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Abstract

This paper investigates a representation language
with flexibility inspired by probabilistic logic and
compactness inspired by relational Bayesian net-
works. The goal is to handle propositional and
first-order constructs together with precise, im-
precise, indeterminate and qualitative probabilis-
tic assessments. The paper shows how this can
be achieved through the theory of credal net-
works. New exact and approximate inference al-
gorithms based on multilinear programming and
iterated/loopy propagation of interval probabil-
ities are presented; their superior performance,
compared to existing ones, is shown empirically.

1 INTRODUCTION

This paper focuses on a representation language that
can accommodate propositional/first-order constructs and
probabilistic assessments of various forms (precise, impre-
cise, indeterminate, and qualitative ones).

The oldest attempts to combine certain and uncertain be-
liefs go back to Boole’s probabilistic logic [22]. Probabilis-
tic logic was rediscovered by Nilsson [38], and has been ex-
tended to handle imprecise and qualitative beliefs, relations
and quantifiers [3, 17, 23]. The price to pay for all this flex-
ibility is computational complexity and, often, inferential
vacuousness — inferences typically lead to probability in-
tervals, and often these intervals are quite wide. A different
strategy is adopted by relational Bayesian networks; here a
strict set of rules produces a single probability measure and
efficient inference [19, 27, 36, 41]. Perhaps the most im-
portant lesson from the Bayesian network literature is the
importance ofstructure; that is, the importance of modular
representations that admit fast inference algorithms.

It is natural to ask whether we can have structured repre-
sentations that handle logical and probabilistic statements,
some of which may be precise, imprecise, indeterminate
or qualitative. This paper investigates representations with

these characteristics, presenting basic theory, inference al-
gorithms, and applications. Sections 2 and 3 discuss the
basic aspects of our models. Section 4 then explores in-
ferences, framing them in the context ofcredal networks.
Sections 5 and 6 present several new algorithms for infer-
ence with credal networks, and experiments indicating that
these algorithms surpass existing methods with respect to
the size of handled networks. Section 7 discusses an exam-
ple and Section 8 contains concluding remarks.

2 PROBABILISTIC LOGIC AND
RELATIONAL BAYESIAN NETWORKS

Probabilistic logic associates probability values (which
may be imprecise or indeterminate) to logical sentences [3,
17, 23, 38]. An example of application islogic probabilis-
tic programming, where one can make statements such as

KILLED (x) [p;q℄ � SHOT(y; x) ^ LOADED(y); (1)
where[p; q℄ is a probability interval — in fact several au-
thors regard probabilistic imprecision as an important rep-
resentation tool in itself [29, 32, 35]. Probabilistic logic
offers a language for several classic artificial intelligence
problems that deal with certain and uncertain beliefs; how-
ever, probabilistic logic faces two difficulties. First, itis
computationally intractable in general. Second, inferences
produce probability intervals, and it is easy to create sit-
uations where a few probability assessments lead to large
probability intervals (call thisinferential vacuousness).

“First-order” Bayesian networks also combine logic and
probability but follow a different philosophy; they adopt
as many assumptions as needed (independence relations,
uniqueness of assessments) so as to yield efficient infer-
ence schemes. We now briefly review some relevant con-
cepts related to such models. Apropositional Bayesian
networkencodes a single probability measure over a fixed
set of variables, using a directed acyclic graph, a node
per variable, and associated conditional distributions [40].
First-order constructs can be added in several ways [19,
20, 27, 36, 41]; here we focus onrelational Bayesian net-
works [27] as they are quite general and flexible. The
idea is to have a vocabularyS of relations, and to build



a directed acyclic graph where each node is associated
with a relation inS. Every relationr in S is then as-
sociated with aprobability formulathat indicates how to
compute the probability ofr(v) for any v in a domainD. The probability formulaFr may depend on other re-
lations, the parents ofr in the graph. When an infer-
ence is requested for somer(v) (that is, a request for the
probability ofr(v) conditional on some observed event), a
propositional Bayesian network is generated; each node in
this network represents the instantiation of a relation [28].
This “propositionalization” scheme requires methods for
combination of probability formulas — for example, sup-
pose that relationr(v) has parent relationssi(u; v) that are
valid for someu satisfying relationt(u); then the proba-
bility p(r(v)jfsi(u; v) : (8u)t(u)g) must be specified. Re-
lational Bayesian networks employcombination functions,
denoted byMfF1; : : : ; Fnju; 
(u; v)g, to combineFi for
all u that satisfy the equality constraint
(u; v). Examples
of such functions are Noisy-OR, Max, Min, and Mean.

