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Abstract

This paper investigates a representation language
with flexibility inspired by probabilistic logic and
compactness inspired by relational Bayesian net-
works. The goal is to handle propositional and
first-order constructs together with precise, im-
precise, indeterminate and qualitative probabilis-
tic assessments. The paper shows how this can
be achieved through the theory of credal net-
works. New exact and approximate inference al-
gorithms based on multilinear programming and
iterated/loopy propagation of interval probabil-
ities are presented; their superior performance,
compared to existing ones, is shown empirically.
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cise, indeterminate, and qualitative ones).
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these characteristics, presenting basic theory, inferahc
gorithms, and applications. Sections 2 and 3 discuss the
basic aspects of our models. Section 4 then explores in-
ferences, framing them in the context@&dal networks
Sections 5 and 6 present several new algorithms for infer-
ence with credal networks, and experiments indicating that
these algorithms surpass existing methods with respect to
the size of handled networks. Section 7 discusses an exam-
ple and Section 8 contains concluding remarks.

2 PROBABILISTIC LOGIC AND
RELATIONAL BAYESIAN NETWORKS

Probabilistic logic associates probability values (which
may be imprecise or indeterminate) to logical sentences [3,
17, 23, 38]. An example of applicationlisgic probabilis-
tic programming where one can make statements such as
pa
KILLED () SHOT(y,z) A LOADED(y), (1)
here[p, q] is a probability interval — in fact several au-

ﬁors regard probabilistic imprecision as an important rep

resentation tool in itself [29, 32, 35]. Probabilistic logi
offers a language for several classic artificial intelligen
problems that deal with certain and uncertain beliefs; how-

The oldest attempts to combine certain and uncertain beaver, probabilistic logic faces two difficulties. First,ig
liefs go back to Boole’s probabilistic logic [22]. Probabil
tic logic was rediscovered by Nilsson [38], and has been exproduce probability intervals, and it is easy to create sit-
tended to handle imprecise and qualitative beliefs, i@abati
and quantifiers [3, 17, 23]. The price to pay for all this flex- probability intervals (call thisnferential vacuousnegs
ibility is computational complexity and, often, infereiti

computationally intractable in general. Second, infeesnc

uations where a few probability assessments lead to large

“First-order” Bayesian networks also combine logic and

vacuousness — inferences typically lead to probability m_probability but follow a different philosophy: they adopt

tervals, and often these intervals are quite wide. A difiere as many assumptions as needed (independence relations
strategy is adopted by relational Bayesian networks; here a y P b '

. . h unigueness of assessments) so as to yield efficient infer-
strict set of rules produces a single probability measude AN . ce schemes. We now brieflv review some relevant con-
efficient inference [19, 27, 36, 41]. Perhaps the most im- : y

portant lesson from the Bayesian network literature is the” epts related to such models. piopositional Bayesian

importance obtructure that is, the importance of modular hetworkencodes a single probability measure over a fixed

representations that admit fast inference algorithms set of variables, using a directed acyclic graph, a node
P 9 ' per variable, and associated conditional distributior®§.[4

It is natural to ask whether we can have structured repreFirst-order constructs can be added in several ways [19,
sentations that handle logical and probabilistic stateémen 20, 27, 36, 41]; here we focus eelational Bayesian net-
some of which may be precise, imprecise, indeterminatevorks [27] as they are quite general and flexible. The
or qualitative. This paper investigates representatidtis w idea is to have a vocabulay of relations, and to build



a directed acyclic graph where each node is associateits hondescendants nonparents conditional on its parents.
with a relation inS. Every relationr in S is then as- The graph topology is assumed known and captures the
sociated with gorobability formulathat indicates how to  structure of the domain; for instance, the graph topology
compute the probability of-(v) for any v in a domain  might come from a structured set of rules (1), or from di-
D. The probability formulaF;, may depend on other re- rect causal information.

lations, the parents of in the graph. When an infer- . : . .
ence is requested for somév) (that is, a request for the The best way to clarify this proposal is to discuss how

