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Abstract. A credal network is a graph-theoretic model that representsimpre-
cision in joint probability distributions. An inference ina credal net aims at
computing an interval for the probability of an interest event. The algorithms
for inference in credal networks can be divided into exact and approximate.
The selection of such an algorithm is based on a trade off thatponders how
much time someone wants to spend in a particular calculationagainst the qual-
ity of the computed values. This paper presents an algorithm, called IDS, that
combines exact and approximate methods for computing inferences in polytree-
shaped credal networks. The algorithm provides an approachto trade time and
precision when making inferences in credal nets.

Resumo. Uma rede credaĺe um formalismo baseado em grafos que representa
imprecis̃ao em distribuiç̃oes conjuntas. Uma inferência em uma rede credal
objetiva o ĉomputo de um intervalo de probabilidades para um evento de inter-
esse. Os algoritmos para inferência em redes credais podem ser classificados
como exatos ou aproximados. A seleção de um algoritmo exige uma análise
de custo×benef́ıcio que pondera quanto tempo se deseja gastar no cálculo de
um intervalo em relaç̃ao a qualidade das aproximações. Este artigo apresenta
um algoritmo, chamado IDS, que combina métodos exatos e aproximados no
cômputo de infer̂encias em redes com topologia em polytree e que provê uma
estrat́egia para limitar o esforço computacional empregado em umainferência.

1. Introduction

The formalism ofBayesian networksoffers a graph-theoretic model that compactly en-
codes joint distributions [Pearl, 1988]. In a Bayesian network, every probability value
must be exact. This constraint is useful computationally asit leads to efficient algorithms
for computation of marginal and conditional probabilities. However, sometimes practical
and theoretical difficulties are in the way of exact probability specification [Walley, 1991];
it has motivated the development of several approaches to represent probabilistic impreci-
sion in Bayesian networks [Fertig and Breese, 1990, Ha et al., 1998, Wellman, 1990]. In
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this work we consider the formalism ofcredal networks[Fagiouli and Zaffalon, 1998,
Cozman, 2000]. More particularly, we are interested inextensionsof credal net-
works that encode a specific type of independence relation called strong independence
[Couso et al., 1999]. Aninferencein a credal network is a computation that produces
a lower/upper probability for an interest event. Recently,efficient inference algorithms
have been proposed that can handle credal networks containing dozens of variables
[Campos and Cozman, 2004]. However, it is still impossible to obtain exact inferences
in large networks. Naturally one is led to consider algorithms for approximate inference
[Cano and Moral, 1999, Rocha et al., 2003, Tessem, 1992].

In this paper we present a new algorithm called IDS (Inference by Decomposition
in Subnetworks) that combines approximate and exact strategies to compute outer bounds
for the extreme values of a probability interval in polytree-shaped credal networks. The
idea of combining different inference algorithms is not newin Bayesian networks but is
has not been explored in connection with credal networks. The central idea of IDS is
rather simple: divide a network in parts, and run exact and approximate algorithms on
different parts of the network, looking for a trade-off between time and quality of results.

The article is organized as follows. Section 2 presents a brief review of credal
networks and inference algorithms. Section 3 describes theIDS algorithm, and Section 4
discusses an example. Section 5 presents our final comments.

2. Background

A credal setK(X) for random variableX is a set of probability distributions forX
[Levi, 1980]. In this paper we deal only with categorical variables, and we consider
only credal sets that can be represented by the convex hull offinitely many distribu-
tions. Credal sets may contain either joint, conditional ormarginal distributions. Given
a set of random variablesX = {X1, X2, ..., Xn}, a joint credal setK(X) contains joint
distributionsp(X). For any variableXi ∈ X, the marginal credal setK(Xi) can be
computed by marginalizing each extreme distribution ofK(X) and by taking the con-
vex hull of the marginalized distributions. Similarly, given the event{Xi = xi,e},
for Xi ∈ X, it is possible to calculate a conditional credal setK(X \ {Xi}|xi,e) =
{p1(X \ {Xi}|xi,e) , . . . , pt(X \ {Xi}|xi,e)} from K(X). We only need to condition1 ev-
ery extreme point ofK(X) on {Xi = xi,e} and take the convex hull of the previously
calculated distributions.