Consider the following example.1 If v does not live in LA,
then she sounds the alarm with probability 0.9 in case there
is a burglary; ifv lives in LA, then she sounds the alarm de-
pending on whether there is a burglary and whether there is
an earthquake. This is expressed approximately as follows:
P(alarm(v)) = if (lives-in(v, LA))

NoisyORf
(burglary(v) ? 0.9:0.0),

(quake(LA) ? 0.2:0.0)g;
else

(burglary(v) ? 0.9:0.0);

where NoisyORfpig = 1 �Qi(1 � pi). This probability
formula can be applied to any number of elements ofD.

While probabilistic logic isvery loose, relational Bayesian
networks arevery strict. In this paper we want to find some
middle ground — structured and compact models that can
deal with imprecision and indeterminacy. The next section
proposes a methodology in this direction.

3 “RELATIONAL CREDAL” NETWORKS

Our proposal is to convey logical and probabilistic beliefs
of various forms (precise, imprecise, qualitative) by associ-
ating directed acyclic graphs withsetsof probabilities. The
association of directed acyclic graphs with sets of probabil-
ities is not new, as we discuss at the end of this section; our
point is that this strategy offers an attractive “bridge” be-
tween the compactness of structured probabilistic models
and the flexibility of probabilistic logic.

We assume that a directed acyclic graph captures a Markov
condition; in this we simply follow the Bayesian-network
philosophy. Thus a node2 in the graph is independent of

1Taken from the documentation of the Primula system, dis-
tributed at www.cs.auc.dk/�jaeger/Primula.

2A node/variableX may refer to propositions or relations.

its nondescendants nonparents conditional on its parents.
The graph topology is assumed known and captures the
structure of the domain; for instance, the graph topology
might come from a structured set of rules (1), or from di-
rect causal information.

The best way to clarify this proposal is to discuss how
imprecise, indeterminate and qualitative beliefs should be
handled in a few concrete scenarios.

We start with a brief comment on uncertainty over proba-
bility values, as this type of uncertainty has been the object
of extensive literature [30, 31, 47]. Several factors produce
imprecision in probability values: there may be little sub-
jective knowledge to obtain a precise value; there may be
disagreement among experts in charge of a model; or prob-
ability values may be estimated through confidence inter-
vals. The logical/probabilistic rule in Expression (1) is an
example of probabilistic imprecision [29, 32, 35]; similar
rules are found in relational databases, when measures of
support and confidence are computed from data. It should
be noted that induction of logic programs from finite data
produces such interval-valued rules [5]. One might also
consider more sophisticated ways to specify constraints on
probability values, for example by belief functions or mass
assignments [17]. In this regard, possibilistic databasesof-
fer an important example [4], as a possibility function can
be readily interpreted asupper probabilities [16]. In all
these situations, we obtain sets of distributions as represen-
tations for beliefs.

It is also important to recognize thatqualitative state-
ments of probabilistic strength yield sets of probabili-
ties. Consider thequalitative influencesthat are employed
in Boolean qualitative probabilistic networks[42, 48]:

here a marked edgeY +�! X means thatP (xjy; z) �P (xj(:y); z), wherez denotes any instantiation of parents
of X exceptY . This inequality typically defines a set of
probabilities. The same is valid for mixtures of qualita-
tive/quantitative assessments that have been proposed re-
cently [42].