. " imprecise, indeterminate and qualitative beliefs shoad b
probability ofr(v) conditional on some observed event), ap : ;

.. . . ] .handled in a few concrete scenarios.
propositional Bayesian network is generated; each node in
this network represents the instantiation of a relatior].[28 We start with a brief comment on uncertainty over proba-
This “propositionalization” scheme requires methods forbility values, as this type of uncertainty has been the dbjec
combination of probability formulas — for example, sup- of extensive literature [30, 31, 47]. Several factors palu
pose that relation(v) has parent relations (u, v) thatare  imprecision in probability values: there may be little sub-
valid for someu satisfying relationi(u); then the proba- jective knowledge to obtain a precise value; there may be
bility p(r(v)|{s;(u,v) : (Yu)t(u)}) must be specified. Re- disagreementamong experts in charge of a model; or prob-
lational Bayesian networks emplogmbination functions  ability values may be estimated through confidence inter-
denoted byM{F,..., F,|u;c(u,v)}, to combineF; for  vals. The logical/probabilistic rule in Expression (1) is a
all u that satisfy the equality constraintu, v). Examples example of probabilistic imprecision [29, 32, 35]; similar
of such functions are Noisy-OR, Max, Min, and Mean.  rules are found in relational databases, when measures of
support and confidence are computed from data. It should

Consider the following examplelf » does not live in LA, be noted that induction of logic programs from finite data
then she sounds the alarm with probability 0.9 in case there gic prog

is a burglary; ifv lives in LA, then she sounds the alarm de- produces such interval-valued rules [5]. One might also

pending on whether there is a burglary and whether there igongder more sophisticated ways to specify constraints on

o . yrobability values, for example by belief functions or mass
an earthquake. This is expressed approximately as followaiSSi nments [17]. In this regard, possibilistic databages
P(alarm(v)) = if (lives-in(v, LA)) 9 ' gard, p

) fer an important example [4], as a possibility function can
Noi sy OR{ G oo
be readily interpreted aspper probabilities [16]. In all
(burglary(v) ? 0.9:0.0), - . . o
these situations, we obtain sets of distributions as repres
(quake(LA) ? 0.2:0.0)}; . .
ol se tations for beliefs.

(burglary(v) ? 0.9:0.0); It is also important to recognize thaualitative state-
where NoisyORp;} =1 — [[,(1 — p;). This probability = ments of probabilistic strength yield sets of probabili-
formula can be applied to any number of element®of ties. Consider thgualitative influencethat are employed

. I o : : in Boolean qualitative probabilistic networkg42, 48]:
While probabilistic logic isvery looserelational Bayesian L
networks arvery strict In this paper we want to find some here a marked edge. — X means that”(z[y, z) >
middle ground — structured and compact models that ca (%/(79). 2), wherez denotes any instantiation of parents

deal with imprecision and indeterminacy. The next sectior? X €xceptY”. This inequality typically defines a set of
proposes a methodology in this direction. probabilities. The same is valid for mixtures of qualita-

tive/quantitative assessments that have been proposed re-

3 “RELATIONAL CREDAL” NETWORKS  centy[42

Consider now the possibility of imprecision and indeter-
Our proposal is to convey logical and probabilistic beliefsminacy in combination functions. Take the most com-
of various forms (precise, imprecise, qualitative) by 8s0 monly used combination function, the NoisyOR function
ating directed acyclic graphs witetsof probabilities. The [20, 27, 36]. A NoisyOR function for Boolean variahlé
association of directed acyclic graphs with sets of prdbabi g parent&y = {¥;,...,Y,} depends on thénk prob-
ities is not new, as we discuss at the end of this section; ougpilities P (z|y;, {(—y;)}j»i) — that is, the probability of
point is that this strategy offers an attractive “bridge™ be x given thaty; is true but all other parents are false. A dif-
tween the compactness of structured probabilistic modelgcylty is that these probabilities are not always available
and the flexibility of probabilistic logic. — most notably, the medical literature usually contains