Let Y and Z be two proper and disjoint subsets ofX. The conditional in-
formation of Y given Z can be represented in many ways [Moral, 1999]. Here we
assume that this information is given as collection ofseparately specifiedcredal sets
Q(Y|Z) = {K(Y|z0) , . . . , K(Y|zt)}. Note that we have a collection of conditional
credal sets; there is a credal set defined onY for every joint eventzk ∈ Z, and the con-
straints that define these credal sets have no relation to each other.

Given a marginal credal setK(Xq) it is possible to compute the probability inter-
val of any categoryxq,i of Xq just by computing the minimum and the maximum proba-
bility of {Xq = xq,i} over all distributions in the credal set. These values are called lower
andupperprobabilities and are defined asP (Xq = xq,i) = minp(Xq)∈K(Xq) P (Xq = xq,i)
andP (Xq = xq,i) = maxp(Xq)∈K(Xq) P (Xq = xq,i), respectively. Such interval results can
be useful for classification [Zaffalon, 1998] and robustness analysis [Cozman, 1997].

If we have a large number of variables to handle, it may be hardto represent a
joint credal set. First, it is hard to represent each one of the joint distributions over a large

1We assume throughout that any conditioning even has lower probability larger than zero.



number of variables. Second, the number of extreme distributions in a joint credal set
may be huge. Credal networks offer a compact representationthat can mitigate some of
these hurdles. LetX be the set of random variables; we take a credal networkC overX
to consist of:

• a directed acyclic graphG in which every node represents a single random vari-
able inX and the every arc represents a direct dependency between variables, and
whereρ(Xi) andχ(Xi) denote respectively the parents and children ofXi in G.

• each nodeXi is associated with a collection of separately specified credal sets
Q(Xi|ρ(Xi)).

The Figure 1 shows a simple network with two binary variables, X1 andX2. This
network has two collections of separately specified credal sets: one collection,Q(X1),
contains just one marginal credal; the other collection,Q(X2|X1), contains conditional
credal sets.

✒✑
✓✏
X1

❄

✒✑
✓✏
X2

Q(X1) = {K(X1) = cc((0.5; 0.5), (0.3; 0.7)) }
Q(X2|X1) = {K(X2|x1,1) ,K(X2|x1,2)}

with
K(X2|x1,1) = cc((0.5; 0.5), (0.3; 0.7))
K(X2|x1,2) = cc((0.4; 0.6), (0.2; 0.8))

Figure 1: A simple credal net.

We assume that a credal network satisfies the followingMarkov condition: ev-
ery variable isstrongly independent of its nondescendants nonparents given its par-
ents. Note that we adopt the concept ofstrong independence. Two variablesXa

and Xb are strong independent if for every vertice of their joint credal set we have
P (Xa = xa,iXb = xb,j) = P (Xa = xa,i) · P (Xb = xb,j), for all events ofXa and Xb.
Two variablesXa and Xb are strong independent conditional on a variableXc when
P (Xa = xa,i|xb,jxc,k) = P (Xa = xa,i|xc,k), for all events in the sample space ofXa,
Xb andXc. A credal network ispolytree-shapedif there is only one path between any
two nodes in the underlying undirected graph.

An extensionof a credal network is a joint credal set that can be associated with
the network and that satisfies all constraints in the network[Cozman, 2000]. Thestrong
extensionis the largest credal set that agrees with the strong independence assumptions
explicited in the credal net. This extension is given by the convex hull of all distribu-
tions that satisfy

∏
i p(Xi|ρ(Xi)), where each distributionp(Xi|ρ(Xi)) is selected from

the extremes points of the local credal setK(Xi|ρ(Xi)) ∈ Q(Xi|ρ(Xi)|).