Consider now the possibility of imprecision and indeter-
minacy in combination functions. Take the most com-
monly used combination function, the NoisyOR function
[20, 27, 36]. A NoisyOR function for Boolean variableX
and parentsY = fY1; : : : ; Yng depends on thelink prob-
abilitiesP (xjyi; f(:yj)gj 6=i) — that is, the probability ofX given thatYi is true but all other parents are false. A dif-
ficulty is that these probabilities are not always available
— most notably, the medical literature usually contains
only sensitivitiesP (xjyi) andspecificitiesP ((:x)j(:yi))
for eachYi [11]. One can try to translate sensitivities and
specificities into link probabilities, but this translation is
not unique [37]. The solution presented by Cooper in the
NESTOR system [11] is to take sensitivities and specifici-
ties asconstraintson the complete distributionp(X jY),



a method that clearly produces sets of probabilities. The
problem with this approach is inferential vacuousness, as
there are too few constraints on the distributionp(X jY).
A better approach would be to examine exactly which as-
sumptions behind the NoisyOR function are adequate to a
problem, and adopt just these assumptions. For example, a
NoisyOR function satisfies the following property:
Cumulativity: The more variablesYi are true, the larger isP (xjY).
This property, and a few others, may be used to character-
ize the NoisyOR function [14]. However, one might want
to assumeonly a weakened form of this property in a par-
ticular situation; consider the following proposal:p(X jY) = � if Yi = (:yi) for all i,p(X jY) = pi if

� Yi = yi andYj = (:yj) for j 6= i; (2)p(X jY) � maxfpi : Yi = yig otherwise.

Here we havep(X jY) alwayslarger than or equal tothe
largest linkpi among the “active”Yi. Also we have a small
“leak” probability � for the eventfX = xg conditional
on fYi = (:yi)gni=1 (where� � mini pi). Call Expres-
sion (2) thecumulative-synergymodel. The set-valued fuc-
tion (2) offers as much precision as possible given the as-
sumptions.3 A variant of this model is produced if sensitiv-
ities and specificities are given instead of link probabilities.
For example, if a sensitivitysi = P (xjyi) is given, then the
equalitysi = PYnYi p(X jY)P (YnYijyi) must be satis-
fied — p(X jY) is given by the cumulative-synergy model
with free parameterspi, andP (YnYijyi) are free variables.
Again, we are left with a set of probabilities overX andY.

Qualitative relationships can also be used to constrain com-
bination functions involving Boolean variables. For ex-
ample, theproduct/additive synergies[48] define nonlinear
constraints over the probabilitiesP (X jY). These qualita-
tive assessments can be used in isolation or together with
the constraints already discussed.

Hopefully at this point it is clear that many kinds of beliefs
can be represented relational Bayesian networks associated
with sets of probabilities. Suppose then that one builds such
a model; now suppose aninferencemust be computed (that
is, there is a request for probability bounds for somer(v)).
We can start by creating an auxiliary propositional struc-
ture from the relational one, following the same procedures
used in relational Bayesian networks [28]. This produces
a directed acyclic graph and propositional variables asso-
ciated with sets of probabilities — an object that has been
extensively investigated and is known as acredal network
[1, 7, 12, 18, 46]. A few relevant concepts are reviewed

3An attractive property of the cumulative-synergy model is
that it admits “internal” factorizations as the NoisyOR function;
due to lack of space, such computational properties are ommitted.

here.4 A set of probability distributions is called acredal
set [30]. A conditional credal setis a set of conditional
distributions, obtained applying Bayes rule to each distri-
bution in a credal set of joint distributions [47]. There
are two kinds of conditional credal sets: if the distribu-
tions for p(X jY = y0) and forp(X jY = y00) are unre-
lated, then the sets areseparately specified; if these distri-
butions are related, then the sets areextensively specified
[43]. For example, the cumulative-synergy model is sepa-
rately specified, while qualitative influences are extensively
specified. Now consider a credal set containing joint dis-
tributionsp(X;Y jZ), and say thatX andY arestrongly
independent conditional onZ if the vertices of this set fac-
torize asp(X jZ)p(Y jZ) (note that other concepts of in-
dependence for credal sets can be found in the literature,
but strong independence seems to be the natural one in the
present context) [12, 13]. Thestrong extensionof a credal
network is the largest joint credal set that satisfies a Markov
condition: a variable isstrongly independent of its nonde-
scendants nonparents conditional on its parents [13].