We assume that a directed acyclic graph captures a Markd®ly sensitivitiesP(z|y;) andspecificitiesP ((-z)|(-y:))
condition; in this we simply follow the Bayesian-network for each; [11]. One can try to translate sensitivities and
philosophy. Thus a nodén the graph is independent of specificities into link probabilities, but this translatiés
not unique [37]. The solution presented by Cooper in the
Taken from the documentation of the Primula system, dis-NESTOR system [11] is to take sensitivities and specifici-

tributed at www.cs.auc.dkfjaeger/Primula. ties asconstraintson the complete distributiop(X|Y),
2A node/variableX may refer to propositions or relations.



a method that clearly produces sets of probabilities. Théiere? A set of probability distributions is called @edal
problem with this approach is inferential vacuousness, aset[30]. A conditional credal sets a set of conditional
there are too few constraints on the distributigX |Y). distributions, obtained applying Bayes rule to each distri

A better approach would be to examine exactly which as_butlon in a credal set of joint distributions [47]. There

) ; : } are two kinds of conditional credal sets: if the distribu-
sumptions behind the NoisyOR function are adequate to fons forp(X|V" = y') and forp(X|V" = y") are unre-
problem, and adopt just these assumptions. For example,lgted then the sets aseparately specifiedf these distri-
NoisyOR function satisfies the following property: ’

L : . butions are related, then the sets axtéensively specified
Cumulativity: The more variables; are true, the larger is ) .
P(z)Y). [43]. For example, the cumulative-synergy model is sepa-

This property, and a few others, may be used to characte@tely specified, while qualitative influences are extegigiv

ize the NoisyOR function [14]. However, one might want spem_ﬂed. Now consider a credal set containing joint dis-
. ] tributionsp(X,Y|Z), and say thafX andY arestrongly
to assumenly a weakened form of this property in a par-

ticular situation: consider the following broposal: independent conditional af if the vertices of this set fac-
’ g proposat torize asp(X|Z)p(Y'|Z) (note that other concepts of in-
dependence for credal sets can be found in the literature,

pX]Y) = a ifYi=(-y)foralli, but strong independence seems to be the natural one in the
— Y;=y; and present context) [12, 13]. Thetrong extensiownf a credal
pXIY) = pi if N . - D
Yy = (ny;) forj#i, network is the largest joint credal set that satisfies a Marko
p(X|]Y) > max{p;:Y;=y;} otherwise. condition: a variable istronglyindependent of its nonde-

scendants nonparents conditional on its parents [13].

Here we havey(X|Y) aIv‘\‘/ays_Iarger than or equal tdhe  1ys our proposal is to use “relational credal networks” to
largest linkp; among the "activeY;. Alsowe have a small - ;ompine logical constructs and several forms of probabilis

“leak” probability a for the event{X = =z} conditional i 55sessments. Having identified the structure of interes

on{Y; = (-y:)}i-, (wherea < min; p;). Call EXpres- \ye now must look into inference procedures.
sion (2) thecumulative-synergsnodel. The set-valued fuc-

tion (2) offers as much precision as possible given the as; |NFERENCES

sumptions® A variant of this model is produced if sensitiv-

ities and specificities are given instead of link probaieit ~ We consider inference for a “propositionalized” credalnet
For example, if a sensitivity; = P(z|y;) is given, thenthe work. Even though inference is a NP-complete problem for
equalitys; = > vy, P(X|Y)P(Y\Y;|y;) must be satis- general polytree-shaped credal networks [43], a “pocket”
fied —p(X|Y) is given by the cumulative-synergy model of tractability is found inBooleanpolytree-shaped credal
with free parametens;, andP (Y \Y;|y;) are free variables. networks, for which polynomial algorithms exist (Section
Again, we are left with a set of probabilities ov&randY . 6 discusses this point in more detdil\We can thus state

. . . . the following easy but notable result:
Qualitative relationships can also be used to constrain com

bination functions involving Boolean variables. For ex- Theorem 1 If a relational credal network with Boolean
ample, theproduct/additive synergig48] define nonlinear variables is propositionalized into a network with polre
constraints over the probabilitig3( X |Y). These qualita- topology and separately specified credal sets, then infer-
tive assessments can be used in isolation or together witknce is polynomial.