Let{Xq = xq,i} be the event of interest in a credal networkC. The first algorithms
aiming at computation of lower/upper probabilities for{Xq = xq,i} employed exhaustive
procedures that verified all potential vertices of the strong extension [Tessem, 1992]. For
each one of these joint distributions, it is then necessary to compute:

P (Xq = xq,i|E) =

∑
X\{Xq ,XE},Xq=xq,i

∏
a p(Xa|ρ(Xa))

∑
X\XE

∏
a p(Xa|ρ(Xa))

. (1)

This exhaustive search can be expressed using message propagations schemes
[Moral, 1999, Tessem, 1992]; we review this type of scheme for polytree-shaped net-
works in Section 3. Such schemes generalize similar algorithms for inference in Bayesian
networks [Verma and Pearl, 1988]; in fact, one of the advantages of strong extensions
is that they entail the samed-separationrelations that exist in Bayesian networks
[Cozman, 1998, Verma and Pearl, 1988]. In spite of its elegance, message propagation



schemes for strong extensions are still exhaustive methodsthat can only handle very
small networks. The only exact algorithm that can deal with large networks is the 2U
algorithm, that is otherwise restricted to polytree-shaped networks with binary variables
[Fagiouli and Zaffalon, 1998].

The limitations of exhaustive methods have motivated research on exact al-
gorithms which do not use enumerative techniques — for example, the branch-and-
bound techniques of Rocha and Cozman (geared towards polytree-shaped networks)
[Rocha and Cozman, 2003], and the multilinear programming approach of Campos and
Cozman [Campos and Cozman, 2004]. This last algorithm can beapplied to general
credal networks, and it is probably the most efficient exact algorithm currently avail-
able. Still, exact algorithms cannot handle large networks; in fact even relatively small
networks can offer unsurmountable challenges, depending on the characteristics of the
network. The computational cost of inference depends on several factors, such as the
number of variables and credal sets in the network, the number of categories of each
variable, the number of vertices in each credal set and the network topology.

This situation has led to the proposal of algorithms for approximate infer-
ence — that is, algorithms to approximate the upper and lowerprobabilities. We
say that an approximation is anouter one if it encloses the probability interval
of the event of interest. An approximation is aninner one if the approximated
interval is enclosed by the exact interval. Several algorithms for approximate infer-
ence are available [Cano et al., 1994, Cano and Moral, 1996, Cano and Moral, 2002,
Cano and Moral, 1999, Campos and Cozman, 2004, Ide and Cozman, 2004,
Rocha et al., 2003, Tessem, 1992].

3. Inference by Decomposition in Subnetworks

In this section we explore decomposition schemes for inference in polytree-shaped credal
networks — the idea is to divide a credal network in subnetworks, such that these sub-
networks can be processed independently with different trade-offs between time and
quality. Such a divide-and-conquer strategy is not new in the context of Bayesian net-
works, for two reasons. First, inference in large, densely connected Bayesian networks
may be very complex. Second, there has been interest in applications of Bayesian
networks in embedded systems with very little memory and lowprocessing power
[Ramos et al., 2000]. These challenges have led to combinations of exact and approx-
imate algorithms; for example, the use of Gibbs sampling inside clustering algorithms
[Kjaerulff, 1994], the combination of clustering and stochastic approximations in dy-
namic models [Doucet et al., 2000], the use of conditioning inside variable elimination
algorithms [Dechter., 1996]. Decomposition schemes have been perfected in the course
of that work [Darwiche, 2001]. Recently a synthesis of decomposition schemes and com-
binations of algorithms has been proposed through theadaptive conditioningalgorithm
[F.T.Ramos and F.G.Cozman, shed].

Even though decomposition/combination schemes have a similar motivation for
Bayesian and credal networks, there are significant differences between these networks.
For one thing, credal networks are harder to handle exactly;thus it makes sense to have
some subnetworks processed exactly, and some processed approximately — whereas in
Bayesian networks we can consider exact algorithms for all subnetworks, as long as they
are “small” enough. Secondly, polytree-shaped credal networks are already difficult to
process, while polytree-shaped Bayesian networks are generally trivial objects from a
computational point of view.