Thus our proposal is to use “relational credal networks” to
combine logical constructs and several forms of probabilis-
tic assessments. Having identified the structure of interest,
we now must look into inference procedures.

4 INFERENCES

We consider inference for a “propositionalized” credal net-
work. Even though inference is a NP-complete problem for
general polytree-shaped credal networks [43], a “pocket”
of tractability is found inBooleanpolytree-shaped credal
networks, for which polynomial algorithms exist (Section
6 discusses this point in more detail).5 We can thus state
the following easy but notable result:

Theorem 1 If a relational credal network with Boolean
variables is propositionalized into a network with polytree
topology and separately specified credal sets, then infer-
ence is polynomial.

In fact, a more general result can be stated: if we can divide
a Boolean credal network in pieces, such that multiply con-
nected pieces contain only singleton credal sets, and such
that the various pieces form a polytree, then inference with
the credal network is essentially as hard as inference with
a Bayesian network of identical topology.

The following theorem clarifies the (yet open) complexity
of inferences for multiply connected credal networks:

Theorem 2 Inference with the strong extension of a credal
network is NPPP-complete.

4Several tutorials can be found at the Society for Imprecise
Probability Theory and Applications, www.sipta.org.

5Another pocket of tractability is represented by purely quali-
tative networks [42, 48]; however in this paper we focus on mod-
els that can combine qualitative and numeric assessments.



Sketch of proof.The proof follows the same arguments in
Park’s theorem for the MAP problem [39]. Membership
in NPPP is immediate. Hardness is shown by reduction of
E-MAJSAT; Park’s theorem shows a reduction to a MAP
problem that is equivalent to inference in a credal network
using the Cano-Cano-Moral transform [12]. QED

In short, inferences are in NP and NPPP completeness
classes — exactly the classes that contain MPE and MAP
problems for Bayesian networks. Thus we are within the
confines of currently used probabilistic inference.

5 INFERENCE ALGORITHMS BASED
ON MULTILINEAR PROGRAMMING

Consider the computation of a tight upper bound forP (x)
(theupperprobability offX = xg); this is obtained asmax XX1;:::;XnnX nYi=1 p(Xijpa(Xi)) ; (3)

subject to constraints on the distributionsp(Xijpa(Xi)).
Exact inference algorithms for credal networks follow ei-
ther enumeration or search methods to find the maximizing
distributions [9, 12, 43, 44]. Despite intense effort, rela-
tively “small” inferences have been processed exactly so
far (about 15 nodes for polytrees, about 8 nodes for multi-
ply connected networks with ternary variables). Several au-
thors have suggested the direct use of nonlinear optimiza-
tion for inference [1, 12, 18], but no algorithm has yet been
formulated using this approach. The objective of this sec-
tion is to investigate and implement the idea.

For the constraints discussed in Section 3, Problem (3) is
a multilinear program on free variablesp(Xijpa(Xi)). If
an upper bound for aconditionalprobability is requested,
then a fractional multilinear program must be solved. As a
fractional multilinear program can be solved by a sequence
of multilinear programs [2], we only discuss Problem (3).

5.1 INFERENCE AS A MP PROBLEM

Problem (3) has the unpleasant property that the objec-
tive function contains an exponential number of terms
(exponential on the size of the given credal network).
This difficulty can be avoided by introducing new artifi-
cial variables that stand for summations in Expression (3).
To illustrate this procedure, consider a simple networkA ! B ! C ! D ! E. Assume all variables
in the network are ternary. Computation of the upper
probability for fE = e0g using Expression (3) leads
to maxPh;i;j;k p(e0jdh) p(dhj
i) p(
ijbj) p(bj jak) p(ak),
a multilinear function with 81 nonlinear terms of degree
four. We can transform this expression by introducing new
variables so as to keep the degree at most 2. We obtain
just 30 nonlinear terms inmaxPi p(e0jdi) p(di) subject
top(dk) =Pj p(dkj
j) p(
j), p(
k) =Pj p(
kjbj) p(bj),p(bk) = Pj p(bkjaj) p(aj) (for k = 0; 1; 2), plus the lin-
ear constraints.