the constraints already discussed.
] o ] . Infact, a more general result can be stated: if we can divide
Hopefully at this point it is clear that many kinds of beliefs 5 goglean credal network in pieces, such that multiply con-

can be represented relational Bayesian networks assciatiecied pieces contain only singleton credal sets, and such
with sets of probabilities. Suppose then that one builds suc 4t the various pieces form a polytree, then inference with
amodel; now suppose amferencemust be computed (that he credal network is essentially as hard as inference with

is, there is a request for probability bounds for sarg). a Bayesian network of identical topology.
We can start by creating an auxiliary propositional struc-

ture from the relational one, following the same procedured he following theorem clarifies the (yet open) complexity
used in relational Bayesian networks [28]. This produce®f inferences for multiply connected credal networks:
a directed acyclic graph and propositional variables asso-
ciated with sets of probabilities — an object that has beerf heorem 2 Inference with the strong extension of a credal
extensively investigated and is known asradal network ~ network is NP*-complete.
[1, 7,12, 18, 46]. A few relevant concepts are reviewed 4several tutorials can be found at the Society for Imprecise
Probability Theory and Applications, www.sipta.org.

3An attractive property of the cumulative-synergy model is  SAnother pocket of tractability is represented by purelylgua
that it admits “internal” factorizations as the NoisyOR dtinn; tative networks [42, 48]; however in this paper we focus ommo
due to lack of space, such computational properties are tigtni  els that can combine qualitative and numeric assessments.



Sketch of proofThe proof follows the same arguments in This “decomposition” of Expression (3) can be automated

Park's theorem for the MAP problem [39]. Membership using the variable elimination algorithm for Bayesian net-
in NPPP is immediate. Hardness is shown -by reduction OfWork inference. Run this algorithm and define new artifi-

E-MAJSAT: Park’s theorem shows a reduction to a MAp ¢l variables for each value of the intermediate functions

problem that is equivalent to inference in a credal networkgenerated during vanabl_e elimination. The obje_cfuye fung
using the Cano-Cano-Moral transform [12]. QED tion becomes a summation of a few of those artificial vari-

ables; each new artificial variable corresponds to a multi-
In short, inferences are in NP and KIP completeness linear expression representing relationships betweayhnei
classes — exactly the classes that contain MPE and MABour nodes in the elimination tree. The number of functions
problems for Bayesian networks. Thus we are within thein the resulting MP problem is linear on the number of pa-

confines of currently used probabilistic inference. rameters of the credal network. The decomposition is quite
fast and essentially takes the cost of a single Bayesian net-
5 INFERENCE ALGORITHMS BASED work inference® Details can be found elsewhere [6].

ON MULTILINEAR PROGRAMMING We now consider the solution of the resulting MP prob-

Consider the computation of a tight upper boundgr:) lems. We should stress that an advantage of such a “di-

(theupperprobability of { X = z}); this is obtained as rect” optimization scheme is that constraints on probabil-
n ities can be nonlinear (for example, the qualitative con-

max > [[p(Xilpa(Xy)), (3)  straints discussed in Section 3) and credal sets need not
X1, X\ X i=1 be separately specified. Existing algorithms for inference

subject to constraints on the distributiop&Yi|pa(Xi)).  with credal networks typically cannot handle such situa-
Exact inference algorithms for credal networks follow €i- tions. We thus consider a multilinear programming (MP)
ther enumeration or search methods to find the maximizin%romem formulated amax f, (8), whered contains prob-
distributions [9, 12, 43, 44]. Despite intense effort, féla apjity values that belong to a box ™ and satisfies con-
tively “small” inferences have been processed exactly S.%traintszten aTt[HjeJM 9,]> B, forr=1,--- R, T,

far (about 15 nodes for pqutrees, abou_t 8 nodes for multiis 51 index set defining terms of these constraintsis the

ply connected networks with ternary variables). Several auygg| coefficient for theth term, andJ,, indicates the set of
thors have suggested the direct use of nonlinear optimizaz,rigples in theth term. Definel’ = U, T... MP problems
tion for inference [1, 12, 18], but no algorithm has yet beeny e nonconvex and no known transformation can convexify

formulated using this approach. The objective of this S€Cthem; several solution methods have been proposed in the
tion is to investigate and implement the idea. literature [2, 21, 24, 33, 45].