In this paper we focus on decomposition schemes that combineexact and approx-



imate methods across subnetworks. The IDS (Inference by Decomposition in Subnet-
works) is a direct translation of this proposal: the algorithm divides a polytree in several
simpler polytrees; one of these subnetworks contains the query variable, and this subnet-
work receives more computational effort than the other subnetworks. Each subnetwork
can be viewed as an independent processor that computes an interval-based probabilistic
message and sends it to the main subnetwork or to another subnetwork. At the end of
this message propagation scheme, the main subnetwork has all information that it needs
to compute an approximation to the probability interval of interest.

3.1. Set and interval messages in polytree-shaped credal networks

The IDS algorithm exploits the set-based message propagation algorithm discussed by
Moral [Moral, 1999]; we first present a very short review of that algorithm, just to fix
notation and terminology. For now we consider full-fledged set-based messages; later we
will consider the use of interval messages.

(1) The message propagation algorithm starts when the query node Xq requests
that its parents and children send messages to computeK(Xq|E). After receiving an-
swers, the processor associated withXq calculates the upper and lower probabilities of
{Xq = xq,i} givenE in K(Xq|E).

(2) A parent nodeXp calculates the credal setK(Xp|Ep) — taking into account
evidenceEp thatXp d-separates from the nodeXs that requested a message. This credal
set is then associated with a message denoted byπK

Xs
(Xp), and sent toXs. To calculate

this last message,Xp needs some information stored in the branches of the polytree that
it separates fromXs. NodeXp requests to its children and parents nodes, exceptXs, the
necessary messages. Those messages are obtained recursively by local computation and
message propagation.

(3) A children nodeXc calculates a message containing a set of likelihood func-
tionsp(Ec|Xs). HereEc denotes the evidence thatXc d-separates fromXs. This message
is denoted byλK

Xc
(Xs) and computed with a procedure that, initially, requests to every

Xa ∈ ρ(Xc)\{Xs} and everyXb ∈ χ(Xc) send messagesπK
Xc

(Xa) andλK
Xb

(Xc), respec-
tively. After receiving these messagesXc integrates them inλK

Xc
(Xs).

Note that this propagation scheme essentially sends set-based messages across
arcs of a credal network. Therefore, since we intend to applya decomposition procedure
in credal networks, we must investigate what happens if we “cut” an arc when decom-
posing a network — in polytree-shaped Bayesian networks, any arc divides a network,
and the messages that would flow across the arc carry all the information between the
subnetworks [Peot and Shacter, 1991]. The same observationapplies to polytree-shaped
credal networks with strong independence:

Theorem 1 Let C be a polytree credal network that can be divided in two subnetworks
Ci andCj by removing the arc connecting a variableXi ∈ Ci to a variableXj ∈ Cj in
the original network. Furthermore, letEi andEj be the evidence sets related to nodes in
Ci andCj, respectively, and,Xq be the query variable. If the query variable is inCj , we
can compute the messageπK

Xj
(Xi) in the first subnetwork and send it to the nodeXj in

Cj, and to obtain tight intervals inCj. If the query variable is inCi, we can compute the
messageλK

Xj
(Xi) in the second subnetwork and send it toXi, and to obtain tight intervals

in Ci.

Proof: Given the propagation message scheme described previously,
we have two situations forXq. If Xq ∈ Ci, all information related with
the evidenceEj that we need to compute upper and lower probabilities on



Xq is stored in the messageλK
Xj

(Xi); therefore, if we calculateλK
Xj

(Xi)
previously, we do not need to manipulateCj when computing the inter-
est interval inCi. If Xq ∈ Cj , all information related with the evidence
Ei that we need to calculate upper and lower probabilities onXq is stored
in the messageπK

Xj
(Xi); so, if we calculateπK

Xj
(Xi) before, we do not

need to deal withCi when calculating the interest interval inCj . From
this follows that after message propagation, the subnetworks can be pro-
cessed separately. Additionally, the computation of the message fromCj

to Ci is independent ofEi and the computation of the message fromCi

to Cj is independent ofEj . Thus these messages can also be computed
independently. QED

The result is illustrated in Figure 2.

❧Xi
❧XjCi Cj

PPq
✏✏✶ PPq

✏✏✶ PPq
✏✏✶ PPq

✏✏✶
πK

Xq
(Xp) ⇒

⇐ λK
Xj

(Xi)

Figure 2: Decomposition of a polytree credal net.