This “decomposition” of Expression (3) can be automated
using the variable elimination algorithm for Bayesian net-
work inference. Run this algorithm and define new artifi-
cial variables for each value of the intermediate functions
generated during variable elimination. The objective func-
tion becomes a summation of a few of those artificial vari-
ables; each new artificial variable corresponds to a multi-
linear expression representing relationships between neigh-
bour nodes in the elimination tree. The number of functions
in the resulting MP problem is linear on the number of pa-
rameters of the credal network. The decomposition is quite
fast and essentially takes the cost of a single Bayesian net-
work inference.6 Details can be found elsewhere [6].

We now consider the solution of the resulting MP prob-
lems. We should stress that an advantage of such a “di-
rect” optimization scheme is that constraints on probabil-
ities can be nonlinear (for example, the qualitative con-
straints discussed in Section 3) and credal sets need not
be separately specified. Existing algorithms for inference
with credal networks typically cannot handle such situa-
tions. We thus consider a multilinear programming (MP)
problem formulated asmax f0(�), where� contains prob-
ability values that belong to a box inRm and satisfies con-
straints

Pt2Tr �rt[Qj2Jrt �j ℄ � �r for r = 1; � � � ; R; Tr
is an index set defining terms of these constraints,�rt is the
real coefficient for thetth term, andJrt indicates the set of
variables in thetth term. DefineT = [rTr. MP problems
are nonconvex and no known transformation can convexify
them; several solution methods have been proposed in the
literature [2, 21, 24, 33, 45].

The properties of Sherali and Tuncbilek’s Reformulation-
Linearization (RL) method [45] make it particularly ap-
propriate to solve Expression (3). The RL method sub-
stitutes each product of variables

Qj2Jrt �j by a new ar-
tificial variable#Jrt for all termst 2 T , thus obtaining a
linear program. The solution of each linear problem gives
an upper bound to the solution of the MP problem. The
method iterates over the variables by branching over their
ranges whenever necessary, until each#Jrt is close enough
to
Qj2Jrt �j . To guarantee convergence, some additional

“artificial” functions have to be included in the linear sub-
problems; these variables correspond to multiplications of
the original constraints (provided that the degree of the new
functions do not exceed the maxdegreeÆ = maxr;t jJrtj,
because this would increase the complexity of the prob-
lem) [45]. In our implementation we only construct new
artificial functions when the terms they refer to are already
present in the MP problem. To choose a variable to branch
over, the method finds the greatest difference between the
artificial variables and the products they represent, and di-

6Andersen and Hooker [1] proposed a similar decomposition,
without specifying an algorithm for it; they also suggestedthat a
direct MP solution would be necessary, but did not present any
algorithm for it.



Table 1: Test sets (each with 10 networks), with average sizes of MP problems and their corresponding linearized versions,
average sizes of intervals containing inference (always anupper probability), and the average number of branches examined
by the RL method. A few networks in the fourth row, and half thenetworks in the fifth row could not be solved.

Network Nodes Vertex by MP MP Linear. Linear. A/R++ RL Branched
Topology credal set vars. funcs. vars. funcs. error error nodes

dense Boolean 10 2 105 172 665 3996 2:8684% 0:0484% 301
Alarm Boolean 37 2 363 576 1395 6876 5:5706% 1:076% 765
dense ternary 10 3 412 576 5920 40181 10:4304% 0:3290% 1
Alarm ternary 37 3 1657 2214 13780 70612 22:3293% 2:5954% 3

dense quaternary 10 4 1145 1474 30073 213376 13:4146% 0:6071% 1

vides the range of that variable. Every time a linear solution
is feasible for the MP problem, the method verifies whether
it is the best solution known so far. Thus the branching
steps are obtained by “cuts” on the feasible region.7 Fi-
nally, we note that branching in the RL method can benefit
from knowledge of local maxima [45]; in our implemen-
tation we use the search algorithm by Rocha et al [44] to
produce local maxima.