For the constraints discussed in Section 3, Problem (3) ighe properties of Sherali and Tuncbilek’s Reformulation-
a multilinear program on free variablggX;[pa(X;)). If | inearization (RL) method [45] make it particularly ap-
an upper bc_)und for qqndltlonalprobablllty is requested, propriate to solve Expression (3). The RL method sub-
then_afractlon_ql multilinear program must be solved. As agtittes each product of Variablﬁjem 6, by a new ar-
fractional multilinear program can be solved by a sequencgicia| variabled; , for all termst € T, thus obtaining a
of multilinear programs [2], we only discuss Problem (3). jinear program. The solution of each linear problem gives
51 INFERENCE AS A MP PROBLEM an upper bound to the solut_|on of the MP pr_oblem. The_
~ method iterates over the variables by branching over their
Problem (3) has the unpleasant property that the objedanges whenever necessary, until edgh is close enough
tive function contains an exponential number of termsto [1,c,., 0. To guarantee convergence, some additional
(exponential on the size of the given credal network).“artificial” functions have to be included in the linear sub-
T.hls dlfflculty can be avoided by m_trodgcmg new grt|f|- problems; these variables correspond to multiplicatidns o
cial variables that stand for summations in Expression (3)the original constraints (provided that the degree of tive ne
To illustrate this procedure, consider a simple networkfunctions do not exceed the maxdegfee max,.; |.J.¢/,
A= B = ¢ = D — E. Assume all variables because this would increase the complexity of the prob-
in the network are ternary. Computation of the upperiem) [45]. In our implementation we only construct new
probability for {E = eo} using Expression (3) leads artificial functions when the terms they refer to are already
to max ) ) ; i p P(€oldn) p(dnlci) p(cilbj) p(bjlar) p(ax),  presentin the MP problem. To choose a variable to branch
a multilinear function with 81 nonlinear terms of degree over, the method finds the greatest difference between the
four. We can transform this expression by introducing newartificial variables and the products they represent, and di
variables so as to keep the degree at most 2. We obtain
just 30 nonlinear terms imax3_, p(eo|d;) p(di) subject ~ SAndersen and Hooker [1] proposed a similar decomposition,

top(di) = 3_; p(dilcj) plej), plex) = 32, plex|bj) p(b]-.), without specifying an algorithm for it; they also suggestiest a
p(br) = Zj p(bkla;) p(a;) (for k = 0,1,2), plus the lin-  direct MP solution would be necessary, but did not presept an
ear constraints. algorithm for it.



Table 1: Test sets (each with 10 networks), with average siz®P problems and their corresponding linearized vession
average sizes of intervals containing inference (alwaysgg@er probability), and the average number of branches ievesim
by the RL method. A few networks in the fourth row, and half tieéworks in the fifth row could not be solved.

Network Nodes| Vertexby | MP MP | Linear. | Linear. | A/R++ RL Branched
Topology credal set| vars. | funcs.| vars. | funcs. error error nodes

dense Boolean| 10 2 105 172 665 3996 | 2.8684% | 0.0484% 301
Alarm Boolean 37 2 363 576 1395 6876 5.5706% 1.076% 765
dense ternary 10 3 412 | 576 5920 | 40181 | 10.4304% | 0.3290% 1
Alarm ternary 37 3 1657 | 2214 | 13780 | 70612 | 22.3293% | 2.5954% 3

dense quaternary 10 4 1145 | 1474 | 30073 | 213376| 13.4146% | 0.6071% 1

vides the range of that variable. Every time a linear sotutio constraints that can be easily handled by the RL method.