This decomposition makes each subnetwork more manageable,but still the mes-
sages can be rather complex objects. To overcome this difficulty, we simply replace the
set-basedπK

· (·) andλK
· (·) messages by interval messages. Note that we can then have

tight interval messages (where the lower and upper probability values are in fact attained
by measures) ornon-tightinterval messages that may be produced by approximate infer-
ence algorithms in the subnetworks.

3.2. Implementing IDS

In our implementation of the IDS algorithm, a network is divided by a depth-first search
based procedure on the graph ofC. The basic parameter of this procedure is a integerL

that specifies the maximum size of the subnetwork that can be processed exactly (we take
the MLR algorithm to be our standard “exact” method [Campos and Cozman, 2004]).

The depth-first procedure starts in the query node and crosses the network, mark-
ing visited nodes. Every time a nodeXi is visited the number of combinations of vertices
in the current subnetwork,W , is updated. IfW exceedsL the nodeXi is disconnected
from the nodeXj (the direct ascendent ofXi in the graph). Figure 3.2 contains a sketch
of the decomposition procedure (the network and the threshold L are global variables).
The functionW (X) calculates the number of combinations of vertices in the subnetwork
formed by the nodes already visited. After decomposition, we say that an ancillary sub-
networkCa is belowthe main subnetwork if there is an arc in the original credal network
that connects one node in the main subnetwork to one node inCa. Inversely, we said that
Ca is abovethe main subnet if there is an arc in the original credal network that connects
one node inCa to one node in the main subnetwork.

Since the original credal network is divided the IDS algorithm computes messages
in the ancillary subnetworks and to send them to the main subnetwork. The interval-
based message that the main subnetworkCq receives from a subnetworkCa, above it, is
denoted byπd

Cq
(Ca). The interval-based message that the main subnetwork receives from

an ancillary subnetworkCb, below it, is indicated byλd
Cb

(Cq). Currently, these messages
are calculated with the approximate A/R++ algorithm [Campos and Cozman, 2004]. Let
Xa ∈ Ca be the variable that was disconnected to a nodeXc ∈ Cq. The use of the A/R++
algorithm to calculateπd

Cq
(Ca) results that set of intervals composing this message are



———————————————————————
Input: The current nodeXi and the last node visitedXj.
Output: Set of subnetworks obtained by removing arcs.

• If W (X) > L, then if there is an arc connectingX andY in C, remove it;
• else,

– select a non-visited nodeXk ∈ ρ(Xi) and run the decomposition proce-
dure on it;

– select a non-visited nodeXl ∈ χ(Xi) and run the decomposition procedure
on it.

———————————————————————

Figure 3: Decomposition in the IDS algorithm.

outer bounds for the lower and upper probabilities of every category ofXa given the
evidenceEa. Similarly, let Xb ∈ Cb be the variable that was disconnect from a node
Xp ∈ Cq. The intervals of the messageλd

Cb
(Cq) are outer bounds for the likelihood

functions asp(Eb|Xp = xp,j), for all {Xp = xp,j} in the sample space ofXp.

After to receive the requested messages the subnetworkCq converts their inter-
vals in sets of probability functions. The intervals inπd

Cq
(Ca) are used to generate the

largest credal set that agrees with the intervals of that message, this credal set is denoted
asK ′(Xa|Ea). In sequence, a new node labelledX ′

a is added toCq and it is made a
parent ofXc. This new node is equivalent toXa and its collection of separated credal sets
contains an unique element, the credal setK(X ′

a) equivalent toK ′(Xa|Ea). Similarly,
every messageλd

Cb
(Cq) thatXq receives is converted in the largest convex set of likeli-

hood functions asp(Ec|Xp) that agrees with the intervals in the message. In next, this set
is associated toXp as a dummy evidence [Pearl, 1988] [Tessem, 1992].

