we have two situations fok,. If X, € C;, all information related with
the evidencd?; that we need to compute upper and lower probabilities on



X, is stored in the messagé; (X;); therefore, if we calculate (X;)
previously, we do not need to manipulde when computing the inter-
est interval inC;. If X, € C; , all information related with the evidence
E; that we need to calculate upper and lower probabilitieXgis stored
in the messageﬁg (X;); so, if we calculater§j (X;) before, we do not
need to deal withC; when calculating the interest interval @;. From
this follows that after message propagation, the subné&sveain be pro-
cessed separately. Additionally, the computation of thegage fronC;

to C; is independent of’; and the computation of the message frGmn
to C; is independent ofy;. Thus these messages can also be computed
independently. QED

The result is illustrated in Figure 2.
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Figure 2: Decomposition of a polytree credal net.

This decomposition makes each subnetwork more managédmiblstill the mes-
sages can be rather complex objects. To overcome this dhffieve simply replace the
set-based (-) and \(-) messages by interval messages. Note that we can then have
tightinterval messages (where the lower and upper probabilltyegaare in fact attained
by measures) anon-tightinterval messages that may be produced by approximate infer
ence algorithms in the subnetworks.

3.2. Implementing IDS

In our implementation of the IDS algorithm, a network is ded by a depth-first search
based procedure on the graph@f The basic parameter of this procedure is a intdger
that specifies the maximum size of the subnetwork that camdzeepsed exactly (we take
the MLR algorithm to be our standard “exact” method [Campad @ozman, 2004]).

The depth-first procedure starts in the query node and g dssaetwork, mark-
ing visited nodes. Every time a nodg is visited the number of combinations of vertices
in the current subnetwork}/, is updated. i’ exceedd. the nodeX; is disconnected
from the nodeX; (the direct ascendent df; in the graph). Figure 3.2 contains a sketch
of the decomposition procedure (the network and the thidshare global variables).
The functionlV (X') calculates the number of combinations of vertices in thestwork
formed by the nodes already visited. After decompositiom,say that an ancillary sub-
networkC, is belowthe main subnetwork if there is an arc in the original crecsvork
that connects one node in the main subnetwork to one no@g.ilnversely, we said that
C, is abovethe main subnet if there is an arc in the original credal nétwimat connects
one node inC, to one node in the main subnetwork.

Since the original credal network is divided the IDS aldoritcomputes messages
in the ancillary subnetworks and to send them to the main etwmrk. The interval-
based message that the main subnetwidykeceives from a subnetwofk,, above it, is
denoted byréq(Ca). The interval-based message that the main subnetwork/esdeom
an ancillary subnetwork,, below it, is indicated bpn{, (C,). Currently, these messages
are calculated with the approximate A/R++ algorithm [Campnd Cozman, 2004]. Let
X, € C, be the variable that was disconnected to a nide C,. The use of the A/R++
algorithm to calculateréq(Ca) results that set of intervals composing this message are



Input: The current nod&(; and the last node visited;.
Output: Set of subnetworks obtained by removing arcs.
o If W(X) > L, then if there is an arc connectidgandY in C, remove it;
e else,
— select a non-visited nod¥&; € p(X;) and run the decomposition proce-
dure onit;
— select a non-visited nod€, € y(X;) and run the decomposition procedure
on it.

Figure 3: Decomposition in the IDS algorithm.

outer bounds for the lower and upper probabilities of evetegory of X, given the
evidenceE,. Similarly, let X, € C, be the variable that was disconnect from a node
X, € C,. The intervals of the messag¢, (C,) are outer bounds for the likelihood
functions ap(Ey| X, = =, ;), for all { X, = z,, ;} in the sample space of,,.

After to receive the requested messages the subnet@gpdonverts their inter-
vals in sets of probability functions. The intervalsﬂ'réq(ca) are used to generate the
largest credal set that agrees with the intervals of thasaggs this credal set is denoted
as K'(X,|E,). In sequence, a new node labell&q is added toC, and it is made a
parent ofX .. This new node is equivalent t§, and its collection of separated credal sets
contains an unique element, the credal 5é1X) equivalent toK’(X,|E,). Similarly,
every message(, (C,) that X, receives is converted in the largest convex set of likeli-
hood functions ap(E,.|X,) that agrees with the intervals in the message. In next, ¢tis s
is associated t,, as a dummy evidence [Pearl, 1988] [Tessem, 1992].