5.2 THE A/R++ ALGORITHM

The performance of the RL method is greatly enhanced if
ranges for free variables� and# are known [45]. One way
to obtain approximate ranges for polytree-shaped networks
is to run the A/R+ algorithm [43]. The A/R+ algorithm
(and Tessem’s original A/R algorithm [46]) work by pro-
ducing local approximations for the messages sent during
inference in polytrees. A nodeX receives approximate in-
terval probabilities from its parents and children, and sends
approximate interval probabilities to its parents and chil-
dren; these approximate interval probabilities are quickly
computed and transmitted. Hence we can use the A/R+ al-
gorithm to improve the RL method.

Now, we can also use the RL method to improve the A/R+
algorithm. Take a nodeX and consider thatX must send
a message�X (Y ) to its parentY , by combining messages
received fromX ’s other parents and children. The A/R+
algorithm sends upper and lower bounds for�X(Y ), and
these upper and lower bounds can beeasily produced by
multilinear programming— they are actually local ver-
sions of Expression (3) [46]. In fact, bounds on the proba-
bility of any event defined byX , conditional onY , can also
be produced by multilinear programming. Thus we obtain
the following algorithm, which we callA/R++: follow the
same steps of the A/R+ algorithm, but compute probability
bounds for several events using multilinear programming,
and send these bounds as messages. The probability in-
tervals computed by A/R++ are always more precise than
or equal to the intervals of the A/R+. Note that the addi-
tional bounds that are passed amongst variables are linear

7In our context, these cuts are cuts on the credal sets in
the credal network; this branching strategy is different from the
branching method proposed by Rocha et al [44], where each
branch corresponds exactly to a vertex of a credal set.

constraints that can be easily handled by the RL method.

So far we have discussed the A/R++ algorithm as a method
for polytree-shaped networks; the algorithm can be readily
extended to multiply connected networks, by considering
messages in the variable elimination algorithm instead of
messages directly amongst nodes. Technical details can be
found elsewhere [6].

5.3 EXPERIMENTS

We have conducted experiments on five sets of networks,
to illustrate the behaviour of inference with A/R++ and our
RL-based method. Results are shown in Table 1. Each
test set was composed of 10 randomly generated multi-
connected credal networks (generated with BNGenerator
[25]). Experiments refer to computation of upper probabil-
ities without evidence; results refer to the most challenging
inferences in each network. Table 1 indicates the topol-
ogy of the test networks and the size of multilinear and lin-
earized programs. The size of linearized programs grows
substantially with the number of vertices on credal sets and
the number of variables in the credal network; for the larger
networks, only a few branches in the RL algorithm are pos-
sible. The results also allows us to compare the quality
of results produced by the A/R++ algorithm and the RL
method (note that the RL method uses the A/R++ to pro-
duce ranges of variables). Experiments were performed in
a Pentium IV 1.7GHz, using CPLEX as linear solver, and
with a time-limit of ten minutes for the first three test sets
and one hour for the other two test sets.

6 ALGORITHMS BASED ON ITERATED
AND LOOPY PROPAGATION

Approximate inference seems to be a natural solution for
large credal networks [8, 9, 10, 44, 46]. In this section we
propose two new approximate inference algorithms that are
geared towards Boolean networks, given the importance of
such networks in relational settings; the discussion is brief
and technical details can be found elsewhere [26].

As Boolean polytrees have polynomial inference (Theorem
1), we focus on Boolean multiply connected networks. Our
new algorithms rely on the 2U algorithm — the first poly-



nomial inference method for Boolean polytrees [18]. The
2U algorithm slightly modifies the structure of messages
used in Pearl’s belief propagation algorithm [40]. In the
2U algorithm, each nodeX computes valuesP (X = xjE)
by combination of interval functions�(X) and�(X) —
these interval functions are produced by processing several
“messages” received byX . A complete account of the 2U
algorithm can be found in the original paper [18].