This procedure transforms the subnetworkCq in a new polytreeC′
q in which it is

possible to compute intervals for the event of interest. Given it, the IDS algorithm applies
an exact method, MLR, to calculate the upper and lower probabilities of {Xq = xq,i} in
C′

q. However, some credal sets inC′
q are the larger than those credal sets that are dealt

by the exact message propagation algorithm. From this follow that the problem of the
inference of the probability interval of{Xq = xq,i} in C′

q is a relaxed version of the
problem of the inference inC and the extreme probabilities obtained by IDS are outer
bounds.

The combination of the MLR and A/R++ algorithms proposed by the IDS algo-
rithm is interesting for two main reasons. First, because the MLR algorithm already runs
the A/R++ in a preprocessing phase. Therefore, the initial execution of the A/R++ al-
gorithm on the ancillary subnetworks has no impact on the overall computational cost.
Second, because the MLR algorithm is an anytime procedure. An algorithm is anytime if
it can produce a solution in a given time T and the quality of solutions improve with time
after T [F.Ramos et al., 2002]. It means that when computing intervals for{Xq = xq,i} in
C′

q we can use the MLR to calculate exact or approximate ones. Theselection of one of
these strategies depend on the time and resources avaliable.

4. Example

To illustrate the characteristics of the IDS algorithm, consider the following (rather large)
problem. We have a dynamic network [Russell and Norvig, 1995] formed by replication
of a network slice depicted in Figure 4, where all variables have three values. The objec-
tive here is to compute lower and upper probabilities for thevalues of variableX9 in the
last slice; we considered twelve time slices — the inferencerequires the manipulation of



84 variables, and the number of potential vertices of the strong extension is10355.

✒✑
✓✏
X1 ✒✑

✓✏
X2

✒✑
✓✏
X3

✒✑
✓✏
X4

✒✑
✓✏
X5

✒✑
✓✏
X6

✒✑
✓✏
X7

✒✑
✓✏
X8

✒✑
✓✏
X9

✲
❅

❅❅❘
✲

❅
❅❅❘
✲

❅
❅❅❘

✲

✲
❄

❄

Figure 4: A time slice of the credal nets used in tests.

In an inital experiment showed that this inference cannot becomputed exactly
with the MLR algorithm. So, we approximate the intended intervals with the IDS algo-
rithm. To calculate this approximation we run IDS as described above - the main subnet-
work was exactly processed by MLR algorithm. The parameterL of the IDS algorithm
was set as5.5× 1015, what makes that the main subnework was divided into two not bal-
anced subnetworks. The first subnetwork consisted of the last time slice, while the second
subnetwork consisted of all other time slices. The relativeerror in probability intervals
computed by the IDS algorithm were smaller than1.6%, while the largest error of the fast
combined framework that executes A/R++ and a iteration of MLR algorithm was1.7%.
The smallest error of IDS was0.8% while the smallest error of the combined framework
was0.47%. The time spent by IDS to compute the inference was between 0.7 and less
than 3 times the time spent by the combined framework.

The experiment indicates that IDS provides a compenting strategy to approach
approximate inferences that can not be solved with MLR. Furtherly, the IDS algorithm
also can be viewed as a method for anytime inference. In the IDS this behaviour can
be reached by increasing the thresholdL. That is, if we increase the threshold we are,
probably, allowing that more time be spent in the computation of the main subnetwork,
therefore, we are allowing that a more complex subnetwork bedealt exactly, and, it tends
to improve the precision of the algorithm [da Rocha, 1997]. Alternatively, by reducingL
we obtain a faster inference procedure at the expense of precision.

5. Conclusion

This paper presented an approximate algorithm called IDS that computes outer approx-
imations for probability intervals in credal networks. Themain characteristic of this
method is that it provides a simple strategy to manage the tradeoff between the preci-
sion of the calculated intervals and the cost for to compute an inference. For that, the
algorithm uses a divide-and-conquer approach and a messagepropagation scheme that
allows to combine an approximate exacts inference algorithms.

Furthermore, the decomposed inferences are solved with different algorithms.
Partial results are computed with approximate methods while the main result is obtatined
with a combination of the partial results and exact or approximate inference algorithms.
The experiment indicates that such procedure allows to trade off time and precision when
computing probability intervals in an anytime scheme.

Future projects considers the extension of this framework to inferences in multiply
connected credal networks.
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