This procedure transforms the subnetwarkin a new polytreeC; in which it is
possible to compute intervals for the event of intereste@, the IDS algorithm applies
an exact method, MLR, to calculate the upper and lower piitibeb of {X, = z,;} in
C,. However, some credal sets @, are the larger than those credal sets that are dealt
by the exact message propagation algorithm. From thisviollat the problem of the
inference of the probability interval of X, = z,;} in C| is a relaxed version of the
problem of the inference i€ and the extreme probabilities obtained by IDS are outer
bounds.

The combination of the MLR and A/R++ algorithms proposed g DS algo-
rithm is interesting for two main reasons. First, becauseMhR algorithm already runs
the A/R++ in a preprocessing phase. Therefore, the inikatetion of the A/R++ al-
gorithm on the ancillary subnetworks has no impact on thealveomputational cost.
Second, because the MLR algorithm is an anytime proceduraldorithm is anytime if
it can produce a solution in a given time T and the quality ddisons improve with time
after T [F.Ramos et al., 2002]. It means that when computiteyvals for{ X, = z,;} in
C, we can use the MLR to calculate exact or approximate ones séleetion of one of
these strategies depend on the time and resources avaliable

4. Example

To illustrate the characteristics of the IDS algorithm, sider the following (rather large)
problem. We have a dynamic network [Russell and Norvig, 18®@Bned by replication
of a network slice depicted in Figure 4, where all variablagethree values. The objec-
tive here is to compute lower and upper probabilities fonthleies of variableX, in the
last slice; we considered twelve time slices — the inferaecgires the manipulation of



84 variables, and the number of potential vertices of thengtextension ig03%.

>-6.80

}

Figure 4: A time slice of the credal nets used in tests.

In an inital experiment showed that this inference cannotdmaputed exactly
with the MLR algorithm. So, we approximate the intendednveds with the IDS algo-
rithm. To calculate this approximation we run IDS as desatibbove - the main subnet-
work was exactly processed by MLR algorithm. The paramétef the IDS algorithm
was set a$.5 x 10'°, what makes that the main subnework was divided into two abt b
anced subnetworks. The first subnetwork consisted of thénas slice, while the second
subnetwork consisted of all other time slices. The relagirrer in probability intervals
computed by the IDS algorithm were smaller thHaé%, while the largest error of the fast
combined framework that executes A/R++ and a iteration oRvilgorithm wasl.7%.
The smallest error of IDS was8% while the smallest error of the combined framework
was0.47%. The time spent by IDS to compute the inference was betweeart less
than 3 times the time spent by the combined framework.

The experiment indicates that IDS provides a compentirgjesiiy to approach
approximate inferences that can not be solved with MLR.Heaily, the IDS algorithm
also can be viewed as a method for anytime inference. In ti@tHls behaviour can
be reached by increasing the threshbldThat is, if we increase the threshold we are,
probably, allowing that more time be spent in the computatibthe main subnetwork,
therefore, we are allowing that a more complex subnetwordtdadt exactly, and, it tends
to improve the precision of the algorithm [da Rocha, 1991teratively, by reducind.
we obtain a faster inference procedure at the expense asec

5. Conclusion

This paper presented an approximate algorithm called IREdbmputes outer approx-
imations for probability intervals in credal networks. Th®in characteristic of this
method is that it provides a simple strategy to manage tlueafé between the preci-
sion of the calculated intervals and the cost for to compuatengerence. For that, the
algorithm uses a divide-and-conquer approach and a megsagagation scheme that
allows to combine an approximate exacts inference algasth

Furthermore, the decomposed inferences are solved witbrelit algorithms.
Partial results are computed with approximate methodsaethé main result is obtatined
with a combination of the partial results and exact or apjpnaxe inference algorithms.
The experiment indicates that such procedure allows te toffidime and precision when
computing probability intervals in an anytime scheme.

Future projects considers the extension of this framewmnkferences in multiply
connected credal networks.
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