is feasible for the MP problem, the method verifies whetherSO far we have discussed the A/R++ algorithm as a method

it is the best solution known so far. Thus the branchmgfor polytree-shaped networks; the algorithm can be readily

steps are obtained by "cuts” on the feasible regfiohi- extended to multiply connected networks, by considerin
nally, we note that branching in the RL method can benefit Py » 0¥ 9

from knowledge of local maxima [45]; in our implemen- messages in the variable elimination algorithm instead of

X g : ’ P messages directly amongst nodes. Technical details can be
tation we use the search algorithm by Rocha et al [44] tq‘oun d elsewhere [6]
produce local maxima. '

5.2 THE A/R++ ALGORITHM 5.3 EXPERIMENTS

The performance of the RL method is greatly enhanced ifVe have conducted experiments on five sets of networks,
ranges for free variablesandd are known [45]. One way © illustrate the behaviour of inference with A/R++ and our
to obtain approximate ranges for polytree-shaped network&L-based method. Results are shown in Table 1. Each
is to run the A/R+ algorithm [43]. The A/R+ algorithm (€St set was composed of 10 randomly generated multi-
(and Tessem’s original A/R algorithm [46]) work by pro- connected credal networks (generated with BNGenerator
ducing local approximations for the messages sent durinf?>l)- Experiments refer to computation of upper probabil-
inference in polytrees. A nod¥ receives approximate in- €S without evidence; results refer to the most challaggi
terval probabilities from its parents and children, anctisen inferences in each network. Table 1 indicates the topol-
approximate interval probabilities to its parents and-chil 09y Of the test networks and the size of multilinear and lin-
dren; these approximate interval probabilities are qyickl €arized programs. The size of linearized programs grows

computed and transmitted. Hence we can use the A/R+ apubstantially with the number of vertices on credal sets and
gorithm to improve the RL method. the number of variables in the credal network; for the larger

networks, only a few branches in the RL algorithm are pos-
Now, we can also use the RL method to improve the A/R+sjple. The results also allows us to compare the quality
algorithm. Take a nod&’ and consider thak’ must send  of results produced by the A/R++ algorithm and the RL
amessagax (Y) to its parent’, by combining messages method (note that the RL method uses the A/R++ to pro-
received fromX's other parents and children. The A/R+ gyce ranges of variables). Experiments were performed in
algorithm sends upper and lower bounds ar(Y), and 5 pentium IV 1.7GHz, using CPLEX as linear solver, and
these upper and lower bounds canezsily produced by \ith a time-limit of ten minutes for the first three test sets

multilinear programming— they are actually local ver- and one hour for the other two test sets.
sions of Expression (3) [46]. In fact, bounds on the proba-

bility of any event defined by, conditional on”, can also 6 ALGORITHMS BASED ON ITERATED
be produced by multilinear programming. Thus we obtain

the following algorithm, which we cal\/R++: follow the AND LOOPY PROPAGATION

same steps of the A/R+ algorithm, but compute probabilityA

. » . pproximate inference seems to be a natural solution for
bounds for several events using multilinear programmlng_,arge credal networks [8, 9, 10, 44, 46]. In this section we

?enrsasl’ser;inttheuii dbg;rf/;ff ;gsaslevgai/ss. mT:rZ g;gggg”:a/a'ﬁfopose two new approximate inference algorithms that are
. . geared towards Boolean networks, given the importance of
or equal to the intervals of the A/R+. Note that the addl—g 9 P

tional bounds that are passed amongst variables are IineSlrJCh networks in relational settings; the discussion isfbri
P 9 &hd technical details can be found elsewhere [26].

"In our context, these cuts are cuts on the credal sets irA Bool vt h | ialinf Th
the credal network; this branching strategy is differentfrthe s Boolean polytrees have polynomial inference (Theorem

branching method proposed by Rocha et al [44], where eacl), We focus on Boolean multiply connected networks. Our
branch corresponds exactly to a vertex of a credal set. new algorithms rely on the 2U algorithm — the first poly-



nomial inference method for Boolean polytrees [18]. Theis randomly chosen, such that every node that is relevant

2U algorithm slightly modifies the structure of messageso the inference is irS.