6.1 ITERATED PARTIAL EVALUATION (IPE)

Draper and Hank’s Localized Partial Evaluation (LPE)
algorithm produces approximate inferences by “cutting”
parts of a network and running interval-based inferences in
a selected sub-network [15] (in Boolean networks, we can
use the 2U algorithm for the interval-based inferences). We
propose the following algorithm:
1) Select a conditioning cutset [40] for the credal network.
2) “Cut” the Boolean network (using the cutset and the LPE
operations) so that the resulting network is a polytree.
3) Now run LPE on the polytree, using 2U as the infer-
ence engine. In polynomial time we obtain an approximate
probability interval for any node in the credal network.
4) Select a different cutset, and return to Step 2, for a given
number of iterations.
5) At the end, return the intersection of all approximate
probability intervals generated in the process.
We have:

Theorem 3 The probability interval produced by the IPE
algorithm contains the exact interval requested by the in-
ference.

Sketch of proof.Each run of the LPE+2U algorithm con-
tains the exact interval, because the LPE algorithm pro-
cesses all vertices of credal sets in the network; the in-
tersection of all approximate intervals contains the exact
interval. QED

We have implemented the IPE algorithm and run experi-
ments in the network topologies employed by Murphy et al
[34] to test loopy propagation: the Pyramid and the Alarm
networks. The Pyramid network is a multilayered graph
associated with Boolean variables and local connections
among layers. The Alarm network is a classic model used
in medical diagnostic; we set all variables to Boolean val-
ues, so as to run the IPE algorithm. For both networks,
we generated several realizations of random, uniformly dis-
tributed conditional probability tables [25]. Results canbe
viewed in Figure 1; most inferences are quite accurate, with
mean square error (MSE) of 5% for Pyramid and 7.2% for
the “Boolean” Alarm.

6.2 LOOPY 2U (L2U)

A popular algorithm for approximate inference in Bayesian
networks is loopy propagation [34]. Here we propose a
“loopy” variant of the 2U algorithm for multiply connected
Boolean credal networks. First, a sequence of nodesS

is randomly chosen, such that every node that is relevant
to the inference is inS. Initialization of variables and
messages follow the same steps used in the 2U algorithm.
Then the nodes are repeateadly updated following the
sequenceS. Iterations are indexed byi, which starts at 1,
and updates are repeated until convergence of probabilities
is observed or until a maximum number of iterations is
reached. Each node is updated in several steps:
1) Update �(i+1)(x) and �(i+1)(x) usingP (X = xjZ1; : : : ; Zm), P (X = xjZ1; : : : ; Zm) and
messages�X (Zi) from them parentsZi of X .

2) Compute�(i+1)X and�(i+1)X
using messages�(i)Yj (X).

3) Compute interval messages to be sent to the children
and parents ofX , �(i+1)Yj (x) and �(i+1)X (Zi), using the
values computed at(i).
The whole algorithm follows the loopy propagation
scheme, but instead of messages from Pearl’s propagation
algorithm, here we use interval messages from the 2U
algorithm. It should be noted that computation of interval
functions require effortO(22m), wherem indicates the
number of parents ofX [18]. Consequently, the overall
worst-case complexity of the L2U algorithm isO(k22m�),
wherek is the maximum number of iterations, andm� is
the maximum number of parents in the network.

We have implemented L2U and run tests in the same net-
works used to test the IPE algorithm. The L2U algorithm
converged after 4 iterations in the Pyramid network, and
after 9 iterations in the “Boolean” version of the Alarm
network. The mean square error (MSE) of several approx-
imate inferences was only 1.3% for both networks; these
results can be viewed in Figure 1. It should be noted
that L2U generally produces approximate inferences quite
quickly: inferences for the “Boolean” Alarm network were
produced in less than one second in a Pentium computer.

7 EXAMPLE: THE HOLMES NETWORK

It is perhaps useful to show a complete example, however
simple, of inference with a relational credal network. The
purpose here is to evaluate the extent that inferential vacu-
ousness can be a difficulty; computational aspects of infer-
ence algorithms have been discussed in previous sections.