Initialization of variables and

used in Pearl’s belief propagation algorithm [40]. In the messages follow the same steps used in the 2U algorithm.

2U algorithm, each nod& computes value® (X = z|E)
by combination of interval functions(X) andA(X) —

Then the nodes are repeateadly updated following the
sequence. lterations are indexed by which starts at 1,

these interval functions are produced by processing severand updates are repeated until convergence of probadilitie

“messages” received h¥. A complete account of the 2U
algorithm can be found in the original paper [18].

6.1 ITERATED PARTIAL EVALUATION (IPE)

is observed or until a maximum number of iterations is
reached. Each node is updated in several steps:
1) Update z(tD(z) and 7 (x)
P(X =x|Zy,...,Zm), PX=2z|Zi,..., %)

using
and

Draper and Hank’s Localized Partial Evaluation (LPE)Messagesx (Z;) from them parentsZ; of X.

algorithm produces approximate inferences by “cutting”2) Compute/_\g§+1) andK(z+1)X using messageisgﬁ,) (X).
parts of a network and running interval-based inferences ir3) Compute interval messages to be sent to the children
a selected sub-network [15] (in Boolean networks, we camand parents ofX, ngl)(x) and A(;H)(Zi), using the
use the 2U algorithm for the interval-based inferences). We/ajues computed if)-J

propose the following algorithm: The whole algorithm follows the loopy propagation

1) Select a conditioning cutset [40] for the credal network.scheme, but instead of messages from Pearl’s propagation
2) “Cut” the Boolean network (using the cutset and the LPEaIgorithm, here we use interval messages from the 2U
operations) so that the resulting network is a polytree.  zjgorithm. It should be noted that computation of interval
3) Now run LPE on the polytree, using 2U as the infer-fynctions require effor)(22™), wherem indicates the
ence engine. In polynomial time we obtain an approximateyymber of parents o [18]. Consequently, the overall
probability interval for any node in the credal network. worst-case complexity of the L2U algorithmd(k22™"),

4) Select a different cutset, and return to Step 2, for a giveRyherek is the maximum number of iterations, and" is

number of iterations. . . ~ the maximum number of parents in the network.
5) At the end, return the intersection of all approximate

probability intervals generated in the process.
We have:

We have implemented L2U and run tests in the same net-
works used to test the IPE algorithm. The L2U algorithm

h h bability i | oroduced by th converged after 4 iterations in the Pyramid network, and
Theorem 3 The probability interval produced by the IPE ,¢or gjterations in the “Boolean” version of the Alarm

]‘:ﬂ?:r:gzm contains the exact interval requested by the in- ok The mean square error (MSE) of several approx-

imate inferences was only 1.3% for both networks; these
Sketch of proofEach run of the LPE+2U algorithm con- results can be viewed in Figure 1. It should be noted
tains the exact interval, because the LPE algorithm prothat L2U generally produces approximate inferences quite
cesses all vertices of credal sets in the network: the inquickly: inferences for the “Boolean” Alarm network were
tersection of all approximate intervals contains the exacproduced in less than one second in a Pentium computer.
interval. QED

We have implemented the IPE algorithm and run experi—7 EXAMPLE: THE HOLMESNETWORK

ments in the network topologies employed by Murphy etalt js perhaps useful to show a complete example, however
[34] to test loopy propagation: the Pyramid and the Alarmgmple, of inference with a relational credal network. The

networks. The Pyramid network is a multilayered graphprpose here is to evaluate the extent that inferential-vacu
associated with Boolean variables and local connectionggness can be a difficulty; computational aspects of infer-

among layers. The Alarm network is a classic model usegnce algorithms have been discussed in previous sections.
in medical diagnostic; we set all variables to Boolean val-

ues, so as to run the IPE algorithm. For both networksTake then theHolmesexample [36, 27], as described in

we generated several realizations of random, uniformly disthe Primula system (Section 2). A person does or does

tributed conditional probability tables [25]. Results dan ot live in LA; the person’s house is burglarized or not;

viewed in Figure 1; most inferences are quite accurate, wittnere may be an earthquake in LA; and the person will or

mean square error (MSE) of 5% for Pyramid and 7.2% forhot sound the alarm, depending on the burglary and on the

the “Boolean” Alarm. earthquake. The critical probability formula for this prob
lem was given at the end of Section 2.

6.2 LOOPY 2U (L2V)

Consider a modification of the originalHolmes

A popular algorithm for approximate inference in Bayesiannetwork, where the prior probabilities are impre-
networks is loopy propagation [34]. Here we propose acisely known: P(burglary(v)) € [0.001,0.01],
“loopy” variant of the 2U algorithm for multiply connected P(eart hquake(LA)) € [0.01,0.1] and

Boolean credal networks. First, a sequence of nd8les P(lives-in(v,LA)) € [0.05,0.15]. Suppose also
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Figure 1: Experiments with Pyramid network (20 variablesenidence) and “Boolean” Alarm (37 variables, no evidence)
From leftto right: Pyramid network with IPE (100 iteratign®Boolean” Alarm network with IPE (100 iterations); Pyr&m
network with L2U (4 iterations); “Boolean” Alarm network thiL2U (9 iterations).

0'2% a suggestive example of application, consider the construc
tion of a system for evaluation of monetary policy; it would
d b 2ce

be advisable to take the following piece into account:

Figure 2: A “propositionalized” instance of thgolmes ...uncertainty is not just a pervasive feature of the mageta
network, where: CS— cumulative-synergy (with link  policy landscape; it is the defining characteristic of tiaag-
probabilities over edgesy; — al arm b — burgl ary, scape. The term “uncertainty” is meant here to encompass
e — earthquake,l —lives-in. both “Knightian uncertainty,” in which the probability dis

bution of outcomes is unknown, and “risk,” in which uncer-
tainty of outcomes is delimited by a known probability distr

that the NoisyOR function is replaced by a cumulative- bution (A. Greenspan, January 3, 2004)

synergy model with identical link probabilities. The

evaluation of the leak probability for the cumulative- Second, we have contributed with new theory and sev-

synergy model is a difficult matter, as leaks simply standeral new algorithms for inference in propositional credal

for unexplored territory; assume the leak probability to benetworks (and to “propositionalized” relational credat-ne

imprecise, in the intervdl.o0, 0.1]. works). Inference with propositionalized models is poly-

For a domain containing, H, LA, such thatl i ves- nomial for Boolean polytree-shaped networks _(Theorem
1), and equivalent to standard MAP problems in general

i n(G,LA) is true, the credal network in Figure 2 is
obt(ained.) Consider a few inferences. Tﬁe (uncon_networks (Theorem 2). The RL-based method and the

ditional) probability for al ar m(H) is in the interval A/R++ algorithms (Section 5) are the first direct appli-
[0.0001,0.0253]; if there is an earthquake in LA, the cation of multilinear programming to inference; we have
conditio'nal prob,ability is in the interval [0.0108,0.0:’388 presented tests showing their effectiveness. We have also

For G, we obtainP(al ar mG)) € [0.0029,0.1179] and presented new iterative and loopy approximate algorithms
' ' oy that produce excellent results with short execution times

eQSection 6). The L2U algorithm is particularly promising,

small intervals — even though only a few assessments ar ven though a solid convergence analysis is missing at this
oint. Taken together, our experiments indicate that ex-

stated, the presence of structural assumptions on the dgt' di 76 topoloai h as the Al twork
main greatly constrains the probabilities, obviating diff ISting me b|um—S|ze 0%0 Og'ei suc das i | armne tv\vNor k
ties with inferential VacLOUSNESS. can now be processed exactly, and much larger networks

can be processed approximately. Clearly several chaltenge
are yet to be overcome, but we hope to have demonstrated
8 CONCLUSION the feasibility of inference with our proposed models.
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