Take then theHolmesexample [36, 27], as described in
the Primula system (Section 2). A person does or does
not live in LA; the person’s house is burglarized or not;
there may be an earthquake in LA; and the person will or
not sound the alarm, depending on the burglary and on the
earthquake. The critical probability formula for this prob-
lem was given at the end of Section 2.

Consider a modification of the originalHolmes
network, where the prior probabilities are impre-
cisely known: P (burglary(v)) 2 [0:001; 0:01℄,P (earthquake(LA)) 2 [0:01; 0:1℄ andP (lives-in(v; LA)) 2 [0:05; 0:15℄. Suppose also
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Figure 1: Experiments with Pyramid network (20 variables, no evidence) and “Boolean” Alarm (37 variables, no evidence).
From left to right: Pyramid network with IPE (100 iterations); “Boolean” Alarm network with IPE (100 iterations); Pyramid
network with L2U (4 iterations); “Boolean” Alarm network with L2U (9 iterations).�
 �	a(G)
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 �	b(G) -0.9
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 �	b(H)�0.9���	 �
 �	l(H,LA)�
Figure 2: A “propositionalized” instance of theHolmes
network, where: CS! cumulative-synergy (with link
probabilities over edges);a ! alarm, b ! burglary,e! earthquake, l ! lives-in.

that the NoisyOR function is replaced by a cumulative-
synergy model with identical link probabilities. The
evaluation of the leak probability for the cumulative-
synergy model is a difficult matter, as leaks simply stand
for unexplored territory; assume the leak probability to be
imprecise, in the interval[0:0; 0:1℄.
For a domain containingG, H, LA, such thatlives-
in(G;LA) is true, the credal network in Figure 2 is
obtained. Consider a few inferences. The (uncon-
ditional) probability for alarm(H) is in the interval
[0.0001,0.0253]; if there is an earthquake in LA, the
conditional probability is in the interval [0.0108,0.0388].
For G, we obtainP (alarm(G)) 2 [0:0029; 0:1179℄ andP (alarm(G)jearthquake(LA)) 2 [0:2007; 0:2080℄.
The important point here is that inferences produce rather
small intervals — even though only a few assessments are
stated, the presence of structural assumptions on the do-
main greatly constrains the probabilities, obviating difficul-
ties with inferential vacuousness.

8 CONCLUSION

The contributions of this paper can be divided in two
groups.

First, we have proposed relational credal networks as a
suitable language for certain and uncertain beliefs. Rela-
tional credal networks can handle several kinds of logical
and probabilistic assessments, as discussed in Section 3.
Even though the goals of probabilistic logic and relational
Bayesian networks are closely related, our proposal seems
to be the first explicit attempt to connect the two fields. As

a suggestive example of application, consider the construc-
tion of a system for evaluation of monetary policy; it would
be advisable to take the following piece into account:

...uncertainty is not just a pervasive feature of the monetary
policy landscape; it is the defining characteristic of that land-
scape. The term “uncertainty” is meant here to encompass
both “Knightian uncertainty,” in which the probability distri-
bution of outcomes is unknown, and “risk,” in which uncer-
tainty of outcomes is delimited by a known probability distri-
bution (A. Greenspan, January 3, 2004)

Second, we have contributed with new theory and sev-
eral new algorithms for inference in propositional credal
networks (and to “propositionalized” relational credal net-
works). Inference with propositionalized models is poly-
nomial for Boolean polytree-shaped networks (Theorem
1), and equivalent to standard MAP problems in general
networks (Theorem 2). The RL-based method and the
A/R++ algorithms (Section 5) are the first direct appli-
cation of multilinear programming to inference; we have
presented tests showing their effectiveness. We have also
presented new iterative and loopy approximate algorithms
that produce excellent results with short execution times
(Section 6). The L2U algorithm is particularly promising,
even though a solid convergence analysis is missing at this
point. Taken together, our experiments indicate that ex-
isting medium-size topologies such as the Alarm network,
can now be processed exactly, and much larger networks
can be processed approximately. Clearly several challenges
are yet to be overcome, but we hope to have demonstrated
the feasibility of inference with our proposed models.
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